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Abstract 

It has been shown that parallelism is a very promising alternative 
for enhancing computer pedormance. Parallelism, however, 
introduces much complexity to the programming effort. This has lead 
to the development of automatic concurrency extraction techniques. 
Prior work has demonstrated that static program restructuring via 
compiler based techniques provides a large degree of parallelism to 
the target machine. Purely hardware based extraction techniques 
(without sofhvare preprocessing) have also demonstrated significant 
(but lesser) degrees of parallelism. This paper considers the 
performance effects of the combination of both hardware and 
sofhvare techniques. The concurrency extracted from a given set of 
benchmarks by each technique separate&, and together, is 
determined via simulations and/or analysis. The “common 
parallelism” extracted by the two methods is thus also considered, 
using new metrics. The analytic techniques for predicting the 
performance of specific programs are also described. 

1. Introduction and Background 
A variety of software and hardware techniques for improving 

computer performance. have been proposed or implemented. Many of 
these schemes aim at extracting paralIelism at different levels of 
granularity and at different phases of the program development and 
execution cycle. Parallelism can be extracted or specified at many 
different levels: 

1. Task level 

2. Routine or process level 
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3. Subroutine level 

4. Loop level 
5. Machine instruction level, or low-level [24] 

6. Micro-level, e.g., micro-instruction overlap [12], 
pipelining 

Parallelism may be explicitly specified by a user, or be implicit in 
the user’s code. If implicit parallelism is to be exploited automatic 
concurrency extraction techniques must be used to detect the 
parallelism and schedule the resulting operations [14, 16,13,23,24]. 
Automatic techniques are preferable for many practical reasons, 
including: 

1. The programming task is made easier for the user. The 
underlying software/hardware system is transparent to 
the user. 

2. Much pre-existing sequential code, e.g., “dusty decks,” 
may be executed in parallel, without re-writing it. 

3. Given the complexity of the parallelism specification 
and exploitation problem, automatic schemes are more 
effective on the average than manual optimizations. 

In this uaoer we restrict ourselves to the consideration of automatic 
extractioh &ethods applied at the loop and machine instruction levels 
(levels 4 and 5), although such techniques could, in principle, be 
applied to the other levels. In particular, modified level 5 methods 
could be used to execute micro-instructions concurrently. Although 
the techniques considered are applied at specific levels, they may 
also extract concurrency at and between other levels. 

Traditionally, primarily static software-based methods have been 
applied to the loop level, while hardware-based methods have been 
aoolied to the machine-instruction level. More often than not. these 
t;Nb approaches have been considered separately, in exclusion df each 
other. There have also been questions raised about the parallelism 
exploited by each technique and the overlap thereof. The& issues are 
considered in this paper. 

A particular software technique, the Parafrase [8,10] preprocessor 
is applied both separately, and in conjunction with. a hardware 
technique: the CONDEL-2 low-level concurrent machine model 
[21.23], to the same set of benchmarks. 

The major questions addressed by the experiments described below 
are: 

1. What is the effect on performance (speedup) of 
applying both software and hardware concurrency 
extraction methods simultaneously to the same 
problem? 

2. What parallelism is extracted by each method, and what 
is the overlap, or “common parallelism” of the two 
methods? 

3. Can the speedups be predicted analytically, and if so, 
how? 
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The first two questions lead to the following hypothesis: 

The total speedup of the combination of the two methods 
is greater than the methods taken separately, and is possibly 
greater than the sum of the 1.~0. 

The former uart of the hwothesis reflects the belief that the two 
methods will hot hamper each other. Although one can contrive 
cases in which this is not true, if the software technique is aware of 
the limitations of the hardware technique, no- reduction in 
performance should occur. 

We arrive at the latter part of the hypothesis via the following 
reasoning. The compiler can extract much parallelism at the loop 
level which is (or can be made to be) over and above that which is 
extracted by the hardware, particularly in the case of DOALL 
constructs with a large number of iterations. Likewise, the hardware 
may extract much low-level concurrency, particularly of a dynamic 
nature (i.e., from other types of loops and/or code with complex 
control flow), which software techniques may not be able to extract 
or exploit efficiently. In addition to these orthogonal perfonmance 
contributors, the compiler can remove low-level concurrency 
inhibitors [21], resulting in synergistic performance improvement. 

The hypothesis is tested in the experiments. New, generally 
applicable, metrics are developed and used to quantify and 
characterize the speedup overlap and the combined performance gain 
of the two techniques. 

The remainder of this paper is as follows. The basic mstricters of 
concurrency, dependencies, are brieflv described in Section 2. The 
hardware f&c&s and description are given in Section 3. The 
software functions and description are presented in Section 4. The 
combination of the two techniaues is discussed in Section 5. The 
metrics used to determine and analyze performances are defined and 
described in Section 6. The performance estimation analvsis methods 
are outlined in Section 7. ‘The experimental results a;e given and 
discussed in Section 8. The conclusions of the paper are summarized 
in Section 9. 

2. Dependencies 
The necessary restrictions in typical code that prohibit many 

instructions from executing concurrently, and thus arise due to the 
constraints of the code itself, being independent of hardware 
restrictions, are called program [S] or semantic 1211 dependencies.5 
There are two classes of dependencies, data and procedural (the 
latter is also called control or branch). 

There arc three types of data dependencies: flow, anti, and output 
dependencies [2]. A flow dependency is defined between two 
assignment statements, if a variable defined by the former statement 
is used in the latter statement. An antidependency is similarly 
defied, but in this case a variable used by the former statement is 
redefined in the latter statement. Output dependency is defined 
between two statements that write into the same variable (memory 
location). Theoretically, only flow dependencies need be 
enforced [3]. This ideal is closely approached by the two methods 
described in this paper. 

