
ON THE COMBINATION OF HARDWARE AND SOFTWARE
CONCURRENCY EXTRACTION METHODS

Augustus K. Uhtl Constantine D. Polychronopoulos2
University of California, San Diego University of Illinois at Urbana-Champaign

Dept. of Computer Science and Engineering, C-014 Center for Supercomputing Research and Development
La Jolla. California 92093 Urbana, Illinois 61801

John F. Kolen3
University of California, San Diego

Dept. of Computer Science and Engineering, C-014
La Jolla. California 92093

Abstract

It has been shown that parallelism is a very promising alternative
for enhancing computer pedormance. Parallelism, however,
introduces much complexity to the programming effort. This has lead
to the development of automatic concurrency extraction techniques.
Prior work has demonstrated that static program restructuring via
compiler based techniques provides a large degree of parallelism to
the target machine. Purely hardware based extraction techniques
(without sofhvare preprocessing) have also demonstrated significant
(but lesser) degrees of parallelism. This paper considers the
performance effects of the combination of both hardware and
sofhvare techniques. The concurrency extracted from a given set of
benchmarks by each technique separate&, and together, is
determined via simulations and/or analysis. The “common
parallelism” extracted by the two methods is thus also considered,
using new metrics. The analytic techniques for predicting the
performance of specific programs are also described.

1. Introduction and Background
A variety of software and hardware techniques for improving

computer performance. have been proposed or implemented. Many of
these schemes aim at extracting paralIelism at different levels of
granularity and at different phases of the program development and
execution cycle. Parallelism can be extracted or specified at many
different levels:

1. Task level

2. Routine or process level

‘The fmt author was supported in part by the University of California at
San Diego, and the Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign.

2The second author was supported in part by the National Science
Foundation under Grants No. NSF DCR84-10110 and NSF DCR84-06916,
the U. S. Department of Energy under Grant No. DOE DE-
FGO2-85ER25001, and the JBM Donation.

%he third author is currently in the Department of Computer and
Information Science, Ohio State University, Columbus, Ohio 43210. He was
supported in part by the University of California at San Diego.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

3. Subroutine level

4. Loop level
5. Machine instruction level, or low-level [24]

6. Micro-level, e.g., micro-instruction overlap [12],
pipelining

Parallelism may be explicitly specified by a user, or be implicit in
the user’s code. If implicit parallelism is to be exploited automatic
concurrency extraction techniques must be used to detect the
parallelism and schedule the resulting operations [14, 16,13,23,24].
Automatic techniques are preferable for many practical reasons,
including:

1. The programming task is made easier for the user. The
underlying software/hardware system is transparent to
the user.

2. Much pre-existing sequential code, e.g., “dusty decks,”
may be executed in parallel, without re-writing it.

3. Given the complexity of the parallelism specification
and exploitation problem, automatic schemes are more
effective on the average than manual optimizations.

In this uaoer we restrict ourselves to the consideration of automatic
extractioh ðods applied at the loop and machine instruction levels
(levels 4 and 5), although such techniques could, in principle, be
applied to the other levels. In particular, modified level 5 methods
could be used to execute micro-instructions concurrently. Although
the techniques considered are applied at specific levels, they may
also extract concurrency at and between other levels.

Traditionally, primarily static software-based methods have been
applied to the loop level, while hardware-based methods have been
aoolied to the machine-instruction level. More often than not. these
t;Nb approaches have been considered separately, in exclusion df each
other. There have also been questions raised about the parallelism
exploited by each technique and the overlap thereof. The& issues are
considered in this paper.

A particular software technique, the Parafrase [8,10] preprocessor
is applied both separately, and in conjunction with. a hardware
technique: the CONDEL-2 low-level concurrent machine model
[21.23], to the same set of benchmarks.

The major questions addressed by the experiments described below
are:

1. What is the effect on performance (speedup) of
applying both software and hardware concurrency
extraction methods simultaneously to the same
problem?

2. What parallelism is extracted by each method, and what
is the overlap, or “common parallelism” of the two
methods?

3. Can the speedups be predicted analytically, and if so,
how?

@ 1987 ACM 089791-250-O/87/0012/0133 $1.50

133

The first two questions lead to the following hypothesis:

The total speedup of the combination of the two methods
is greater than the methods taken separately, and is possibly
greater than the sum of the 1.~0.

The former uart of the hwothesis reflects the belief that the two
methods will hot hamper each other. Although one can contrive
cases in which this is not true, if the software technique is aware of
the limitations of the hardware technique, no- reduction in
performance should occur.

We arrive at the latter part of the hypothesis via the following
reasoning. The compiler can extract much parallelism at the loop
level which is (or can be made to be) over and above that which is
extracted by the hardware, particularly in the case of DOALL
constructs with a large number of iterations. Likewise, the hardware
may extract much low-level concurrency, particularly of a dynamic
nature (i.e., from other types of loops and/or code with complex
control flow), which software techniques may not be able to extract
or exploit efficiently. In addition to these orthogonal perfonmance
contributors, the compiler can remove low-level concurrency
inhibitors [21], resulting in synergistic performance improvement.

The hypothesis is tested in the experiments. New, generally
applicable, metrics are developed and used to quantify and
characterize the speedup overlap and the combined performance gain
of the two techniques.

The remainder of this paper is as follows. The basic mstricters of
concurrency, dependencies, are brieflv described in Section 2. The
hardware f&c&s and description are given in Section 3. The
software functions and description are presented in Section 4. The
combination of the two techniaues is discussed in Section 5. The
metrics used to determine and analyze performances are defined and
described in Section 6. The performance estimation analvsis methods
are outlined in Section 7. ‘The experimental results a;e given and
discussed in Section 8. The conclusions of the paper are summarized
in Section 9.

2. Dependencies
The necessary restrictions in typical code that prohibit many

instructions from executing concurrently, and thus arise due to the
constraints of the code itself, being independent of hardware
restrictions, are called program [S] or semantic 1211 dependencies.5
There are two classes of dependencies, data and procedural (the
latter is also called control or branch).

There arc three types of data dependencies: flow, anti, and output
dependencies [2]. A flow dependency is defined between two
assignment statements, if a variable defined by the former statement
is used in the latter statement. An antidependency is similarly
defied, but in this case a variable used by the former statement is
redefined in the latter statement. Output dependency is defined
between two statements that write into the same variable (memory
location). Theoretically, only flow dependencies need be
enforced [3]. This ideal is closely approached by the two methods
described in this paper.