Procedural dependencies arise due to the constraints imposed by the 
presence of branches in the instruction stream. The classic model 
assumes that all code after a dynamically occurring branch is 
dependent on the branch. This is not essential. Sets of specific 
dependencies may be defined to reduce these constraints. A minimal 
set of procedural dependencies is described in [21,24]; this set is 
used by the hardware method described herein. Another reduced set, 
a bit more reshictive, is used by the software extraction method. 

Both hardware and software concurrency extraction methods 
employ very reduced semantic dependency models. 

3. Hardware Functions and Description 
In this section we review general aspects of low-level concurrent 

machines, and describe the actual hardware model simulated. 

4DOALL loops contain independent iterations which may be executed 
completely in parallel. 

5The terms dependence (see c19.231) and dependency (see [8]) are used 
by different researchers to mean slightly different things. For the purposes 
of this paper, they are considered to be the same. 

The basic goal of hardware low-Ievel concurrent machines is to 
automatically extract concurrency at the m.achine instruction level. 
By examining the insttuction stream and detecting the semantic 
dependencies amongst the instructions, instructions whose effects are 
independent of each other may be executed concurrently, improving 
performance. Normally only a subset of the total instruction stream is 
examined by the hardware at a time, potentially restricting the 
oarallelism extractable bv the machine alone. The basic ornanization 
bf these machines consists of an instruction scheduler ana multiple 
functional units or Processing Elements @E’s). As the instruction 
stream is examined, independent instructions are detected and issued 
for concurrent execution. 

Classic work done in the area of hardware low-level concurrency 
extraction is in ]6, 17, 19,201. More recent work includes: 
[l, 5.12,22,23, %I. See [24] for a brief comparison of most of 

these techniques. 

The hardware model used in our studies is an advanced low-level 
concurrent machine, CONDEL-2 [21,23]$ see Figure 3-1. This 
model achieves close to minimal data and branch dependencies. It 
also contains structures allowina some code sections to execute 
ahead of time, with no penalty i? the results are not needed. Like 
other machines, the basic structure of CONDEL consists of a central 
instruction issuing unit simultaneously supplying multiple simple 
PE’s7 with instructions. The input to the processor is a typical single 
stream of machine instructions, consisting of simple assignment 
statements and branches. As is also typical, backward branches in the 
input stream are used to realize all looping constructs specified by the 
high-level language. No distinction is made between different types 
of loops (this is slightly modified for the purposes of two of the 
experiments; the modifications are described in Section 8). The 
static, i.e., lexicographic, instruction stream order is used; a subset of 
the total nroeram is examined at a time (twicallv 16 or 32 static 
instructio&,?n a hardware window called t&.~Itzst&tion Queue (IQ) 
f251. CONDEL appeam to the user as a SISD machine, but 

inter&ly it acts as & MIMD machine, with the instruction issuing 
unit performing the concurrency extraction, and hence the Single- to 
Multiple- instruction stream conversion. 

Since the order of the code is independent of the dynamic control 
flow, at least within the window, it is possible to execute instruction 
instances* beyond branch domains9. This happens since both the 
code within the branch domain and the code after the branch domain 
are present simultaneously, regardless of the execution of the branch. 
The execution of code occurring after the branch domain is not 
dependent on the branch per se, and thus may execute concurrently 
with the branch. Therefore the ill effects of branches are reduced 
through reduced procedural (branch) dependencies [ l&21,22,24]. 
Descriptions of the specific necessary and sufficient reduced 
procedural dependencies may be found in [24]. 

Only flow dependencies are enforced for scalar assignments. Array 
(and pointer) assignment dependencies are also reduced, but to a 
lesser extent. 

As each static instruction is loaded into the machine, the 
dependencies between the new instruction and those already loaded 
are computed. Computing the dependencies at load time, rather than 
at compile time, vastly reduces the memory bandwidth required for 
instruction fetches,‘c while keeping the degree of dependence 
amongst the instructions low. This occurs since the dependencies, 
several bits per instruction pair, do not have to be transmitted to the 
machine; also, the dependencies computed and realized by the 

%Jnless noted otherwise, all references to CONDEL in this paper imply 
this particular version. 

7These elements have the complexity of semi-smart ALU’s, possibly 
performing some assignment instruction decoding and operand fetching, as 
welt as the usual execution. 

sun instance of an instruction is the instruction executing in one iteration, 
whether it is within a loop or not. 

gA branch domain consists of the code from the branch to its target. 
r”Altematively, the instruction order could be specified explicitly to the 

machine, and eliminate the need to compute the dependencies in the 
hardware; however, this would eliminate the performance gains achieved by 
the hardware as is, gained via the scheduling of execution of instructions 
dynamically, as soon as possible. 
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to PE’s 

Instruction 
Queue 

Data Advanced 
Dependency Execution 

matrix matrix 

1 8 1 4 
1: ---- 

lFZGoto7. 
B=D-E 
-- 

B=F*G 
-_-- 

7:A=B+C 
IF-Got0 1. 

new instructions 
$f$$; ,,w,,, executed 

RE really executed 

serial order: 1 

SEN link and 
data flow 

Notes: the first branch is not taken in iteration 1, but is taken iu iteration 2 (giving the virtual executions shown); two or 
more iterations are enabled. In the lower part of the drawing, the first two columns of the AE matrix are 
shown unfolded, and iu their serial, or nominal execution, order. 

Figure 3-1: Basic CONDEL-2 concurrency structures, with SEN example determination. 

hardware are more dynamic than those computable by software. (Of 
course, software may want to compute its own set of dependencies 
for high-level concurrency detection.) Once an instruction is loaded, 
it (and other previously loaded instructions) may be executed. Over 
the course of code execution, dynamic state information is 
maintained, indicating which instances have been executed. During 
each execution cycle, an Executably Independent Calculator in the 
processor combines the dependency information with dynamic state 
information, to determine which instances may be executed in the 
current cycle. These instructions are issued in parallel, and the 
dynamic state is updated accordingly, whence the cycle repeats. 

The dynamic execution state is held in two stmctures, the Really 
Executed (RE) and Virtually Executed (VE) bit matrices, each having 
n rows (one per Instruction Queue row or instruction), and m 
columns, one per instruction iteration. Typically. n is 16 to 32, and m 
is 4 to 8. An instruction instance is reaUy executed when its specified 
operation has actually taken place, i.e., it is executed normally. 
Virtual execution occurs if the instance is disabled for execution by a 
branch executing true, i.e., in traditional terms, if a branch is taken 
and goes around the instance. An instruction instance can be 
virtually or really executed, but not both. In either case, instance 
execution results in the corresponding bit being set in the appropriate 
matrix. The OR of the RE and VE matrices gives the Advanced 
Execution (AJZ) matrix [25], shown in Figure 3-l. 

The basic determinations of both instruction instance issuance for 
execution, and source linking (determining the inputs to the 
instance), are made by the SEN (Sink ENable) logic, a simplified 
version of which is: 

(Refer to Figure 3-1 for the following discussion.) u is the serial 
index of the instruction iteration under consideration for execution, t 
is the serial index of an instruction iteration occurring serially prior to 
u, and s is the serial index of instruction iterations between t and u. 
DD is a binary Data Dependency matrix. A SET is a 1 only if 
instance I is to supply its sink to the input of u, and u may execute, in 

the current cycle. This is only possible if t has really executed, i.e., a 
value exists for that instance’s sink, and t is data dependent on u; 
also, all instances s between t and u that are data dependent with u 
must be virtually executed, othepvise they would be candidates to 
supply u with an input in the current or a later cycle. Only one .Wq 
may be 1 for each instance u; if none are 1, the data does yet exist for 
u, and u may not be issued for execution. In the example of Figure 
3-l. all of the conditions are met, so instance u gets its input B from 
the first iteration instanceofnstruction 5. 

Using this as part of special hardware algorithms, data flow 
execution of the input code is achieved”. Performance is enhanced 
further via both the use of the reduced procedural dependency 
model [21.22, 241, and the application of a simple form of branch 
prediction, allowing one or more instances of un-enabled loop 
iterations to execute ahead of time. Code execution is decoupled 
from memory updating (copying the results to memory), resulting in 
no time penalty upon a wrong guess. 

Thus, many powerful techniques are used to enhance the low-level 
concurrency obtainable from nominally sequential code. The 
hardware is able to exploit more low-level concurrency than purely 
static techniques. since the hardware in effect generates and utilizes a 
dynamic dependency graph, which is normally less than or equally 
restrictive to a corresponding static graph. However, there may still 
be characteristics of the code which inhibit its concurrent execution. 
Additionally, with current hardware methods, only a portion of a 
program is considered at a time, restricting concurrency. It is also 
possible that more concurrency can be obtained from a program if 
more information is available about higher-Ievel constructs. 
Therefore compiler-based methods should also be of use. 

4. Compiler Functions and Description 
Another concurrency extraction technique is program restructuring. 

In this approach parallelism is discovered and made explicit to the 
run-time environment by the compiler. Program restructuring is less 
dependent on the details of the target machine. Specific architectural 

llThis is for scalars, as well as many array accesses. See [24]. 
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features can be exploited by a back-end compiler which is machine 
specific. Restructuring may bc limited, however, in that it cannot 
t&e advantage of dynainic program characteristics only observable at 
run-time, e.g., dynamically computed loopbounds and actual control 
flow. Also, restructuring teclmiques alone are not well-suited for 
exploiting low-level concurrency. 

Parafrase applies to the input program a number of optimization.5 
that are architecture dependent or independent. The first phase 
applies a number of transfonnations that are machine independent 
and which are always useful in aiding the 
vectorization/parallelization phase. Such optimizations include 
scalar renaming and expansion, subroutine expansion, dead code 
elimination, first order recurrence recognition, and many others. The 
second phase involves architecture specific optimizations. In this 
phase loops are recognized and translated to vector or parallel loops 
depending on whether the underlying architecture is a vector or 
multiprocessor machine. 

The Parafrase restructurer is able to discover parallelism at several 
different granularity levels. Although parallelism detection at the 
statement and operation level is possible through Parafrase. this 
capability was not used in analyzing our benchmarks, since low level 
concurrency extraction appears to be done more effectively with 
hardware methods. In this txauer Parafrase was used to restructure 
the benchmarks and discove; p’arallelism at the loop level. Assuming 
a multiprocessor machine with CONDEL processors, parallelism 
exploita-tion at lower levels (e.g., within each ioop iteration) is left to 
the hardware. 

Automatic program restructuring from a serial to a parallel fotm is 
achieved through data and control dependency analysis by the 
compiler. Data and control dependencies define a partial order on the 
statements of a program. The Parafrase compiler enforces a close to 
minimal set of data dependencies. During actual execution, this 
order must be obeyed in order to guarantee correctness of the results. 
The program dependency graph is constructed by the compiler such 
that nodes correspond to statements in the source program and arcs 
represent data and control dependencies between statements. 

Based on the data dependency graph, Parafrase [ll] applies a 
number of transformations that resttucture the program into a parallel 
form. Parallel constructs are explicitly specified in the output code. 
The most important parallel constmcts (that arc relevant to this work) 
are several types of parallel and recurrence loops. In particular. we 
have the following types of loops in a typical Parafrase output. 
DOSERIAL loops are purely serial loops. In a DOSERIAL loop all 
statements are involved in a data dependency cycle. DOALLs are 
fully parallel loops; all the iterations of a DOALL can execute 
simultaneously. A more genera3 type of parallel loop is the 
DOACROSS loop [4, 151. A DOACROSS loop contains a 
dependency cycle (or a backward dependency) that involves only 
some of the statements in the loop body. Successive iterations of 
DOACROSS loops can be partially overlapped. DOSERIAL and 
DOALL loops can be thought of as special cases of DOACROSS 
loops when the dependency cycle involves all statementi in the loop 
or if the cycle involves no statements, respectively. Certain types of 
DOWHILE or EXIT-IF loops are treated as DOALL’s or 
DOACROSS’s by Parafrase, depending on the loop dependency 
graph. 