Procedural dependencies arise due to the constraints imposed by the
presence of branches in the instruction stream. The classic model
assumes that all code after a dynamically occurring branch is
dependent on the branch. This is not essential. Sets of specific
dependencies may be defined to reduce these constraints. A minimal
set of procedural dependencies is described in [21,24]; this set is
used by the hardware method described herein. Another reduced set,
a bit more reshictive, is used by the software extraction method.

Both hardware and software concurrency extraction methods
employ very reduced semantic dependency models.

3. Hardware Functions and Description
In this section we review general aspects of low-level concurrent

machines, and describe the actual hardware model simulated.

4DOALL loops contain independent iterations which may be executed
completely in parallel.

5The terms dependence (see c19.231) and dependency (see [8]) are used
by different researchers to mean slightly different things. For the purposes
of this paper, they are considered to be the same.

The basic goal of hardware low-Ievel concurrent machines is to
automatically extract concurrency at the m.achine instruction level.
By examining the insttuction stream and detecting the semantic
dependencies amongst the instructions, instructions whose effects are
independent of each other may be executed concurrently, improving
performance. Normally only a subset of the total instruction stream is
examined by the hardware at a time, potentially restricting the
oarallelism extractable bv the machine alone. The basic ornanization
bf these machines consists of an instruction scheduler ana multiple
functional units or Processing Elements @E’s). As the instruction
stream is examined, independent instructions are detected and issued
for concurrent execution.

Classic work done in the area of hardware low-level concurrency
extraction is in]6, 17, 19,201. More recent work includes:
[l, 5.12,22,23, %I. See [24] for a brief comparison of most of

these techniques.

The hardware model used in our studies is an advanced low-level
concurrent machine, CONDEL-2 [21,23]$ see Figure 3-1. This
model achieves close to minimal data and branch dependencies. It
also contains structures allowina some code sections to execute
ahead of time, with no penalty i? the results are not needed. Like
other machines, the basic structure of CONDEL consists of a central
instruction issuing unit simultaneously supplying multiple simple
PE’s7 with instructions. The input to the processor is a typical single
stream of machine instructions, consisting of simple assignment
statements and branches. As is also typical, backward branches in the
input stream are used to realize all looping constructs specified by the
high-level language. No distinction is made between different types
of loops (this is slightly modified for the purposes of two of the
experiments; the modifications are described in Section 8). The
static, i.e., lexicographic, instruction stream order is used; a subset of
the total nroeram is examined at a time (twicallv 16 or 32 static
instructio&,?n a hardware window called t&.~Itzst&tion Queue (IQ)
f251. CONDEL appeam to the user as a SISD machine, but

inter&ly it acts as & MIMD machine, with the instruction issuing
unit performing the concurrency extraction, and hence the Single- to
Multiple- instruction stream conversion.

Since the order of the code is independent of the dynamic control
flow, at least within the window, it is possible to execute instruction
instances* beyond branch domains9. This happens since both the
code within the branch domain and the code after the branch domain
are present simultaneously, regardless of the execution of the branch.
The execution of code occurring after the branch domain is not
dependent on the branch per se, and thus may execute concurrently
with the branch. Therefore the ill effects of branches are reduced
through reduced procedural (branch) dependencies [l&21,22,24].
Descriptions of the specific necessary and sufficient reduced
procedural dependencies may be found in [24].

Only flow dependencies are enforced for scalar assignments. Array
(and pointer) assignment dependencies are also reduced, but to a
lesser extent.

As each static instruction is loaded into the machine, the
dependencies between the new instruction and those already loaded
are computed. Computing the dependencies at load time, rather than
at compile time, vastly reduces the memory bandwidth required for
instruction fetches,‘c while keeping the degree of dependence
amongst the instructions low. This occurs since the dependencies,
several bits per instruction pair, do not have to be transmitted to the
machine; also, the dependencies computed and realized by the

%Jnless noted otherwise, all references to CONDEL in this paper imply
this particular version.

7These elements have the complexity of semi-smart ALU’s, possibly
performing some assignment instruction decoding and operand fetching, as
welt as the usual execution.

sun instance of an instruction is the instruction executing in one iteration,
whether it is within a loop or not.

gA branch domain consists of the code from the branch to its target.
r”Altematively, the instruction order could be specified explicitly to the

machine, and eliminate the need to compute the dependencies in the
hardware; however, this would eliminate the performance gains achieved by
the hardware as is, gained via the scheduling of execution of instructions
dynamically, as soon as possible.

134

to PE’s

Instruction
Queue

Data Advanced
Dependency Execution

matrix matrix

1 8 1 4
1: ----

lFZGoto7.
B=D-E
--

B=F*G
-_--

7:A=B+C
IF-Got0 1.

new instructions
$f$$; ,,w,,, executed

RE really executed

serial order: 1

SEN link and
data flow

Notes: the first branch is not taken in iteration 1, but is taken iu iteration 2 (giving the virtual executions shown); two or
more iterations are enabled. In the lower part of the drawing, the first two columns of the AE matrix are
shown unfolded, and iu their serial, or nominal execution, order.

Figure 3-1: Basic CONDEL-2 concurrency structures, with SEN example determination.

hardware are more dynamic than those computable by software. (Of
course, software may want to compute its own set of dependencies
for high-level concurrency detection.) Once an instruction is loaded,
it (and other previously loaded instructions) may be executed. Over
the course of code execution, dynamic state information is
maintained, indicating which instances have been executed. During
each execution cycle, an Executably Independent Calculator in the
processor combines the dependency information with dynamic state
information, to determine which instances may be executed in the
current cycle. These instructions are issued in parallel, and the
dynamic state is updated accordingly, whence the cycle repeats.

The dynamic execution state is held in two stmctures, the Really
Executed (RE) and Virtually Executed (VE) bit matrices, each having
n rows (one per Instruction Queue row or instruction), and m
columns, one per instruction iteration. Typically. n is 16 to 32, and m
is 4 to 8. An instruction instance is reaUy executed when its specified
operation has actually taken place, i.e., it is executed normally.
Virtual execution occurs if the instance is disabled for execution by a
branch executing true, i.e., in traditional terms, if a branch is taken
and goes around the instance. An instruction instance can be
virtually or really executed, but not both. In either case, instance
execution results in the corresponding bit being set in the appropriate
matrix. The OR of the RE and VE matrices gives the Advanced
Execution (AJZ) matrix [25], shown in Figure 3-l.