Thus, software methods are able to detect much parallelism at the 
loop level. 

5. Combining Compiler and Hardware Solutions 
The basic scheme for combining the hardware and software 

concurrency extraction methods is straightforward. Code to be 
executed is first passed through the program restructuring compiler, 
and then to one or more of the concurrent machines for actual 
execution. The eventual goal for the compiler is to 

l perform an accurate dependency analysis, 

l remove low-level concurrency inhibitors from the code, 
and 

l detect parallelism at a high-level, i.e., determine which 
loops may be executed in a DOALL fashion. 

The goal of the concurrent machine is to execute the restructured 
code as concurrently and efficiently as possible. In the case of 
DOALL loops, multiple processors may be used to maximize the 

performance, each machine executing a subset of the total number of 
iterations. 

6. Metrics 

6.1. Definitions 
It is assumed throughout that each instruction or fundamental 

operation takes one cycle to execute. 

Definition 1: Tt is the time to execute a benchmark 
strictly sequentially. 

Definition 2: S, =;. Speedups are computed simply 

by dividing the time gxecute the program sequentially by 
the time to execute the program in some parallel fashion 
CL). 

Definition 3: ST is the total actual speedup obtained with 
multiple methods combined, e.g., in the case of this work, 
the okput of the Parafrase compiler is used as the input to 
the CONDEL-2 hardware model, via the method given in 
Section 8.4.4. 

Definition 4: m is a measure of the overlap in 
concurrency, or “common parallelism”, extracted by the set 
of methods used. 

where: Si is the speedup due to extraction method i alone, 
and 

s nom-pk 

In this work: Sip (SH,,hme, Ssofi,). If 0 is between zero 
and one, it indicates the degree of overlap between the 
methods. When it is greater than one, a degenerative 
situation exists. If equal to one, there is complete overlap, 
and no gain is obtained from the combination of the 
methods. When equal to zero, there is no overlap, and the 
parallelism obtained from each technique is apparently 
fully utilized. m is undefined if any SiSl; (it is hard to 
quantify an overlap with nothing or something negative, 
which is what such speedups imply). Snmpk is the 
nominal-peak speedup one might intuitively expect when 
completely orthogonal performance enhancement methods 
are cascaded. It is not the “maximum” speedup obtainable. 

Definition 5: cs is the synergy indicator, or measure of 
effectiveness of the combination of the different 
concurrency extraction techniques. 

sT 
CJE- 

S nom-pk 

When (T is greater than one, synergy exists, in that the 
speedup obtained by the combination is greater than the 
product of the individual speedups. If (I is less than or 
equal to one, and greater than zero, the indication is that no 
synergy exi!;ts, although combining the methods may still 
produce a performance gain; in this case. the metric 
indicates how much of the nominal- peak performance is 
obtained. 

Definition 6: S, gives the effective speedup of the 
combination of the methods over the methods alone; 
formally: 

SF&&j 

If S, is greater ‘than one, the combination of the methods 
has a positive effect on performance. 

6.2. Example and Discussion 
An example of the use of the metrics is shown in Figure 6- 1. For a 
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ST W 

loo -1.25 

1.5 .0.63 

S nom-pk= So 0.0 

40 0.25 

30 0.50 

20 0.75 

s soj?ware= 10 1.0 

7 1.08 

s Hardware = 5 1.125 

3 1.18 

0 1.25 

2.0 10.0 

1.5 1.5 

1.0 5.0 

0.80 4.0 

0.60 3.0 

~ 

0.40 2.0 

0.20 1.0 

0.14 0.7 

0.10 0.5 

0.06 0.3 

0.0 0.0 

Note: The metrics are computed for various values of S,, 
given: SHa,h,e=5.0 and S,Ofirwarc= 10.0. 

Table 6-l: Example illustrating the behavior of the metrics. 

single set of SSotiwe and SMarhare values, different combined 
performance figures ST are posited, With the corresponding metric 
values, showing the behavior of the metrics in different cases. 

The overlap co is limited in that it does not indicate in what way 
performance methods overlap; it only gives a tough outside 
indication of the common parallelism. To completely understand the 
dynamics, it is still necessary to examine the data in detail; in the 
case of this paper, this means to examine the methods and their 
executions of the benchmarks in depth. The synergy indicator Q prc- 
supposes that S,,,,, is a reasonable likely maximum; not everyone 
may agree with this. The combination speedup indicator S, is useful 
in describing what the performance gains of the combination are over 
and above what was the best achieved with the enhancement methods 
applied separately. l2 When used together, these three metrics 
provide a gocd characterization of the effects of combining 
~rform3nce enhancement techniques. 

7. Performance Estimation 
It is desirable to be able to predict performance of any machine or 

machine model. Although analyzing arbitrary code to estimate its 
perf~t’tnance on a particular machine may be prohibitively unwieldy, 
code with relatively simple control flow may be more amenable to 
reasonable analysis. Such is the case with CONDEL, particularly 
when executing loops. Simple loops consisting solely of assignment 
statements and a loop-forming backward branch are considered first, 
followed by consideration of similar loops containing IF-THEN’s. 

Without IF-THEN’s, un-nested loops may be executed sequentially 
in time Tt =K+(Lxr)+M, where L is the static length of the loop, r 
is the number of iterations of the loop to be executed, and K and M 
are the lengths of the code segments before and after the loop, resp. 
As determined in [7], the loop may be executed concurrently on 
CONDEL in time dependent on the length of the dependency [9] or 
cotnpufution [21] cycle X. Since CONDEL does not currently have 
the ability to generate multiple values of the same index at the same 
time (as would be useful for executing DOALL’s), X2 1. 
CONDEL’s maximum performance occurs if it is able to execute. one 
instance of every instruction within a loop every cycle (the instances 
may be in different iterations), i.e., with X equal to 1; this is called 

%I fact one can imagine the usefulness of computing a series of S,, one 
for each i, defined as: 

Each value indicates the benefit of the combination relative to one parlicular 
method, not just the best Looking at groups of these figures for a variety of 
benchmarks would indicate which method provides the larger tiprovcmcnt 
on average. We do not use thii modification here. 

saturation. X is determined by finding the longest cyclic path 
between successive iterations of static instructions within the loop. 
Code segments K and M are executed concurrently with the loop, 
when dependencies allow. 