The basic determinations of both instruction instance issuance for
execution, and source linking (determining the inputs to the
instance), are made by the SEN (Sink ENable) logic, a simplified
version of which is:

(Refer to Figure 3-1 for the following discussion.) u is the serial
index of the instruction iteration under consideration for execution, t
is the serial index of an instruction iteration occurring serially prior to
u, and s is the serial index of instruction iterations between t and u.
DD is a binary Data Dependency matrix. A SET is a 1 only if
instance I is to supply its sink to the input of u, and u may execute, in

the current cycle. This is only possible if t has really executed, i.e., a
value exists for that instance’s sink, and t is data dependent on u;
also, all instances s between t and u that are data dependent with u
must be virtually executed, othepvise they would be candidates to
supply u with an input in the current or a later cycle. Only one .Wq
may be 1 for each instance u; if none are 1, the data does yet exist for
u, and u may not be issued for execution. In the example of Figure
3-l. all of the conditions are met, so instance u gets its input B from
the first iteration instanceofnstruction 5.

Using this as part of special hardware algorithms, data flow
execution of the input code is achieved”. Performance is enhanced
further via both the use of the reduced procedural dependency
model [21.22, 241, and the application of a simple form of branch
prediction, allowing one or more instances of un-enabled loop
iterations to execute ahead of time. Code execution is decoupled
from memory updating (copying the results to memory), resulting in
no time penalty upon a wrong guess.

Thus, many powerful techniques are used to enhance the low-level
concurrency obtainable from nominally sequential code. The
hardware is able to exploit more low-level concurrency than purely
static techniques. since the hardware in effect generates and utilizes a
dynamic dependency graph, which is normally less than or equally
restrictive to a corresponding static graph. However, there may still
be characteristics of the code which inhibit its concurrent execution.
Additionally, with current hardware methods, only a portion of a
program is considered at a time, restricting concurrency. It is also
possible that more concurrency can be obtained from a program if
more information is available about higher-Ievel constructs.
Therefore compiler-based methods should also be of use.

4. Compiler Functions and Description
Another concurrency extraction technique is program restructuring.

In this approach parallelism is discovered and made explicit to the
run-time environment by the compiler. Program restructuring is less
dependent on the details of the target machine. Specific architectural

llThis is for scalars, as well as many array accesses. See [24].

135

features can be exploited by a back-end compiler which is machine
specific. Restructuring may bc limited, however, in that it cannot
t&e advantage of dynainic program characteristics only observable at
run-time, e.g., dynamically computed loopbounds and actual control
flow. Also, restructuring teclmiques alone are not well-suited for
exploiting low-level concurrency.

Parafrase applies to the input program a number of optimization.5
that are architecture dependent or independent. The first phase
applies a number of transfonnations that are machine independent
and which are always useful in aiding the
vectorization/parallelization phase. Such optimizations include
scalar renaming and expansion, subroutine expansion, dead code
elimination, first order recurrence recognition, and many others. The
second phase involves architecture specific optimizations. In this
phase loops are recognized and translated to vector or parallel loops
depending on whether the underlying architecture is a vector or
multiprocessor machine.

The Parafrase restructurer is able to discover parallelism at several
different granularity levels. Although parallelism detection at the
statement and operation level is possible through Parafrase. this
capability was not used in analyzing our benchmarks, since low level
concurrency extraction appears to be done more effectively with
hardware methods. In this txauer Parafrase was used to restructure
the benchmarks and discove; p’arallelism at the loop level. Assuming
a multiprocessor machine with CONDEL processors, parallelism
exploita-tion at lower levels (e.g., within each ioop iteration) is left to
the hardware.

Automatic program restructuring from a serial to a parallel fotm is
achieved through data and control dependency analysis by the
compiler. Data and control dependencies define a partial order on the
statements of a program. The Parafrase compiler enforces a close to
minimal set of data dependencies. During actual execution, this
order must be obeyed in order to guarantee correctness of the results.
The program dependency graph is constructed by the compiler such
that nodes correspond to statements in the source program and arcs
represent data and control dependencies between statements.

Based on the data dependency graph, Parafrase [ll] applies a
number of transformations that resttucture the program into a parallel
form. Parallel constructs are explicitly specified in the output code.
The most important parallel constmcts (that arc relevant to this work)
are several types of parallel and recurrence loops. In particular. we
have the following types of loops in a typical Parafrase output.
DOSERIAL loops are purely serial loops. In a DOSERIAL loop all
statements are involved in a data dependency cycle. DOALLs are
fully parallel loops; all the iterations of a DOALL can execute
simultaneously. A more genera3 type of parallel loop is the
DOACROSS loop [4, 151. A DOACROSS loop contains a
dependency cycle (or a backward dependency) that involves only
some of the statements in the loop body. Successive iterations of
DOACROSS loops can be partially overlapped. DOSERIAL and
DOALL loops can be thought of as special cases of DOACROSS
loops when the dependency cycle involves all statementi in the loop
or if the cycle involves no statements, respectively. Certain types of
DOWHILE or EXIT-IF loops are treated as DOALL’s or
DOACROSS’s by Parafrase, depending on the loop dependency
graph.

Thus, software methods are able to detect much parallelism at the
loop level.

5. Combining Compiler and Hardware Solutions
The basic scheme for combining the hardware and software

concurrency extraction methods is straightforward. Code to be
executed is first passed through the program restructuring compiler,
and then to one or more of the concurrent machines for actual
execution. The eventual goal for the compiler is to

l perform an accurate dependency analysis,

l remove low-level concurrency inhibitors from the code,
and

l detect parallelism at a high-level, i.e., determine which
loops may be executed in a DOALL fashion.

The goal of the concurrent machine is to execute the restructured
code as concurrently and efficiently as possible. In the case of
DOALL loops, multiple processors may be used to maximize the

performance, each machine executing a subset of the total number of
iterations.

6. Metrics

6.1. Definitions
It is assumed throughout that each instruction or fundamental

operation takes one cycle to execute.

Definition 1: Tt is the time to execute a benchmark
strictly sequentially.

Definition 2: S, =;. Speedups are computed simply

by dividing the time gxecute the program sequentially by
the time to execute the program in some parallel fashion
CL).

Definition 3: ST is the total actual speedup obtained with
multiple methods combined, e.g., in the case of this work,
the okput of the Parafrase compiler is used as the input to
the CONDEL-2 hardware model, via the method given in
Section 8.4.4.

Definition 4: m is a measure of the overlap in
concurrency, or “common parallelism”, extracted by the set
of methods used.

where: Si is the speedup due to extraction method i alone,
and

s nom-pk

In this work: Sip (SH,,hme, Ssofi,). If 0 is between zero
and one, it indicates the degree of overlap between the
methods. When it is greater than one, a degenerative
situation exists. If equal to one, there is complete overlap,
and no gain is obtained from the combination of the
methods. When equal to zero, there is no overlap, and the
parallelism obtained from each technique is apparently
fully utilized. m is undefined if any SiSl; (it is hard to
quantify an overlap with nothing or something negative,
which is what such speedups imply). Snmpk is the
nominal-peak speedup one might intuitively expect when
completely orthogonal performance enhancement methods
are cascaded. It is not the “maximum” speedup obtainable.

Definition 5: cs is the synergy indicator, or measure of
effectiveness of the combination of the different
concurrency extraction techniques.

sT
CJE-

S nom-pk

When (T is greater than one, synergy exists, in that the
speedup obtained by the combination is greater than the
product of the individual speedups. If (I is less than or
equal to one, and greater than zero, the indication is that no
synergy exi!;ts, although combining the methods may still
produce a performance gain; in this case. the metric
indicates how much of the nominal- peak performance is
obtained.

Definition 6: S, gives the effective speedup of the
combination of the methods over the methods alone;
formally:

SF&&j

If S, is greater ‘than one, the combination of the methods
has a positive effect on performance.

6.2. Example and Discussion
An example of the use of the metrics is shown in Figure 6- 1. For a

136

ST W

loo -1.25

1.5 .0.63

S nom-pk= So 0.0

40 0.25

30 0.50

20 0.75

s soj?ware= 10 1.0

7 1.08

s Hardware = 5 1.125

3 1.18

0 1.25

2.0 10.0

1.5 1.5

1.0 5.0

0.80 4.0

0.60 3.0

~

0.40 2.0

0.20 1.0

0.14 0.7

0.10 0.5

0.06 0.3

0.0 0.0

Note: The metrics are computed for various values of S,,
given: SHa,h,e=5.0 and S,Ofirwarc= 10.0.

Table 6-l: Example illustrating the behavior of the metrics.

single set of SSotiwe and SMarhare values, different combined
performance figures ST are posited, With the corresponding metric
values, showing the behavior of the metrics in different cases.

The overlap co is limited in that it does not indicate in what way
performance methods overlap; it only gives a tough outside
indication of the common parallelism. To completely understand the
dynamics, it is still necessary to examine the data in detail; in the
case of this paper, this means to examine the methods and their
executions of the benchmarks in depth. The synergy indicator Q prc-
supposes that S,,,,, is a reasonable likely maximum; not everyone
may agree with this. The combination speedup indicator S, is useful
in describing what the performance gains of the combination are over
and above what was the best achieved with the enhancement methods
applied separately. l2 When used together, these three metrics
provide a gocd characterization of the effects of combining
~rform3nce enhancement techniques.

7. Performance Estimation
It is desirable to be able to predict performance of any machine or

machine model. Although analyzing arbitrary code to estimate its
perf~t’tnance on a particular machine may be prohibitively unwieldy,
code with relatively simple control flow may be more amenable to
reasonable analysis. Such is the case with CONDEL, particularly
when executing loops. Simple loops consisting solely of assignment
statements and a loop-forming backward branch are considered first,
followed by consideration of similar loops containing IF-THEN’s.

Without IF-THEN’s, un-nested loops may be executed sequentially
in time Tt =K+(Lxr)+M, where L is the static length of the loop, r
is the number of iterations of the loop to be executed, and K and M
are the lengths of the code segments before and after the loop, resp.
As determined in [7], the loop may be executed concurrently on
CONDEL in time dependent on the length of the dependency [9] or
cotnpufution [21] cycle X. Since CONDEL does not currently have
the ability to generate multiple values of the same index at the same
time (as would be useful for executing DOALL’s), X2 1.
CONDEL’s maximum performance occurs if it is able to execute. one
instance of every instruction within a loop every cycle (the instances
may be in different iterations), i.e., with X equal to 1; this is called

%I fact one can imagine the usefulness of computing a series of S,, one
for each i, defined as:

Each value indicates the benefit of the combination relative to one parlicular
method, not just the best Looking at groups of these figures for a variety of
benchmarks would indicate which method provides the larger tiprovcmcnt
on average. We do not use thii modification here.

saturation. X is determined by finding the longest cyclic path
between successive iterations of static instructions within the loop.
Code segments K and M are executed concurrently with the loop,
when dependencies allow.

The resulting concurrent execution time is then:
Tpr= W+(Xx r)+Y. where W and Y arc the longest thread lengths of
the sections of code segments extending before (resp. after) the
longest cycle, and dependent on the cycle. These segments contain K
and M and may be overlapped with the loop. As r becomes large, the
resulting speed-up is: UX, which is the same result as that obtained
for concurrent execution of DOACROSS loops ln [4, 151. It is also
the same as the basic limit on pipeline performance.

When IF-THEN’s are present, the length of a dependency cycle
may vary as the code is executed, depending on the data values. An
example of this is a recurrence, i.e., the value of an IF conditional
may be. computed within the same THEN in a prior iteration. Also,
the effective value of L changes as IF’s execute true in some
iterations (decreasing the effective loop length), and false in others.
The dependency cycle variation affects the concurrent execution
time, the loop length variation affects the sequential time. In such
loops, upper and lower bounds on the expected performance are
determined by finding X and L for the appropriate combinations of
branches taken and not taken, computing the possible speedup
values, and using the extremes as the bounds on performance.

Thus, CONDEL executes code (in fact, all loops) in a concurrent
DOACROSS fashion, and also possibly with dynamically changing
X. Consideration of predicted performances with actual values is
given in Section 8.4.1. Other code and machine situations are
considered in [7].

Execution times of other constructs on ideal machines arc easily
determined. A DOALL loop will execute in the time necessary to
execute a single iteration either concurrently or sequentially,
depending on the machine, if synchronization is neglected. If a
reasonable worst case for synchronization is assumed, i.e., each
iteration is skewed from its predecessor by one cycle (linear
overhead), then the DOALL time is the same as a DOACROSS time
for the same loop with X= 1. Detected and executable recurrences
take logarithmic time to execute in the ideal case. In other cases,
DOACROSS loops with X= 1 are again assumed.