The resulting concurrent execution time is then: 
Tpr= W+(Xx r)+Y. where W and Y arc the longest thread lengths of 
the sections of code segments extending before (resp. after) the 
longest cycle, and dependent on the cycle. These segments contain K 
and M and may be overlapped with the loop. As r becomes large, the 
resulting speed-up is: UX, which is the same result as that obtained 
for concurrent execution of DOACROSS loops ln [4, 151. It is also 
the same as the basic limit on pipeline performance. 

When IF-THEN’s are present, the length of a dependency cycle 
may vary as the code is executed, depending on the data values. An 
example of this is a recurrence, i.e., the value of an IF conditional 
may be. computed within the same THEN in a prior iteration. Also, 
the effective value of L changes as IF’s execute true in some 
iterations (decreasing the effective loop length), and false in others. 
The dependency cycle variation affects the concurrent execution 
time, the loop length variation affects the sequential time. In such 
loops, upper and lower bounds on the expected performance are 
determined by finding X and L for the appropriate combinations of 
branches taken and not taken, computing the possible speedup 
values, and using the extremes as the bounds on performance. 

Thus, CONDEL executes code (in fact, all loops) in a concurrent 
DOACROSS fashion, and also possibly with dynamically changing 
X. Consideration of predicted performances with actual values is 
given in Section 8.4.1. Other code and machine situations are 
considered in [7]. 

Execution times of other constructs on ideal machines arc easily 
determined. A DOALL loop will execute in the time necessary to 
execute a single iteration either concurrently or sequentially, 
depending on the machine, if synchronization is neglected. If a 
reasonable worst case for synchronization is assumed, i.e., each 
iteration is skewed from its predecessor by one cycle (linear 
overhead), then the DOALL time is the same as a DOACROSS time 
for the same loop with X= 1. Detected and executable recurrences 
take logarithmic time to execute in the ideal case. In other cases, 
DOACROSS loops with X= 1 are again assumed. 

8. Experiments 

8.1. Introduction and Outline 
Experiments were performed to determine the effectiveness of each 

concurrency extraction method separately and together. The same set 
of benchmarks is used throughout the experiments. The execution of 
the benchmarks is simulated or determined analytically for several 
possible system cases: 

1. Hardware method of low-level concurrency extraction 
used alone. 

2. Software restructuring used alone, applied to a 
multiprocessor model. 

3.The combination of the two methods, assuming the 
hardware has no special capabilities to execute DOALL 
loops or recurrences. 

4.The combination of the two methods, assuming the 
hardware is capable of executing DOALL and 
recurrence constmcts in as parallel a fashion as 
possible. 

In the first case, the CONDEL low-level concurrent machine mode1 
is used alone. For the last three cases, the Parafrase. restructuring 
compiler developed at the University of Illinois is used to generate 
the restructured code. 

The specific methodologies and results for each case are described 
below, after the methods for using the restructured code arc 
described, and the benchmarks are presented. 

8.2. Using the Restructured Code 
The Parafrase output was modified to a form that would occur if the 

compiler had been designed to produce code for CONDEL machines. 
The major compile-time optimizations that were assumed were: 100p 
parallelization, dead-code elimination, common subexpressio-n 
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elimination, in-line subroutine expansion, array renaming to1 sati@ 
the single assignment rule,13 and dependency cycle reduction. 

As previously mentioned, the basic strategy is to pass the 
benchmarks through Parafrase, and then through the CONDEL 
simulator (or determine the performance using the analytical 
techniques previously mentioned). Since no softw;lre exists td take 
Parafrase output and convert it to CONDEL assembly code, the 
following &sed approach is used: 

1. The multiprocessor or MES (Multiple Execution Scalar 
[lo]) output of the Parafrase compiler (in modified 

FORTRAN) is used as the starting point. This code 
consists of a combination of the following componen1.s: 
DOALL, DOACROSS, and DOSERIAL loops, and 
scalar code. (DOWHILE loops must be handled 
specially, as Parafrase does not accept them directly. 
There were none in the benchmarks studied.) The 
Parafrase output is modified to a form that would occur 
if the compiler had been designed to produce code for 
CONDEL machines. 

2. The different components of the Parafrase output are 
hand-coded into CONDEL Assembly code, with the 
different components treated as follows: 

l DOALL loops and recurrence calculations: this 
depends on the particular system model being 
considered. If no synchronization overhead is 
assumed, then the execution time of the 
constructs is primarily determined by the 
execution time of a single iteration on a 
CONDEL machine, ConcurrentIy or sequentially, 
as appropriate. In the case of recurrences, a 
penalty equal to the logarithm of the number of 
iterations is added to the single iteration time. If 
either significant overhead is assumed, or only a 
single concurrent machine is available to execute 
the code, then the constructs are treated as 
DOACROSS loops with delay (or offset) of one 
cycle. 

l Other code, e.g., DOACROSS, DOSERIAL, and 
DOWHILE loops, and scalar code: coded and 
simulated or analyzed directly, assuming a single 
CONDEL nrocessor (with or without multiole 
PE’s, depenbing on ihe system in question). ’ 

3. The final execution time of the combined system is 
computed from the combination of the two times 
above, and the speedups are computed normally. 