8. Experiments

8.1. Introduction and Outline
Experiments were performed to determine the effectiveness of each

concurrency extraction method separately and together. The same set
of benchmarks is used throughout the experiments. The execution of
the benchmarks is simulated or determined analytically for several
possible system cases:

1. Hardware method of low-level concurrency extraction
used alone.

2. Software restructuring used alone, applied to a
multiprocessor model.

3.The combination of the two methods, assuming the
hardware has no special capabilities to execute DOALL
loops or recurrences.

4.The combination of the two methods, assuming the
hardware is capable of executing DOALL and
recurrence constmcts in as parallel a fashion as
possible.

In the first case, the CONDEL low-level concurrent machine mode1
is used alone. For the last three cases, the Parafrase. restructuring
compiler developed at the University of Illinois is used to generate
the restructured code.

The specific methodologies and results for each case are described
below, after the methods for using the restructured code arc
described, and the benchmarks are presented.

8.2. Using the Restructured Code
The Parafrase output was modified to a form that would occur if the

compiler had been designed to produce code for CONDEL machines.
The major compile-time optimizations that were assumed were: 100p
parallelization, dead-code elimination, common subexpressio-n

137

elimination, in-line subroutine expansion, array renaming to1 sati@
the single assignment rule,13 and dependency cycle reduction.

As previously mentioned, the basic strategy is to pass the
benchmarks through Parafrase, and then through the CONDEL
simulator (or determine the performance using the analytical
techniques previously mentioned). Since no softw;lre exists td take
Parafrase output and convert it to CONDEL assembly code, the
following &sed approach is used:

1. The multiprocessor or MES (Multiple Execution Scalar
[lo]) output of the Parafrase compiler (in modified

FORTRAN) is used as the starting point. This code
consists of a combination of the following componen1.s:
DOALL, DOACROSS, and DOSERIAL loops, and
scalar code. (DOWHILE loops must be handled
specially, as Parafrase does not accept them directly.
There were none in the benchmarks studied.) The
Parafrase output is modified to a form that would occur
if the compiler had been designed to produce code for
CONDEL machines.

2. The different components of the Parafrase output are
hand-coded into CONDEL Assembly code, with the
different components treated as follows:

l DOALL loops and recurrence calculations: this
depends on the particular system model being
considered. If no synchronization overhead is
assumed, then the execution time of the
constructs is primarily determined by the
execution time of a single iteration on a
CONDEL machine, ConcurrentIy or sequentially,
as appropriate. In the case of recurrences, a
penalty equal to the logarithm of the number of
iterations is added to the single iteration time. If
either significant overhead is assumed, or only a
single concurrent machine is available to execute
the code, then the constructs are treated as
DOACROSS loops with delay (or offset) of one
cycle.

l Other code, e.g., DOACROSS, DOSERIAL, and
DOWHILE loops, and scalar code: coded and
simulated or analyzed directly, assuming a single
CONDEL nrocessor (with or without multiole
PE’s, depenbing on ihe system in question). ’

3. The final execution time of the combined system is
computed from the combination of the two times
above, and the speedups are computed normally.

8.3. Benchmarks
The benchmarks used consist of selected routines from the

Whetstone and LINPACK-BLAS program suites. The programs were
selected to obtain a variety of code characteristics in the test set, The
benchmarks are:

1. Whetstone modules:

a. Module 1 (Whet-l): Simple identifiers
(assignments to scalars).

b. Module 2 (Whet-2): AMY elements
(assignments to arrays).

c. Module 4 (Whet-4): Conditional jumps.

d. Module 8 (Whet-g): Procedure calls.

2. LINPACK-BLAS routines:

a. ISAMAX: Find the index of the element of a
vector with the maximum absolute value.

13Array renaming, as applied to many CONDEL code cases, assigns
multipIe distinct pointers to some of the different array accessing
instructions that access the same array, making such accesses data
independent. In such cases, no new array storage was used. In effect, single
assignment resnictions are realized with the usual benefits ensuing, but
without the usual overhead of extra memory usage.

b. SASUM: Take the sum of absolute values of a
vector.

c. SAXPY: Constant times a vector plus a vector.

d. SDlDT: Form the dot product of two vectors.

e. SROT: Apply a plane rotation.

All of the benchmarks consisted of a single loop. In most cases, the
loop was executed for 32 iterations. Whet-l, Whet-2, and whet-4
were executed for more iterations, but the speedups would not have
changed significantly if 32 iterations had been assumed.

8.4. Concurrency System Method Descriptions
For the baseline cases (used to generate Z’J, the high level language

representations of the benchmarks were hand-coded directly into
assembly language without assuming any significant compiler assists,
then assembled. and executed on the simcd simulator [211,
assuming a sequential version of CONDEL-2 (this is achieved by
setting the Instruction Queue length to 1 and turning off subroutine
expa&on).

The same values for T, were used for all of the different models
considered. In this way the compiler effects are kept clear. (The
Parafrase output could also be used as the input to a sequential
machine, and in many cases would improve the sequential machine
performance as well. With one exception [Whet-81, the results of our
experiments would not change substantially if a T, figure generated
thus were used 14) . ,

8.4.1. Hardware-Only Experiments
The same codes used to generate the T1 numbers (for the sequential

or baseline case.) were used in these exneriments as innut to the same
simulator as.s&ing the CONDEL-2- concurrent machine model
(previously described in Section 3). The results are presented in
Table 8-l in the S, column.

The analytical performance estimation techniques of Section 7 were
applied to these simulations and some of those of Section 8.4.3 and
were found to accurately predict performance. The actual values were
either practically equal to the predicted values, off by one cycle at
most, or were within the range of values predicted. Therefore these
methods were used in the remainder of the experiments to produce
performance estimates as needed, normally in conjunction with
simulations.

8.4.2. Compiler-Only Experiments
In this experiment the restructuring technique was used alone; no

low-level concurrent machine was assumed. It was assumed that the
restructured code, generated as described above, was executed on an
MES architecture. This is a multiprocessor system composed of
sequential scalar processors. In order to directly compare results

with the other systems, a CONDEL instruction set architecture was
assumed for each of the scalar processors. executing the processor
input code sequentially. As is normal with the MES model, DOALL,
DOACROSS, and recurrence code sections were spread amongst the
scalar processors, typically on an iteration per processor basis. No
time penalty was assumed to spawn multiple iterations
simultaneously, or to synchronize the iterations. No more than 32
processors are used at a time. The speedup results for the
benchmarks are computed from serial and parallel execution times
(T, and T,,), and are shown in Table 8-1, in the S,,,, column. Note
that in some cases the speedups are greater than 32; tbis is due to
Parafrase’s elimination of some of the loop overhead when executing
DOALL loops.

8.4.3. Combined Methods (Restricted) Experiments
In this system the restructured code was applied to a single

unmodified CONDEL model executing the code in its normal
wncurrent fashion. DOALL loops and recurrence calculations were
executed, in effect, as DOACROSS loops. Normally, CONDEL
executes all loops other than DOALL’s and recurrences as
DOACROSS loops with the added benefits of low-level concurrency

141n the case of Whet-l, a subroutine expansion by Parafrase eliminates a
lot of overhead normally occurring in the sequential case; the speedups
would be reduced in this case by about 44% if the improved sequential
number were used.

138

Benchmark Code S, sSEC sS-MES ST S nompk 0 a S”
class (*4) (‘4) V5) (*5)

Whet-l 1 1.61 2.41 1.25 2.41 2.01 -1.00 1.20 1.50

Whet-2 1 1.80 2.42 1.20 2.42 2.16 -0.72 1.12 1.34

Whet-4 2A 1.45 1.52 1.19 1.52 2.20 0.91 0.69 1.05

Whet-8 4 11.64* 11.91* 12.19 42.70 141.89 0.76 0.30 3.50

ISAMAX 2B 1.924 5.45 + 1.83 --t 5.45 -+ 3.514 -1.224 1.554 2.84-t
4.51 7.17 2.13 7.17 9.61 0.48 0.75 1.59

(3.54) (5.89)“’

SASUM 3 8.80 + 8.80+ 18.0+ 25.71-s 158.4 + 0.95+ 0.164 1.43+
9.60 9.60 18.67 28.00 179.2 0.94 0.16 1.50

(9.33)’ (9.33)****

SAXPY 4 2.60 6.95’ 36.70 51.4 95.4 0.75 0.54 1.40

SDOT 3 6.14* 6.14**** 12.60 17.46 77.36 0.92 0.23 1.39

SROT 4 3.70 13.00’ 43.73 96.20 161.80 0.56 0.59 2.20

Notes: * These benchmarks executed in satururion: one instance (instruction iteration) of each static instruction in the
loop executes per cycle.

** No change from the S, value, indicating that maximum speedup was achieved with the base hardware
alone.

**’ Saturation is not achieved iu this case due to the nature of the algorithm; a dependency cycle with variable
length greater than one (actually from 2 to 3) exists between a branch test and an insauction within the
branch’s domain.

*4 With the exception of Whet-2, CONDEL-2 had 32 or fewer PE’s. In many cases, including this one,
equivalent speedups should be obtainable with far less hardware [21,22].
*5 32 processors were assumed for both models. ‘Ihe performance results were not constr@ed by this
number.
A range of numbers indicates a control dependency on run-time data: the extremes are shown.
Numbers in parenthesis are the results of simulations on single sets of random data.
The values of S,,,,,, w, G and S, were derived from the S,, SswMEs and ST results.

Table 8-1: Performance results and comparisons of the concurrency extraction techniques, separately and together.

extraction (assuming the loops fit into the Instruction Queue). This
system is called the SEC model, for Single Execution Concurrent
system. This model illustrates the effect of using sophisticated
compilation techniques in conjunction with a low-level concurrent
machine alone. It is indicative of a combined system with large
DOALL and recurrence synchronization overhead. The speedups
obtained from a combination of simulations and estimates are shown
in Table 8- 1 in the S,,, column.

8.4.4. Combined Methods (Unrestricted) Experiments
This model also uses the combined software and hardware methods,

but to a maximum extent. .It is assumed that the equivalent of
multiple CONDEL processors exist to execute DOALL and
recurrence calculations in as parallel a fashion as possible (a similar
assumption for simple DOALL’s and recurrences is to have a single
processor with the capability of generating multiple indices
simultaneously; see Section 8.5). In fact, the low-level concurrency
within a DOALL iteration is determined by estimating the execution
time of one loop iteration on CONDEL in a concurrent fashion.

This model is called the MEC model, for Multiple Execution
Concurrent machine model. The speedup results of this model,
shown in the ST column in Table 8-1, indicate an upper bound on the
performance achievable by the combination of the hardware and
software concurrency extraction techniques as currently formulated.

The synchronization overhead of DOALL’s and recurrence
calculations is assumed to be zero. This is not necessarily the case,
but the variation in such overhead amongst typical machines is such
that it is impossible to estimate it here. A range of possible
performance is indicated by considering both the SEC and MEC
results.

8.5. Analysis and Discussion of the Results
The results of the three sets of experiments are shown in Table 8-1.

This section begins with general discussions of the separate hardware
and software methods (S, and S,,,,>, followed by specific detailed
analysis of the individual benchmarks’ results occurring from the
performance enhancement methods both separately and together.
The section concludes with general comments on the combination of
the two concurrency extraction techniques.

85.1. General Discussion of the Unmodified Hardware-Based
Methods

The hardware speedup S, and combination (without DOALL, etc.)
speedup S,,, are now analyzed further. The figures in the S, column
demonstrate that CONDEL alone is able to achieve respectable
performance gains. With software preprocessing (see the S,
column), the results are uniformly better or equal. Many of the
benchmark loops executed in saturation (see the “*” note in the
table). Code executing in-saturation on CONDEL is a maximum
performance situation since loop counters can only be incremented
once per cycle, resulting in a kind of DOACROSS execution of
DOALL loops. Although it is true that the instruction set of
CONDEL could conceivably be modified to generate multiple loop
indices at once, it is not clear that this is the most efficient thing to
do, due to CONDEL hardware cost constraints, and when the relative
overheads of the hardware and software based methods are
considered.

Since one instance of each static instruction executes per cycle, the
limit on speedup is equal to the size (length) of the code within the
loop; thus, loops executing in saturation have speedups close in value
to their loop sizes. This indicates that loop unrolling could be used to
increase the loop size and hence the speedup. This is limited,
however, as the cost of the machine is very dependent on the size of
the window, and the loop must fit in the window for saturation to

139

occur.~5

8.5.2. General Discussion of the Soflware-Based Method
We observe that automatic program restructuring did not result in

significant parallelism improvement in the case of most of the
Whetstone routines (except for Module 8). The exdanation of the
failure of Parafrase‘in this case lies with the s&cture of these
routines. The first three modules are simple loops that ate mainly
serial. In most cases parallelism is present at the operation or
statement level. Even though Parafrase is quite effective in
discovering loop parallelism (as in Module 8), we observe that
parallelism exploitation through CONDEL was superior.