8.3. Benchmarks 
The benchmarks used consist of selected routines from the 

Whetstone and LINPACK-BLAS program suites. The programs were 
selected to obtain a variety of code characteristics in the test set, The 
benchmarks are: 

1. Whetstone modules: 

a. Module 1 (Whet-l): Simple identifiers 
(assignments to scalars). 

b. Module 2 (Whet-2): AMY elements 
(assignments to arrays). 

c. Module 4 (Whet-4): Conditional jumps. 

d. Module 8 (Whet-g): Procedure calls. 

2. LINPACK-BLAS routines: 

a. ISAMAX: Find the index of the element of a 
vector with the maximum absolute value. 

13Array renaming, as applied to many CONDEL code cases, assigns 
multipIe distinct pointers to some of the different array accessing 
instructions that access the same array, making such accesses data 
independent. In such cases, no new array storage was used. In effect, single 
assignment resnictions are realized with the usual benefits ensuing, but 
without the usual overhead of extra memory usage. 

b. SASUM: Take the sum of absolute values of a 
vector. 

c. SAXPY: Constant times a vector plus a vector. 

d. SDlDT: Form the dot product of two vectors. 

e. SROT: Apply a plane rotation. 

All of the benchmarks consisted of a single loop. In most cases, the 
loop was executed for 32 iterations. Whet-l, Whet-2, and whet-4 
were executed for more iterations, but the speedups would not have 
changed significantly if 32 iterations had been assumed. 

8.4. Concurrency System Method Descriptions 
For the baseline cases (used to generate Z’J, the high level language 

representations of the benchmarks were hand-coded directly into 
assembly language without assuming any significant compiler assists, 
then assembled. and executed on the simcd simulator [211, 
assuming a sequential version of CONDEL-2 (this is achieved by 
setting the Instruction Queue length to 1 and turning off subroutine 
expa&on). 

The same values for T, were used for all of the different models 
considered. In this way the compiler effects are kept clear. (The 
Parafrase output could also be used as the input to a sequential 
machine, and in many cases would improve the sequential machine 
performance as well. With one exception [Whet-81, the results of our 
experiments would not change substantially if a T, figure generated 
thus were used 14) . , 

8.4.1. Hardware-Only Experiments 
The same codes used to generate the T1 numbers (for the sequential 

or baseline case.) were used in these exneriments as innut to the same 
simulator as.s&ing the CONDEL-2- concurrent machine model 
(previously described in Section 3). The results are presented in 
Table 8-l in the S, column. 

The analytical performance estimation techniques of Section 7 were 
applied to these simulations and some of those of Section 8.4.3 and 
were found to accurately predict performance. The actual values were 
either practically equal to the predicted values, off by one cycle at 
most, or were within the range of values predicted. Therefore these 
methods were used in the remainder of the experiments to produce 
performance estimates as needed, normally in conjunction with 
simulations. 

8.4.2. Compiler-Only Experiments 
In this experiment the restructuring technique was used alone; no 

low-level concurrent machine was assumed. It was assumed that the 
restructured code, generated as described above, was executed on an 
MES architecture. This is a multiprocessor system composed of 
sequential scalar processors. In order to directly compare results 

with the other systems, a CONDEL instruction set architecture was 
assumed for each of the scalar processors. executing the processor 
input code sequentially. As is normal with the MES model, DOALL, 
DOACROSS, and recurrence code sections were spread amongst the 
scalar processors, typically on an iteration per processor basis. No 
time penalty was assumed to spawn multiple iterations 
simultaneously, or to synchronize the iterations. No more than 32 
processors are used at a time. The speedup results for the 
benchmarks are computed from serial and parallel execution times 
(T, and T,,), and are shown in Table 8-1, in the S,,,, column. Note 
that in some cases the speedups are greater than 32; tbis is due to 
Parafrase’s elimination of some of the loop overhead when executing 
DOALL loops. 

8.4.3. Combined Methods (Restricted) Experiments 
In this system the restructured code was applied to a single 

unmodified CONDEL model executing the code in its normal 
wncurrent fashion. DOALL loops and recurrence calculations were 
executed, in effect, as DOACROSS loops. Normally, CONDEL 
executes all loops other than DOALL’s and recurrences as 
DOACROSS loops with the added benefits of low-level concurrency 

141n the case of Whet-l, a subroutine expansion by Parafrase eliminates a 
lot of overhead normally occurring in the sequential case; the speedups 
would be reduced in this case by about 44% if the improved sequential 
number were used. 
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Benchmark Code S, sSEC sS-MES ST S nompk 0 a S” 
class (*4) (‘4) V5) (*5) 

Whet-l 1 1.61 2.41 1.25 2.41 2.01 -1.00 1.20 1.50 

Whet-2 1 1.80 2.42 1.20 2.42 2.16 -0.72 1.12 1.34 

Whet-4 2A 1.45 1.52 1.19 1.52 2.20 0.91 0.69 1.05 

Whet-8 4 11.64* 11.91* 12.19 42.70 141.89 0.76 0.30 3.50 

ISAMAX 2B 1.924 5.45 + 1.83 --t 5.45 -+ 3.514 -1.224 1.554 2.84-t 
4.51 7.17 2.13 7.17 9.61 0.48 0.75 1.59 

(3.54) (5.89)“’ 

SASUM 3 8.80 + 8.80+ 18.0+ 25.71-s 158.4 + 0.95+ 0.164 1.43+ 
9.60 9.60 18.67 28.00 179.2 0.94 0.16 1.50 

(9.33)’ (9.33)**** 

SAXPY 4 2.60 6.95’ 36.70 51.4 95.4 0.75 0.54 1.40 

SDOT 3 6.14* 6.14**** 12.60 17.46 77.36 0.92 0.23 1.39 

SROT 4 3.70 13.00’ 43.73 96.20 161.80 0.56 0.59 2.20 

Notes: * These benchmarks executed in satururion: one instance (instruction iteration) of each static instruction in the 
loop executes per cycle. 