In the case of the BLAS routines, however, Parafrase performed
clearly better than CONDEL ~t:XCeDt for the ISAMAX routine. which
contained dynamic control flow dependent on the run-time data).
This is again due to the structure of the BLAS routines. These
routines carry out elementary vector operations. Parafrase is very
powerful in discovering parallel and vector loops. In addition
Pan&se can recognize first degree recurrences and can substitute
them with an equivalent parallel algorithm automatically. However,
CONDEL is less able to recognize parallelism at the loop level. A
necessary part of this process is the analysis of array subscripts.
Performing array subscript analysis by the hardware is more
complicated and more costIy. A compiler however can perform the
same task relatively easily. The superiority of Parafrase over
CONDEL for such code is liable to he greater as the number of loop
iterations to be executed increases, assuming most of the computation
is, or can be made to be, in DOALL constructs and the scheduling
overhead can be kept down.

8.5.3. Comments on Specific Benchmarks
In this section interesting aspects of specific benchmarks and their

execution on the various models ate discussed. The benchmarks are
considered by common characteristics and are thus grouped in code
Classes (see Table 8- 1).

Chs I.

cluss 2.

These are basically sequential programs, in which X is
large in both cases. Nonetheless, it was possible to
reduce these dependency cycle lengths via intelligent
compilation (estimated) of assignment statements. This
is achieved by carefully choosing the order of
evaluation of the long assignment statements in both of
the programs, such that a High Level Language
statement input which is in the critical path (longest
dependency cycle) is moved as close as possible (in
terms of instructions to be executed) to the machine
instruction level statement output. This does little for
the MES (software only) model, but greatly a.ids the
MEC (combined) model.

These two benchmarks originally contained relatively
complex control flows, which were simplified by the
software.

Class 2A. The Whet-4 code originally contained 9 partially
overlapped (unstructured) branches within its loop.
CONDEL was able to execute some of the branches
concurrently. but was able to execute the code even
faster after Parafrase had converted the control .flow to
a structured form. The new code contained 6 disjoint
branches (no inter-branch dependencies). Although the
improvement in performance of the combination of the
methods was the smallest of all of the benchmarks
(S, = 1 .OS), the enhanced control flow could well be
more significant when executing other programs
concurrently.

Class 2B. The ISAMAX loop contains a forward branch that
varies the dependency cycle length. In the original
version of the code, there was also a procedure call
within the branch’s domain, and the call could not be
expanded at run-time. Therefore the execution of the

ISThe converse case, of a loop not fitting into the window, can be handled
in many cases by lcop f&ion.
All of the loops of these experiments fit into the window, which for all but
the Whet-2 benchmark simulations was set to length n=32 or less.

cihss 3.

Chss 4.

code on CONDEL was severely hampered when the
branch was not taken, causing the call to be executed
and resulting in the flushing of the Instruction Queue
(equivalent to flushing a pipeline). As a result of the
common subexpression elimination of the compiler, the
call was eliminated, the Queue did not need to be
flushed, and the dependency cycle length was reduced.

Referring to the S, tigures. it is also of note that the
best absolute performance (‘71 cycles) gave the lower
speedup (5.45); this was for the best performing control
flow. This is because the relative change in
perfbrmance due to different. control flow assumptions
was greater for the sequential case (the two T, values
differing by a factor of 1.91). than the concurrent case
(tie two Tpr values differing by a factor of 1.45).

The two resulting effects are an improvement in the
performance and a reduction in the range of the cycle
length, and hence speedups.

The overlap w occurring in each of these two
benchmarks is large (greater than 0.90), and is
confirmed by inspection, in that both the software and
hardware techniques are getting most of their
parallelism at the loop level. However, the software
method does better because it is able to transform each
code into a DOALL loop followed by a recurrence
calculation, whereas the hardware method alone must
execute the loop in a DOACROSS fashion.

The characteristics of these results are similar to those
of C&s 3, but with the following exceptions. Parafrase
is able to transform each program into a single DOALL
(no recurrences). Therefore the MES model does very
well by itself. The contribution of low-level
concurrency reduction by the hardware improves
matters even more so in the combined model. This is
particularly true with Whet-l, in which there is a large
component of serial code to begin with, but whose
negative effect is reduced dramatically by the use of
CONDEL. This is a particularly good instance of
dealing effectively with the Amdahl effect. These
characteristics am reflected in the comparatively low
overlaps of all three of these benchmarks. For both
SAXPY and SROT, compiler renaming via subscript
analysis allows the loops to be executed quickly on the
straight CONDEL model (SEC) since unnecessary
dependency cycles are eliminated.

85.4. General Comments
Comparing the results of the two combined method models, SEC

and MEC (S, column), it is clear that for Class 1 and 2 type codes
there is little’benefit in having DOALL-like constructs. Conversely,
if control flow is simole and 1000 iterations are indeoendent. the
consttucts ate of great*use, as is shown by the Class < and 4 code
results. The difference between the results of the two models also
indicates the potential negative performance effects of
synchronization overhead.

Although the overlap between the hardware and software
concurrency extraction methods is often high (five or six out of the
nine benchmarks), the effect of intelligently combining both the
hardware and software concurrency extraction techniques is
significantly positive, as evidenced -by the generally good S,
(combination gain) figures. In a few cases (Whet-l, Whet-2, and one
part of ISAMAX) synergy did in fact occur as we have defined it.

9. Summary and Conclusions
In this paper, specific hardware and software based concurrency

extraction methods were described and applied both separately and
together to the execution of a set of benchmark programs. Both
techniques extracted concurrency in varying degrees from three
levels: subroutine, loop, and machine instruction. The common
parallelism extracted by the two methods was often high, However,
it was sufficiently different (in some cases synergy occurred) that the
combination of the two techniques, including the architecture

140

directed compilation, produced gains significantly greater than the
methods used separately.

Compiler optimizations and program transformations are necessary
to achieve the best results. The compiler has the ability to perform
optimizations not only within a particular subroutine, but also across
subroutine boundaries. Hardware routines are also able to do this,
but not in all cases, and potentially less efficiently than software
schemes. Also the compiler has global information about the entire
program while the hardware can only handle a rather small portion of
the code at any given time.

On the other hand the compiler is sometimes forced to make
conservative assumptions about data dependencies when not enough
information is present at compiler time. For example, superfluous
dependencies may be assumed by the compiler when loop bounds or
the dynamic control flow are not known. Since the hardware checks
dependencies at run-time. it has all the necessary information to
detect only true dependencies, or close to them. Thus, hardware
based methods are also necessary for the best performance.

Our experiments, although limited in scope, support the original
hypothesis, i.e., that combining program restructuring with clever
hardware design should yield better performance than using each
scheme separately.

Also, the new overlap, synergy and combination gain metrics
pruposed are useN in characterizing the effects of combining
multiple performance enhancement methods.

References

111 Acosta, R. D., Kjelstrup, J.. and Tomg, H. C. An Instruction Issuing
Approach to Enhancing Performance in Multiple Functional Unit
Proce.ssors. IEEE Transactions on Computers C-35:8 15-828,
September, 1986.

PI Banejee, U. Speedup of Ordinary Programs. PhD thesis,
University of Illinois at Urbana-Champaign, October, 1979.
Available as DCS Report No. UIUCDCS-R-79-989.

[31 Chamberlin, D. D. The Single-Assignment Approach to Parallel
Processing. In Fall Joint Computer Conference, pages 263-269.
AHPS. 1971.

[41

[51

WI

r71

@I

PI

Cytron, R. G. Doacross: Beyond Vectorization for Multiprocessors
(Extended Abstract). In Proceedinns of the 1986 International
tionference on . Parallel Proiesshg, pages 836-844.
Pennsylvania State University and the IEEE Computer Society,
August, 1986.

Hwu, W. and Patt, Y. HPSm, a High Performance Resuicted Data
Flow hhitecture Having Minimal Functionality. In
Proceedings of the 13th Annual Sympiwium on Comprrter
Architecture, pages 297-306. ACM-IEEE, June, 1986.

Keller, R. M. Look-Ahead Processors. ACM Comp#ing Surveys
7(4):177-195. December, 1975.

Kolen. J. F. Characterization of Concurrently Executed Progmms.
1987. Undergraduate project report, Dept. of Electrical
Engineering and Computer Sciences, University of California at
San Diego, La Jolla, CA.

Kuck, D. J., Muraoka, Y. and Chen, S.-C. On the Number of
Operations Simultaneously Executable in Fortran-Like Programs
and Their Resulting Speedup. IEEE Transactions on Computers
C-21(12):1293-1310, December, 1972.

Kuck, D. J. A Survey of Parallel Machine Organization and
Programming. ACM Computing Surveys 9(1):29-59, March,
1977.

[lo] Kuck, D. S. The Structure of Computers and Computations. John
Wiley & Sons, New York, NY, 1978.

[ill Kuck, D. J., Kuhn. R. H.. Leasure. B.. and Wolfe. M. The Structure
of an Advanced %torizer. for Pipelined F’r~~essors. In
Proceedings of the Fourth International Computer Software and
Applications Conference. ACM, October, 1980.

[131

[141

r151

WI

1173

[W

[191

ml

[211

WI

[231

[241

[251

Polychronopoulos, C. D., Kuck. D. J., and Padua, D. A. Utilizing
Multidimensional Loop Parallelism on Large-Scale Parallel
Processor Systems. IEEE Transactions on Computers ,
publication date unknown, Accepted for publication as of
September 1987.

Polychnmopoulos. C. D. On Program Restructuring, Scheduling,
and Communication for Parallel Processor Systems. PhD thesis.
University of Illinois at Urbana-Champaign, August, 1986.
Available as Center fur Supercomputing Research and
Development Tech. Report CSRD No. 595.

Polychronopoulos. C. D. and Banerjee, U. Processor Allocation for
Horizontal and Vertical Parallelism and Related Speedup
Bounds. IEEE Transactions on Computers , April, 1987.
Special Issue on Parallel and Distributed Processing.

Polychronopoulos, C. D. and Ku&, D. J. Guided Self-Scheduling:
A Practical Scheduling Scheme for Parallel Supercomputers.
IEEE Transactions on Computers , December, 1987. Special
Issue on Supercomputing.

Thorton. I. E. Parallel Oueration in the Control Data 6600. In
Proceedings of the F&l Joint Compurer Conference, pages
3340. AFIPS. 1964.

Tjaden, G. S. Representation and Detection of Concurrency Using
Ordering Matrices. PhD thesis, The Johns Hopkins University,
1972.

Tjaden, G. S. and Flynn, M. J. Representation of Concurrency with
Ordering Matrices. IEEE Transactions on Computers
C-22(8):752-761, August, 1973.

Tomasulo. R. M. An Efficient Algorithm for Expoiting Multiple
Arithmetic Units. I&UJournal:25-33, January, 1967.

Uht, A. K. Hardware Extraction of Low-Level Concurrency from
Sequential Instruction Streams. PhD thesis, Carnegie-Mellon
University, Pittsburgh. PA, December, 1985. Available from
University Micmfilms International, Ann Arbor, Michigan,
U.S.A.

Uht, A. K. An Efficient Hardware Algorithm to Extract
Concurrency From General-Purpose Code. In Proceedings of
the Nineteenth Annual Hawaii International Conference on
System Sciences. University of Hawaii, in cooperation with the
ACM and the IEEE Computer Society, January, 1986.

Uht, A. K. and Wedig, R. G. Hardware Extraction of Low-level
Concurrency from Serial Instruction Streams. In Proceedings of
the International Conference on Parallel Processing, pages
729-736. IEEE Computer Society and the Association for
Computing Machinery, August, 1986.

Uht, A. K. Incremental Performance Contributions of Hardware
Concurrency Extraction Techniques. In Proceedings of the
International Conference on Supercomputing, Athens, Greece.
Computer Technology Institute, Greece, in cooperation with the
Association for Computing Machinery, IFIP, et al, June, 1987.
Springer-&&g Lecture Note Series. In publication.

Wedig, R. G. Detection of Concurrency in Directly Executed
Language Instruction Streams. PhD thesis, Stanford University,
June, 1982.

[121 Pa& Y., Hwu. W.. and Shebanow, M. HPS, a New
Microarchitecture: Rationale and Introduction. In Proceedings
of MICRO-l& pages 103-108. ACM, December, 1985.

141