** No change from the S, value, indicating that maximum speedup was achieved with the base hardware 
alone. 

**’ Saturation is not achieved iu this case due to the nature of the algorithm; a dependency cycle with variable 
length greater than one (actually from 2 to 3) exists between a branch test and an insauction within the 
branch’s domain. 

*4 With the exception of Whet-2, CONDEL-2 had 32 or fewer PE’s. In many cases, including this one, 
equivalent speedups should be obtainable with far less hardware [21,22]. 
*5 32 processors were assumed for both models. ‘Ihe performance results were not constr@ed by this 
number. 
A range of numbers indicates a control dependency on run-time data: the extremes are shown. 
Numbers in parenthesis are the results of simulations on single sets of random data. 
The values of S,,,,,, w, G and S, were derived from the S,, SswMEs and ST results. 

Table 8-1: Performance results and comparisons of the concurrency extraction techniques, separately and together. 

extraction (assuming the loops fit into the Instruction Queue). This 
system is called the SEC model, for Single Execution Concurrent 
system. This model illustrates the effect of using sophisticated 
compilation techniques in conjunction with a low-level concurrent 
machine alone. It is indicative of a combined system with large 
DOALL and recurrence synchronization overhead. The speedups 
obtained from a combination of simulations and estimates are shown 
in Table 8- 1 in the S,,, column. 

8.4.4. Combined Methods (Unrestricted) Experiments 
This model also uses the combined software and hardware methods, 

but to a maximum extent. .It is assumed that the equivalent of 
multiple CONDEL processors exist to execute DOALL and 
recurrence calculations in as parallel a fashion as possible (a similar 
assumption for simple DOALL’s and recurrences is to have a single 
processor with the capability of generating multiple indices 
simultaneously; see Section 8.5). In fact, the low-level concurrency 
within a DOALL iteration is determined by estimating the execution 
time of one loop iteration on CONDEL in a concurrent fashion. 

This model is called the MEC model, for Multiple Execution 
Concurrent machine model. The speedup results of this model, 
shown in the ST column in Table 8-1, indicate an upper bound on the 
performance achievable by the combination of the hardware and 
software concurrency extraction techniques as currently formulated. 

The synchronization overhead of DOALL’s and recurrence 
calculations is assumed to be zero. This is not necessarily the case, 
but the variation in such overhead amongst typical machines is such 
that it is impossible to estimate it here. A range of possible 
performance is indicated by considering both the SEC and MEC 
results. 

8.5. Analysis and Discussion of the Results 
The results of the three sets of experiments are shown in Table 8-1. 

This section begins with general discussions of the separate hardware 
and software methods (S, and S,,,,>, followed by specific detailed 
analysis of the individual benchmarks’ results occurring from the 
performance enhancement methods both separately and together. 
The section concludes with general comments on the combination of 
the two concurrency extraction techniques. 

85.1. General Discussion of the Unmodified Hardware-Based 
Methods 

The hardware speedup S, and combination (without DOALL, etc.) 
speedup S,,, are now analyzed further. The figures in the S, column 
demonstrate that CONDEL alone is able to achieve respectable 
performance gains. With software preprocessing (see the S, 
column), the results are uniformly better or equal. Many of the 
benchmark loops executed in saturation (see the “*” note in the 
table). Code executing in-saturation on CONDEL is a maximum 
performance situation since loop counters can only be incremented 
once per cycle, resulting in a kind of DOACROSS execution of 
DOALL loops. Although it is true that the instruction set of 
CONDEL could conceivably be modified to generate multiple loop 
indices at once, it is not clear that this is the most efficient thing to 
do, due to CONDEL hardware cost constraints, and when the relative 
overheads of the hardware and software based methods are 
considered. 

Since one instance of each static instruction executes per cycle, the 
limit on speedup is equal to the size (length) of the code within the 
loop; thus, loops executing in saturation have speedups close in value 
to their loop sizes. This indicates that loop unrolling could be used to 
increase the loop size and hence the speedup. This is limited, 
however, as the cost of the machine is very dependent on the size of 
the window, and the loop must fit in the window for saturation to 
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occur.~5 

8.5.2. General Discussion of the Soflware-Based Method 
We observe that automatic program restructuring did not result in 

significant parallelism improvement in the case of most of the 
Whetstone routines (except for Module 8). The exdanation of the 
failure of Parafrase‘in this case lies with the s&cture of these 
routines. The first three modules are simple loops that ate mainly 
serial. In most cases parallelism is present at the operation or 
statement level. Even though Parafrase is quite effective in 
discovering loop parallelism (as in Module 8), we observe that 
parallelism exploitation through CONDEL was superior. 

In the case of the BLAS routines, however, Parafrase performed 
clearly better than CONDEL ~t:XCeDt for the ISAMAX routine. which 
contained dynamic control flow dependent on the run-time data). 
This is again due to the structure of the BLAS routines. These 
routines carry out elementary vector operations. Parafrase is very 
powerful in discovering parallel and vector loops. In addition 
Pan&se can recognize first degree recurrences and can substitute 
them with an equivalent parallel algorithm automatically. However, 
CONDEL is less able to recognize parallelism at the loop level. A 
necessary part of this process is the analysis of array subscripts. 
Performing array subscript analysis by the hardware is more 
complicated and more costIy. A compiler however can perform the 
same task relatively easily. The superiority of Parafrase over 
CONDEL for such code is liable to he greater as the number of loop 
iterations to be executed increases, assuming most of the computation 
is, or can be made to be, in DOALL constructs and the scheduling 
overhead can be kept down. 

8.5.3. Comments on Specific Benchmarks 
In this section interesting aspects of specific benchmarks and their 

execution on the various models ate discussed. The benchmarks are 
considered by common characteristics and are thus grouped in code 
Classes (see Table 8- 1). 

Chs I. 

cluss 2. 

These are basically sequential programs, in which X is 
large in both cases. Nonetheless, it was possible to 
reduce these dependency cycle lengths via intelligent 
compilation (estimated) of assignment statements. This 
is achieved by carefully choosing the order of 
evaluation of the long assignment statements in both of 
the programs, such that a High Level Language 
statement input which is in the critical path (longest 
dependency cycle) is moved as close as possible (in 
terms of instructions to be executed) to the machine 
instruction level statement output. This does little for 
the MES (software only) model, but greatly a.ids the 
MEC (combined) model. 

These two benchmarks originally contained relatively 
complex control flows, which were simplified by the 
software. 

Class 2A. The Whet-4 code originally contained 9 partially 
overlapped (unstructured) branches within its loop. 
CONDEL was able to execute some of the branches 
concurrently. but was able to execute the code even 
faster after Parafrase had converted the control .flow to 
a structured form. The new code contained 6 disjoint 
branches (no inter-branch dependencies). Although the 
improvement in performance of the combination of the 
methods was the smallest of all of the benchmarks 
(S, = 1 .OS), the enhanced control flow could well be 
more significant when executing other programs 
concurrently. 

Class 2B. The ISAMAX loop contains a forward branch that 
varies the dependency cycle length. In the original 
version of the code, there was also a procedure call 
within the branch’s domain, and the call could not be 
expanded at run-time. Therefore the execution of the 

ISThe converse case, of a loop not fitting into the window, can be handled 
in many cases by lcop f&ion. 
All of the loops of these experiments fit into the window, which for all but 
the Whet-2 benchmark simulations was set to length n=32 or less. 

cihss 3. 

Chss 4. 

code on CONDEL was severely hampered when the 
branch was not taken, causing the call to be executed 
and resulting in the flushing of the Instruction Queue 
(equivalent to flushing a pipeline). As a result of the 
common subexpression elimination of the compiler, the 
call was eliminated, the Queue did not need to be 
flushed, and the dependency cycle length was reduced. 

Referring to the S, tigures. it is also of note that the 
best absolute performance (‘71 cycles) gave the lower 
speedup (5.45); this was for the best performing control 
flow. This is because the relative change in 
perfbrmance due to different. control flow assumptions 
was greater for the sequential case (the two T, values 
differing by a factor of 1.91). than the concurrent case 
(tie two Tpr values differing by a factor of 1.45). 

The two resulting effects are an improvement in the 
performance and a reduction in the range of the cycle 
length, and hence speedups. 

The overlap w occurring in each of these two 
benchmarks is large (greater than 0.90), and is 
confirmed by inspection, in that both the software and 
hardware techniques are getting most of their 
parallelism at the loop level. However, the software 
method does better because it is able to transform each 
code into a DOALL loop followed by a recurrence 
calculation, whereas the hardware method alone must 
execute the loop in a DOACROSS fashion. 

The characteristics of these results are similar to those 
of C&s 3, but with the following exceptions. Parafrase 
is able to transform each program into a single DOALL 
(no recurrences). Therefore the MES model does very 
well by itself. The contribution of low-level 
concurrency reduction by the hardware improves 
matters even more so in the combined model. This is 
particularly true with Whet-l, in which there is a large 
component of serial code to begin with, but whose 
negative effect is reduced dramatically by the use of 
CONDEL. This is a particularly good instance of 
dealing effectively with the Amdahl effect. These 
characteristics am reflected in the comparatively low 
overlaps of all three of these benchmarks. For both 
SAXPY and SROT, compiler renaming via subscript 
analysis allows the loops to be executed quickly on the 
straight CONDEL model (SEC) since unnecessary 
dependency cycles are eliminated. 

85.4. General Comments 
Comparing the results of the two combined method models, SEC 

and MEC (S, column), it is clear that for Class 1 and 2 type codes 
there is little’benefit in having DOALL-like constructs. Conversely, 
if control flow is simole and 1000 iterations are indeoendent. the 
consttucts ate of great*use, as is shown by the Class < and 4 code 
results. The difference between the results of the two models also 
indicates the potential negative performance effects of 
synchronization overhead. 

Although the overlap between the hardware and software 
concurrency extraction methods is often high (five or six out of the 
nine benchmarks), the effect of intelligently combining both the 
hardware and software concurrency extraction techniques is 
significantly positive, as evidenced -by the generally good S, 
(combination gain) figures. In a few cases (Whet-l, Whet-2, and one 
part of ISAMAX) synergy did in fact occur as we have defined it. 

9. Summary and Conclusions 
In this paper, specific hardware and software based concurrency 

extraction methods were described and applied both separately and 
together to the execution of a set of benchmark programs. Both 
techniques extracted concurrency in varying degrees from three 
levels: subroutine, loop, and machine instruction. The common 
parallelism extracted by the two methods was often high, However, 
it was sufficiently different (in some cases synergy occurred) that the 
combination of the two techniques, including the architecture 
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directed compilation, produced gains significantly greater than the 
methods used separately. 

Compiler optimizations and program transformations are necessary 
to achieve the best results. The compiler has the ability to perform 
optimizations not only within a particular subroutine, but also across 
subroutine boundaries. Hardware routines are also able to do this, 
but not in all cases, and potentially less efficiently than software 
schemes. Also the compiler has global information about the entire 
program while the hardware can only handle a rather small portion of 
the code at any given time. 

On the other hand the compiler is sometimes forced to make 
conservative assumptions about data dependencies when not enough 
information is present at compiler time. For example, superfluous 
dependencies may be assumed by the compiler when loop bounds or 
the dynamic control flow are not known. Since the hardware checks 
dependencies at run-time. it has all the necessary information to 
detect only true dependencies, or close to them. Thus, hardware 
based methods are also necessary for the best performance. 

Our experiments, although limited in scope, support the original 
hypothesis, i.e., that combining program restructuring with clever 
hardware design should yield better performance than using each 
scheme separately. 

Also, the new overlap, synergy and combination gain metrics 
pruposed are useN in characterizing the effects of combining 
multiple performance enhancement methods. 
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