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Abstract
Instruction Level Parallelism �ILP� speedups of an

order�of�magnitude or greater may be possible using
the techniques described herein� Traditional specula�
tive code execution is the execution of code down one
path of a branch �branch prediction� or both paths of
a branch �eager execution�� before the condition of the
branch has been evaluated� thereby executing code ahead
of time� and improving performance� A third� optimal�
method of speculative execution� Disjoint Eager Exe�
cution �DEE�� is described herein� A restricted form
of DEE� easier to implement than pure DEE� is devel�
oped and evaluated� An implementation of both DEE
and minimal control dependencies is described� DEE
is shown both theoretically and experimentally to yield
more parallelism than both branch prediction and eager
execution when the same� �nite� execution resources
are assumed� ILP speedups of factors in the ten�s are
demonstrated with constrained resources�

� Introduction and background
The goal of this work is to improve the perfor�

mance of all uniprocessors� from microprocessors to
supercomputers� with an emphasis on general pur�
pose or unpredictable�branch�intensive applications�
The architectural enhancements proposed are instruc�
tion set independent� our microarchitecture is readily
adapted to all machine codes� Therefore� so�called
�shrinkwrapped� code� machine code for which no
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source code is available� will be able to be run on
our machine� no recompilation will be necessary� Our
work is applicable� in whole or in part� to most cur�
rent research methods of enhancing performance with
Instruction Level Parallelism �ILP�� hardware�based�
software�based �including VLIW 	Very Long Instruc�
tion Word
	�
�� and mixtures of the two	�
� ILP as used
herein refers to the parallelism that exists between two
or more machine instructions in a program� Up to six
instructions may be executed concurrently in current
or announced machines� e�g�� the IBM POWER 	��
�
but there are severe limitations on the mix of simul�
taneous instructions allowable and the typical average
performance gain due to ILP is only at most a factor
of  or � better than an ideal sequential machine�

��� ILP enhancement techniques

Enhancing the independence of instructions so that
more instructions can be executed in parallel is a key
goal of ILP machine design� A dependency exists be�
tween two instructions if they must be ordered� or se�
quentialized� for correct program execution� After the
earlier instruction executes the dependency is said to
be resolved� and the later instruction may be executed�
Data dependencies arise due to instructions having the
same source and sink variables in certain combinations�
With variable renaming� only �ow dependencies need
be enforced� A �ow dependency occurs from one in�
struction to an earlier instruction if the later instruc�
tion has as an input the output or sink of the earlier
instruction� Minimal data dependencies consist only of
�ow dependencies�

An orthogonal ILP enhancement technique for re�
ducing the ill e�ects of branches is the reduction
and minimization of control dependencies �also called
branch or procedural dependencies� 	� �
� This al�

Copyright c� by the IEEE� Personal use of this material is permitted� However
 permission to reprint�republish this
material for advertising or promotional purposes of for creating new collective works for resale or redistribution to
servers or lists
 or to reuse any copyrighted component of this work in other works must be obtained from the IEEE�

�



lows the unconditional execution of some code past a
branch� before the branch has executed� To illustrate
the theory consider the example below�

�� IF �A����

�� THEN Z��

�� ELSE Y��

�� ENDIF

�� B�C	D


� IF �Q��
� GOTO ���

In typical machines all instructions after the branch of
instruction � are dependent on the branch� including
instruction �� this is a restrictive control dependency
model� However� with a reduced Control Dependency
�CD� model	�
 instruction � can execute independently
of� and concurrently with� the �rst IF statement �in�
structions ����� With the CD model� branches must
still execute sequentially� If multiple branches are al�
lowed to execute concurrently� the Multiple Flow �CD�
MF� model	�
 results� The CD�MF model is a minimal
control dependency model	�
� In the example� with the
CD�MF model instruction 
� another forward or back�
ward branch� could potentially execute concurrently
with �including before� the prior branch �instructions
����� Using this method with minimal data depen�
dencies alone gives slight gains� however� when branch
prediction is also used the gains are large	�
�

ILP is enhanced greatly with the speculative execu�
tion of code� the execution of code after a branch before
the branch�s condition has been evaluated �before the
branch has resolved�� For any speculative execution
technique� we de�ne the depth of speculation as the
greatest number of levels �l� of branches speculatively
executed at a time� In other words� l is the maximum
height of a technique�s execution tree� For example� in
Figure � lSP � �� lEE �  and lDEE � ��

The most common technique used to alleviate the
di�culties presented by branches is known as branch
prediction� or following the single most likely path at a
branch� We call this Single Path �SP� speculative exe�
cution herein� to distinguish it from the actual predict�
ing of branches� which is also used in other speculative
techniques� SP is very attractive from a cost viewpoint�
having a cost that grows linearly with l� i�e�� ��l�� SP
is limited� in that the deeper the speculation� the less
likely the latest speculated code will be used� for ex�
ample� in Figure �� path � of the SP tree has an overall
likelihood of execution of only ����

There are two known alternatives to SP that also
reduce the ill e�ects of branches� The �rst� Eager Exe�
cution �EE�� executes the machine code on both paths
of a branch� bypassing the branch� giving a branch time
penalty of zero� the best performance� but it also has
prohibitive cost� being exponential in the number of

branches bypassed� ��l����

Disjoint Eager Execution �DEE� 	��
 is the second
alternative to SP� and is the more promising one� As
will be seen� disjoint eager execution conceptually lies
between SP and eager execution� but performs better
than both of these models when resources are con�
strained� The basic idea of DEE is to only specula�
tively execute the code that is the most likely to be
needed� over all pending code� The combined use of
DEE and minimal control dependencies can produce
order�of�magnitude ILP speedups� DEE�s cost is also
attractive� ��kl��� where k is much less than one� This
is typically slightly greater than SP�s cost� but always
much less than EE�s cost�

DEE is applicable to more than just hardware�based
ILP machines� In fact� as stated by Rau	�
� VLIW ma�
chines can advantageously employ dynamic scheduling
methods of hardware�based machines� For software�
based machines� e�g�� classic VLIW machines� DEE
theory and heuristics indicate which code to execute
speculatively� If an ALU is otherwise free in a cycle�
DEE indicates which code to assign to it� for the best
performance� Similarly� for multiprocessors� DEE can
be used to assign spare processors to intelligently spec�
ulatively execute code� improving performance�

The primary goal of this paper is to establish the
basic worth and performance of DEE� In the future�
explicitly limited Processing Elements �PE�s�� non�unit
latencies� and a suitable memory system will be stud�
ied�

��� Prior work

There is a large literature concerning the idealis�
tic speedups of code� The classic study is by Rise�
man and Foster 	�
� demonstrating speedups of general
purpose code of a factor of ���� �harmonic mean� in�
�nitely many branches eagerly executed�� This in�nite
resources case of this work has been repeated many
times for di�erent benchmarks� di�erent machine as�
sumptions� and di�erent code preprocessing assump�
tions� see� for example� 	�
� Most of them demonstrate
speedups of general purpose codes� assuming hardware�
based concurrency techniques with no software pre�
processing� by a factor of ���s over sequentially exe�
cuted code� For a more detailed comparison of many
more of these studies� see 	��
�

Lam and Wilson	�
 simulated many abstract mod�
els of execution with unlimited resources� including the
SP� CD and CD�MF models� as well as combinations of
these� namely� SP�CD and SP�CD�MF� For compari�
son purposes� the SP variants are simulated herein� but
with constrained resources�

Much work has also been done on branch predic�
tion� including� 	�� ��
� The current best methods have
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Figure �� Comparison of the three speculative execution strategies�

prediction accuracies of �� to ���� depending on the
amount of implementation hardware used�

Other branch e�ect reduction techniques have been
developed� In 	
� a method of minimal control depen�
dencies� primarily for software� is developed� while in
	�
� a di�erent model is presented� primarily for hard�
ware� A machine model realizing both minimal register
data and control dependencies is given in 	�
� Eager ex�
ecution is explored in 	�
�

��� Outline

The remainder of this paper is organized as follows�
Section  derives DEE� proves its optimality and estab�
lishes its relationship with both SP and eager execu�
tion� A simple and practical form of DEE is described
in Section �� In Section �� the basic microarchitecture
of a machine model �Levo� realizing DEE and minimal
control dependencies is presented� In Section �� DEE
and its variants DEE�CD �DEE with reduced control
dependencies� and DEE�CD�MF �DEE with minimal
control dependencies� are simulated� and are compared
to other models� A Summary is given in Section ��

� Theory of Disjoint Eager Execution

The key to disjoint eager execution�s e�cacy lies in
the selection of which paths to execute� In DEE� ex�
ecution resources� e�g�� Processing Elements �PE�� are
assigned to the most likely paths to be executed over
all unresolved �issued but not executed� paths� �A PE�
in our models� contains an integer and �oating point
ALU� branch execution unit and address translation
hardware� much of a PE�s hardware is shared among its
functions�� Given a speci�c type of branch predictor�

and constrained execution resources� DEE is optimal�
giving the best performance of all speculative execu�
tion techniques� For an example� see Figure �� In the
SP and DEE parts of the �gure� the left pointing paths
correspond to paths predicted to be followed� while the
right pointing paths correspond to the paths predicted
not to be followed� The circled numbers identify the
order of processing element assignment to paths� With
DEE� after path � is assigned processing elements� the
next most likely to be needed path is path �� since its
likelihood of execution or cumulative probability �cp�
���� is greater than that of the alternative� path � �����
It is demonstrated in Section � that DEE�s selective
path�taking results in disjoint eager execution exhibit�
ing better performance than that of both SP and eager
execution with constrained resources� without eager ex�
ecution�s high cost�

Prior to de�ning DEE and proving it to be stochas�
tically optimal� some general terms are de�ned�

� A branch path consists of the dynamic code be�
tween branches� including the exit branch�

� ILP can exist within a branch path� Thus� branch
paths can in general use multiple resources� e�g��
PE�s� A branch path is said to be saturated if it
can productively use no more execution resources�
In other words� assigning a branch path one more
PE would not change its execution time� since the
resultant number of PE�s would be greater than
the maximum number of instructions semantically
executable in parallel in a single cycle�

� The probability of a path�s being taken with re�
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spect to its predecessor path �next highest in the
tree� is the path�s local probability� For example�
in Figure � the local probabilities of all of the left�
pointing paths� p� are ���� while the local prob�
abilities of all of the right�pointing paths are ��
��������

� The overall probability of each path being taken
is its cumulative probability cp� cp is the product
of the path�s local probability and the local prob�
abilities of all of its predecessor paths� higher in
the tree� up to the root of the tree� However the
cp�s are determined� only the individual cp�s are
important�

� It is desired to maximize performance Ptot� over
the execution of the program� Initially� for The�
orem �� we assume that paths do not saturate�
Thus� the more processors that can be applied to
a given path� the better its performance�

� The execution resources applied to a particular
path i are denoted� ei� The total resources avail�
able are� Etot �

Pn

i�� ei�

� The overall expected performance over all of the
paths is� Ptot �

Pn

i�� cpiei� This is reasonable�
since the quantity of busy resources used in a
branch path� e�g�� PE�s� is an indicator of the
speed of execution of that path� Also� weighting
this indicator of performance by the corresponding
path�s cumulative probability indicates the overall
likely bene�t of assigning resources to that path�

Therefore� the problem is� what should the values
of the ei be so as to maximize Ptot� for given cpi�

Theorem � Given cpj � maxfcpig� Ptot is maximized
by placing all Etot resources on branch path j�

Proof Assume all resources are initially placed on
path j� then Ptot � cpjEtot � Ptotj � Can any
other assignment do better�

Sort the cpi according to their values� then cpk
is second largest� while cpj is the largest� Take
an increment �ej � �e from path j and put
it on path k� Then compare the resulting per�
formance increments� Since� cpk � cpj � then�
�e � cpk � �e � cpj � and� �Ptotk � �Ptotj � Since
cpi � cpk for all i� not including j or k� then�
�Ptoti � �Ptotk � �Ptotj � in other words� Ptot
has decreased�

Therefore� any other assignment of �e will
lower Ptot� hence the best assignment is to place
all of Etot on the path with the largest cpi� namely
cpj � �

But the situation is more involved than this� path
saturation must be taken into account� What if� as
Theorem � tells us� all resources are assigned to path
�� in Figure �� but path � saturates�

Corollary � If path j saturates� i�e�� no more re�
sources can be used� then the remaining resources are
E�

tot � Etot � e�j� where e�j are the number of busy re�
sources on path j� E�

tot resources are assigned to the
remaining paths� i� i �� j� as in Theorem �� This max�
imizes performance�

Proof Path j saturating means that e�ectively cpj �
�� for E�

tot resources placed on it beyond satura�
tion� Therefore� the incremental bene�t of path j

goes to ��
If� referring to the Proof of Theorem �� path j

is now placed in the sorted list� it is at the bot�
tom of the list ���� and will get no additional re�
sources� The new assignment of resources is to
a new maximum cp� cpk� which maximizes per�
formance over all cpi� Therefore� assigning all re�
maining resources to path k is optimal� given path
j has saturated� �

From Theorem � and Corollary � comes the follow�
ing �rule� of Greatest Marginal Bene�t for constructing
DEE�

Assign all remaining resources to the most
likely idle path� overall� until the path satu�
rates� repeat� This is Disjoint Eager Execu�
tion �DEE��

For example� resources are assigned to paths �� � �
and then� out of order� path �� in Figure �� Thus� DEE
is optimal by construction� and subsumes both SP and
eager execution� DEE becomes the same as SP as the
branch prediction accuracy p approaches �� and DEE
becomes the same as eager execution as p approaches
���� for �nite resources�

� DEE in practice
In the DEE theory� it is assumed that the cp�s are

always known precisely� In reality� it is impossible to
completely specify the cp�s� If an estimate of cp is main�
tained� over which instances of the branch and its pre�
dictions should the estimate be made� An uncertainty
principle is apparent� the smaller the window of an es�
timate� the less accurate the estimate� In the limit� if
just the immediately prior execution of the branch and
its prediction are examined� a branch prediction accu�
racy estimate of � or � is obtained� not very useful�

Assuming we could come up with a �good� set of
past instances of branches to base branch prediction
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accuracy �p� estimates on� it is still di�cult to com�
pute cp�s dynamically� This is because� ������ cp�s
must be maintained for a typical DEE tree� each cp

is the product of many �possibly ���s� of potentially
di�erent local probabilities� the local probabilities are
based on the branch prediction accuracy estimates and
change dynamically� and branches higher in the DEE
tree resolve as the program executes� thus changing the
domain of the cp calculations� Therefore all of the cp�s
must be re�computed every cycle� Thus� hundreds or
thousands of low�precision multiplications would have
to be performed every cycle� Add to that the neces�
sity of determining the largest cp�s every cycle �sort�
ing�� and such an approach seems completely imprac�
tical� Even if we could do all this� the marginal perfor�
mance gain over the following heuristic is not likely to
be great� the heuristic already achieves about ��� of
oracle performance �see Section ���

��� The static tree heuristic

A method is now proposed that completely elimi�
nates the necessity for dynamic cp computations� yet
results in much ILP� In this static tree heuristic� the
shape of the DEE tree is determined and �xed dur�
ing the design of the CPU� �For a software�based ILP
machine� or a multiprocessor machine� the tree could
change from program execution to program execution��
The shape is determined with the following steps�

�� Measure the average or characteristic branch pre�
diction accuracy� p� of the branch predictor to be
employed by the machine by simulating the pre�
dictor on a representative group of benchmarks�

� Assume that all branches to be executed in the
target machine will be predicted with accuracy p�

�� Given the execution resources of the CPU ET � and
p� calculate the static DEE tree dimensions using
the formulae presented later� The shape of the
static tree is now �xed� for hardware�based ILP
machines� it is never changed� and thus is constant
during code execution�

�� The static tree de�nes the CPU�s execution win�
dow� Execution resources� e�g�� PE�s� are made
available for the execution of the dynamic code
present in each branch path of the tree during pro�
gram execution�

In the DEE part of Figure �� the static tree includes
the bold paths for a machine with � branch path re�
sources� The tree for a more typical case is shown in
Figure � Only dynamic instructions covered� or con�
tained� by the tree are in the CPU�s instruction window
and are allowed to execute concurrently�

E�ectively� in use� the tree �moves� down the dy�
namic code execution path� As branches resolve at
the top of the tree� the tree moves down� freeing up
resources from resolved�as not followed paths� and re�
assigning them to the leaves of the tree� Thus� new
�dynamically later� code moves into the window� and
is executed� Standard branch prediction methods are
used for all branches in the tree� potentially all at once�
Note that all of the branches in the tree may be unre�
solved at any given time�

The static tree characteristics are now brie�y de�
scribed and discussed� As is seen in Figure � for a
typical branch prediction accuracy� p� the tree consists
of two regions� theMain�Line region or path �ML� con�
sisting of the l branch paths� and the DEE region� con�
sisting of the remainder of the tree� Put another way�
B� through B� are to be Disjoint Eagerly Executed�
or DEE�d� they are called the DEE branches� A DEE
branch�s not predicted path� with its subsequent pre�
dicted paths� form a composite DEE path� All of the
DEE paths taken together comprise the DEE region�
The ML path is relatively long �e�g�� � paths�� com�
pared to the DEE dimensions hDEE and wDEE �e�g�� �
paths� �hDEE � wDEE�� The mathematical relation�
ships amongst p� l� hDEE � and ET �the total number
of branch paths in the tree�� are seen to be�

ET � logp��� p� �
�


h�DEE �

�


hDEE � �

hDEE � �
�


�

�



s
�ET �

� log��� p�

log p
� ��

l � hDEE � logp��� p�� �

These relations hold while pl � �� � p��� for example�
in Figure  this is until by DEE theory the path with
cp � ���� is to be used in the tree� Also� ��� p� � pl

must hold� i�e�� there must be a non�empty DEE region�

The tree�s structure is fortunate for implementation
purposes� It suggests that a processor could execute
the ML part using a standard branch prediction mech�
anism� and branch o� DEE paths of execution� each
of which also uses standard branch prediction� This
is done in the Levo microarchitecture� it is discussed
further in Section ���� Other considerations aside� tra�
ditional superscalar machines could be modi�ed to do
something similar�

� Levo microarchitecture

Levo is a prototype computer embodying DEE be�
ing developed and designed at the University of Rhode
Island� It is an extension of the CONDEL�	�
 ma�
chine model� In this section� a description of and ra�
tionale for using a static instruction window processor
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are given� Next� the relevant elements and operation of
CONDEL� are described� and then the Levo enhance�
ments to the CONDEL� model are given�

��� Static instruction window bene�ts

CONDEL� and Levo have a fundamentally di�er�
ent microarchitecture than traditional RISC� CISC and
superscalar machines� In traditional processors� the
instruction window holds dynamic instructions� Mis�
predicted branches commonly cause the window to be
�ushed�

CONDEL� and Levo use a window called the In�
struction Queue �IQ� 	��
 to contain the static instruc�
tions of the program being executed� Instructions are
usually fetched into the IQ in the static program order�
However� just as in dynamic window machines� the ef�
fective order of the actual execution of instructions is�
and must be� the dynamic order�

Why bother with a static window� First� usually the
contents of the IQ do not change upon a misprediction�
many instructions are not squashed and may continue
to execute� improving performance� Second� the IQ
contents are usually invariant with respect to the direc�
tion of a branch�s execution� This allows the realization
of minimal control dependencies� As with mispredic�
tions� other instructions not dependent on the branch�
including other branches� continue to execute� improv�
ing performance�

The last major reason for using a static window
is again concerned with speculative execution� With
large ILP�s� many� say ��� branches must be predicted�
resolved and executed per cycle� But in a dynamic
window processor� how can the �th branch deep be
predicted without knowing the predictions of the dy�
namically previous �� branches� These �� are also

being predicted in the same cycle as the �th� Con�
sider� this problem is equivalent to the classic pointer�
chasing problem that occurs with multiple levels of in�
direction� in this case with at least ��� levels of in�
direction through the Program Counter necessary� per
cycle� with some of the indirections unde�ned� Alte�
natively� if branches are to be eagerly predicted� then
there are approximately �� possible dynamic versions
of the �th branch necessary to be predicted� Should
they all be predicted in the same cycle� Not likely�

Therefore a static instruction window is desirable�

��� The existing structure� CONDEL��

CONDEL� is a static instruction window machine
with an IQ holding n static instructions� conceptually
arranged in a single column� see Figure �� A mech�
anism is needed to translate the static order into a
dynamic stream of instructions� This is done by keep�
ing track of which instances of a static instruction
have been executed using special bookkeeping hard�
ware with special scheduling logic�

The major logical elements used in CONDEL�� and
hence in Levo� are shown in Figure �� For Levo� the
matrix dimensions n � m are targetted to be � � ��
For illustrative purposes in the following discussion� the
dimensions used are� ���� The nominal dynamic order
of the instances active in the CPU are shown by the
folded�arrowed�line on the right�hand side of the �gure�
in the �dynamic instance order� box�

The major components of the bookkeeping hardware
are the Really Executed �RE� and Virtually Executed
�VE� n � m bit�matrices� Each ith row of a matrix
corresponds to the ith static instruction in the IQ� The
jth column entry of a matrix row corresponds to the
jth instance of the row�s static instruction� Altogether�

�



the jth column of a matrix corresponds to the jth ac�
tive iteration of a loop completely contained or captured
in the IQ� Up tom instances of a static instruction may
be in process at any given time� There is one entry in
each matrix for each active instruction instance� There
is also hardware employing ��n� comparators to de�
termine and store the data and control dependencies
among the instructions in the IQ�

In operation� instances execute as soon as their data
and control dependencies have resolved� i�e�� as soon
as their depending instances have executed� Patented
high�speed logic combines the RE� VE and dependency
information every cycle to both determine if an in�
stance is to execute� and to gate the instance�s data
sources to the instance�s PE for instruction execution�
Once an instruction instance executes� its RE bit is set�

Branches are executed as follows� A branch�s RE
bit is always set when it is executed� If a branch is not
taken� nothing else is done� If a branch is taken� all
of the instruction instances between the branch and its
target are Virtually Executed by setting their VE bits�

Instances whose VE bits are set are ignored and not
executed� Thus� VE bits perform the function of pred�
icates or guards� but in a much more general way� also�
the instruction set is not modi�ed�

The results or sinks of instances are held in an n�m

Shadow SInk �SSI� 	��
 matrix of word�length regis�
ters� with a corresponding n�m Instruction Sink Ad�
dress �ISA� matrix of registers holding the instruction�
set�architectural register or memory addresses of the
sinks� Every �i� j�th sink and address corresponds to
the �i� j�th RE and VE bits� The Shadow Sink regis�
ters are renaming registers� for both memory and reg�
ister sinks� Minimal data dependencies �only �ow de�
pendencies� are thus realized for architectural registers�
with somewhat more restrictive data dependencies for
memory accesses� The static instruction window model
realizes minimal control dependencies� Together� close
to minimal semantic dependencies are obtained�

For each IQ element �each static instruction�� there
is a PE� Both the SSI and ISA registers are accessed in
parallel by the PE�s�

In order to make the CONDEL� microarchitecture
physically realizable� and to allow for the requisite high
SSI bandwidth required� all of the matrices and the IQ
are replicated	��
� once per PE� giving the structure
shown in Figure ��a�� To ensure the coherency of the
copies of the SSI and ISA matrices� each PE writes
the same �i� j�th elements of these matrices in every
copy of the matrices� By design each PE writes to a
di�erent row than the other PE�s� and thus the writes
are disjoint� Thus� all � PE�s may write to the SSI
copies at the same time� without fear of collision� and

with a resultant high bandwidth� For the SSI copies to
support this requires that they not be constructed as
regular register �les� but as assemblages of individual
registers and busses� The accessing of each copy is
controlled by the special gating logic mentioned before�

As part of this structure� the architectural regis�
ters are not physically realized in the classic register�
�le� but rather in higher�capacity� lower�speed memory�
roughly equivalent to a cache �not shown�� The per�
formance impact of doing this has been demonstrated
to be very low	�� ��
� There is one copy of each archi�
tectural register�

The execution of loops with lengths less than that of
the Instruction Queue can be enhanced by a machine�
code to machine�code loop unrolling �lter program� to
achieve average loop sizes of about ��� the length of
the Queue� Loops not captured by the IQ are helped
in their execution� in Levo� via the operation of the ma�
chine in a special linear�code execution mode� A scan
of several of the SPECint� benchmarks indicates that
more than ��� of the conditional�backwards�branch�
formed dynamic loops� executions �t in an IQ of length
�� As hardware densities increase� allowing the IQ
length to increase to� say� ��� almost all of these dy�
namic instances of the loops will �t in the Queue�
Branches may execute concurrently� See 	�� ��
 for
more detailed descriptions of the machine� and other
code execution examples�

��� Levo� the prototype DEE machine

The major novel contributions of Levo are the in�
corporation of general branch prediction with minimal
control dependencies� and the realization of DEE� and
hence� DEE�CD�MF� The architecture and operation of
these changes are described in this section� Also note
that Levo has a data��ow like operation� but it uses
standard instruction sets� and has no special array con�
structs as in typical data��ow machines �I�structures�
etc��� Minimal data dependencies are realized for mem�
ory accesses� resulting in minimal semantic dependen�
cies being realized�

General branch prediction� Branch prediction is
realized in Levo by having one branch predictor of ar�
bitrary type associated with each IQ row �with each
static instruction�� Of course� only the instructions
that are branches use the predictors� It may be pos�
sible to reduce the number of predictors in the future�
but since reducing them would complicate the design�
and might slow down the machine� we assume one pre�
dictor per IQ instruction herein�

Total control dependencies are also maintained� they
include both regular direct� and indirect or transitive
control dependencies� e�g�� given instruction I� is data
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or control dependent on I�� and I� is control dependent
on I�� then I� is indirect and total control dependent on
I�� Total control dependencies are computed similarly
to the other dependencies�

Instances now execute as soon as their operands are
available� and independently of the state of execution
of any branch� If a branch mispredicts� its total con�
trol dependent instruction instances are squashed� their
sinks are not written to memory� and the instances
re�execute� implicitly with new operands� Sinks are
written to memory only after all of an instance�s total
control depending branches have been resolved�

In Levo many branches may be predicted �up to ���
resolved �up to ��� or executed �up to ��� per cycle�
This is unrealizable in a dynamic instruction window
machine using the classic Program Counter�

Although the standard �bit counter prediction
method is desirable to be used in Levo� as it is in the
DEE simulations of Section �� it may not be possible�
This is due to the high number of unresolved branches
likely to exist� per static branch� at any given time� The
counter method requires being updated with the ac�
tual direction taken of a branch before its next branch
instance is predicted� thus a ��� prediction accuracy
may not be realizable with the counter method�

However� if PAp adaptive prediction 	��
 is used�
with history register lengths of  bits� and one pat�
tern history table per row� the ��� prediction accuracy
should be realizable� This is due to the speculative up�
date of the predictor with the predicted directions of
unresolved branches� allowing speculative predictions�

The design penalty for a misprediction of a branch
is currently one cycle� but only for instances total con�

trol dependent on the branch� This may be reducible
to � cycles� The penalty for an instance is only one
cycle� total� for any number its total control depending
branches resolved as mispredicted in the same cycle�

The realization of DEE �see Figure ��b��� The
structures described for CONDEL� constitute the
MainLine �ML� section of Levo� This ML section is
the implementation of the ML path or region of the
static DEE tree �see Figure ��

The only hardware essential to add to Levo to imple�
ment DEE is state �RE� VE�� data �SSI� and address
�ISA� hardware for each DEE path� In Figure ��b� each
SSI��� column implements a DEE path of the static
DEE tree �RE� VE and ISA are not shown�� Since the�
oretically DEE paths can be much shorter than the ML
path� in Levo DEE paths need only have one or two
iteration columns� In the example� there are � DEE
paths� each of � column� and thus are � instructions
long� Since a branch path contains about � instruc�
tions� an actual DEE path containing one column �
instructions tall contains about � branch paths�

The DEE paths in Levo use the same PE� IQ and
dependency hardware as that used for the ML path
�the old CONDEL� hardware�� Therefore� the extra
hardware necessary to implement DEE is not necessar�
ily that much� At this stage of Levo�s development it
is not clear whether or not one PE will su�ce for all
ML and DEE instances associated with the same static
instruction �on the same row�� This PE sharing may
not inhibit performance since DEE branch paths do not
typically execute in saturation� and many DEE and ML
instances are �branched around� �virtually executed or
disabled�� thereby requiring fewer PE�s� For example�
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if a forward branch in the ML path is predicted taken�
then the instances that are virtually executed do not
require PE�s� The DEE path corresponding to this
branch can then use the PE�s thus freed for the in�
stances enabled for execution �by the forward branch
being assumed not taken in the DEE path�� without
inhibiting performance� Also� dynamically later DEE
instances are less likely to be ready for execution �data
dependencies resolved�� also reducing PE demands�

The assignment of a PE to an instance on its row
is as follows� Typically� the ML path has top priority�
The priority amongst the DEE paths is arbitrary� as
same�level �same�row� instances are equally desirable
to be executed �from DEE theory� see Figure ��

The basic architecture and operation of DEE in Levo
are now described� see Figure ��b�� A single DEE path
is considered �rst� Referring to the DEE static tree
model �Figure �� the DEE and ML paths have the
same state at the corresponding DEE branch� where
the DEE path splits from the ML path� Therefore� in
the actual hardware� the ML state is copied into the
DEE state� for all instances dynamically before �above�
the DEE branch� as the state is generated� by having
the DEE path pick the SSI data o� of the corresponding
PE result bus �a��� at the same time that the data are

being sent to the ML path� The DEE branch instance
in the DEE path is executed oppositely to the way it
was predicted in the ML path� SP�CD�MF execution
down the DEE path� as well as the ML path� ensues
normally� This is how a DEE branch is actually DEE�d�

Once a DEE branch resolves one of two actions is
taken� If the branch was correctly predicted� the ML
path stays as is� and the corresponding DEE path is
ignored� and given no priority for execution resources
�PE�s�� from then on� The time penalty here is � cy�
cles� If the DEE branch was mispredicted� then the
corresponding DEE path state must be copied into the
ML path� and the ML state dynamically later than the
end of the DEE path must be cleared� The state copy�
ing is accomplished by placing the speci�c DEE state
on return busses �b�� and reading them into the ML
path state hardware in parallel� For example� in Fig�
ure ��b� if the DEE branch corresponding to SSI����� is
mispredicted� then the contents of SSI� �the ML path�
columns �� are �ushed �actually� just the correspond�
ing RE and VE bits are cleared� implicitly forcing these
instances to re�execute�� at the same time� DEE path
 �RE�� VE�� SSI� and ISA�� is copied into the �rst
column of the ML path 	SSI���� ��
� execution then re�
sumes� The time penalty for one or more DEE branch

�



mispredictions� determined in the same cycle� is one cy�
cle� It is conceivable that this penalty may be reducible
to � cycles� Single column DEE paths� branches can
use the same predictions as their corresponding ML
branches�

Preliminary hardware cost estimates indicate that
a Levo multi�chip prototype could be built with
current CMOS technology� A single�chip version
with �� �column DEE paths �ET � ��� branch
paths� could be built in about � years� assum�
ing current CMOS transistor density increase trends
continue� �It is expected that ������ million�
transistor processor chips will be available in the
year ����� About ��� of the CPU and on�chip
cache hardware is concurrency�detection�scheduling�
hardware and multiple�state�copies overhead� About
��� �resp� ��� of the Levo hardware is used to realize
DEE� assuming �� �column�wide DEE paths �resp�
� ��column DEE paths 	ET � �
�� Therefore� the
marginal cost of DEE is low� Each additional ��column
DEE path uses about � million transistors� Prelimi�
nary versions of all of the new logic needed for Levo
and Levo�s operation have been designed� The logics
operate in parallel� are regular� straightforward� have
relatively small delays �not overly impacting the cycle
time�� and are moderate in size or cost�

We believe that the proposed Levo implementation
of DEE is superior to software�based approaches� as
the dynamics of code execution can best be handled at
run time� Also� unlike most software�based approaches�
Levo works well on all captured loop structures� and
tolerably well on other code� Its concurrency mecha�
nisms are transparent to the machine code user�

� Experimental results
	�� Methodology

DEE was simulated on �ve of the six �integer� pro�
grams of the SPECint� benchmark suite� The sc

benchmark was not included as it was signi�cantly
more predictable than the others� The inputs used
to the benchmarks were� �explow�i for cc�� in for
compress� int pri ��eqn for eqntott� bca� cps� ti�
� tial for espresso �their harmonic mean was used
for each overall espresso datum�� and li�input�lsp

�� queens� for xlisp� The MIPS R���� instruction set
was assumed� but with single cycle �unit latency� in�
struction execution� The heuristic static tree pattern
method of Section � was used to give a better idea
of likely performance gains to be experienced by a real
machine� rather than by using a purely theoretical DEE
model� Except for the Oracle simulations� the number
of branch path resources was constrained� This implic�
itly limited the number of PE�s� but not explicitly� The
maximum number of PE�s used at any time during the

simulations is likely to be less than �� �for ��� branch
paths�� with the average being much lower� due to the
high density of branches and hence small size of the
average branch path�

The Lam and Wilson simulator	�
 was modi�ed to
give the DEE simulator� which was used to obtain the
results� For all three speculative execution models� SP
�Single Path�� EE �Eager Execution�� and DEE �Dis�
joint Eager Execution�� an appropriately shaped static
tree pattern �see Figure �� was superimposed on the
dynamic execution trace of a benchmark� Code exe�
cution was only allowed where the tree was� in other
words� a limited code execution window was explicitly
assumed� The tree could only move farther along in
the dynamic trace when its earliest branch resolved�
and the instructions along its branch path had fully
executed� At such time the tree was moved down one
or more branch paths� allowing new code at the tree�s
leaves to execute concurrently� A branch resolving in
the remainder of the tree� i�e�� not the �rst branch� has
no e�ect on tree movement� until the branches dynam�
ically prior to this later branch are resolved� Thus� a
branch resolving in the later or lower part of the tree
does not release resources to be reallocated� until every�
thing above it has fully executed� This is very similar
to the Levo machine model�

The branch prediction method used was the clas�
sic �bit saturating up�down counter method	�
� All of
the counters were initialized to the non�saturated taken
state� Because of time constraints� the branch predic�
tion method was not upgraded to a two�level adaptive
predictor� For reasons stated earlier in the paper� we
believe that the accuracy of the counter method with�
out speculative prediction is likely to be about the same
as an adaptive method with both speculative prediction
and constrained hardware� There is a tradeo� between
predictor accuracy and its cost versus degree of DEE
realization and its cost� for the same performance� The
data suggest that some use of DEE is likely to be ben�
e�cial� regardless of the predictor accuracy�

Each benchmark was simulated for up to ��� million
instructions� or the end of the benchmark� whichever
came �rst� Most of the benchmarks executed to or
near this limit� Due to a problem with the simulator�
the cc� benchmark was simulated for only a total of ���
million instructions for each of the ILP models� Having
examined cc� and its input� we conclude that these
instructions are representative of its entire execution�
The cc� data is retained in the summary data since it
was the worst performing of the benchmarks� keeping
our results conservative�

Although the simulator does not actually execute a
benchmark in parallel� we attempted to ensure the ve�
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racity of the results by exhaustive testing� including�
in�depth examinations of the static tree dynamics dur�
ing simulations� at many points in many simulations�
for all of the ILP models� exercising of the simulator
with synthetic test cases� and gathering other support�
ing data� some of which will be described later�

	�� The ILP models considered

The following ILP models were simulated� Except
for the Oracle simulation� all models had constrained
branch path resources� Minimal data dependencies
were assumed�

� EE� Eager Execution� � for comparison�

� SP� Single Path execution� � for comparison�

� DEE� Disjoint Eager Execution alone� with restric�
tive control dependencies�

� SP�CD� SP with reduced control dependencies�
branches serialized� � for comparison�

� DEE�CD� DEE with reduced control dependen�
cies� branches serialized�

� SP�CD�MF� SP with minimal control dependen�
cies� branches execute in parallel� � for compari�
son�

� DEE�CD�MF� DEE with minimal control depen�
dencies� branches execute in parallel�

� Oracle� EE with unlimited resources� branches do
not constrain the parallelism in any way� Not re�
alizable�

	�� Discussion of the data

The results are shown in Figure �� The �Harmonic
Mean� data points are the harmonic means of the cor�
responding �ve benchmarks� data points� On all of
the graphs� the vertical axis is the speedup factor of a
concurrent model over a sequentially executing model�
The horizontal axis is the total number of branch paths�
or resources� allowed to be active or used at a time �ET �
in a simulation�

Referring to the summary Harmonic Mean graph�
SP�s performance e�ectively stops improving at re�
sources of �� paths� above this point� adding incremen�
tal resources to the simple branch prediction model re�
sults in little or no incremental performance gain� ver�
ifying our analysis� Also above this point� The DEE�
CD�MF model�s incremental performance gain rises
much faster than that of EE�

The most striking thing about the results are the
high speedups of DEE�CD�MF above �� path re�
sources� Although this possibility is hinted at in the
original Lam and Wilson simulations� it was still sur�
prising� Minimal control dependencies are necessary so
that branches may execute in parallel� SP�CD�MF does
not show such great gains� since it is still constrained
by the diminishing returns nature of single path execu�
tion� The other key to DEE�CD�MF�s large gains are
the extra side �DEE� paths in the static tree� To ex�
amine the dynamics further� statistics were gathered of
the locations in the DEE static tree where mispredicted
branches resolve� As it turns out� most of the resolving
is done at the root of the tree� accounting for around ���
��� of the resolved mispredictions� Thus� the longest
DEE path is often taken upon a misprediction� dra�
matically reducing the penalty of most mispredictions�
The root location of the resolvings is reasonable� upon
re�ection� in that the higher a branch is in the tree�
the more likely its dependencies are resolved�

DEE�CD and DEE�CD�MF are seen to be uniformly
better than both SP and EE above �� branch path
resources� At and below this point� the DEE tree is
the same as that of SP� since there all potential DEE
cumulative probabilities are less than the last ML re�
gion�s path�s cumulative probability� so there DEE and
SP have the same performance� There is an in�ec�
tion point in DEE�s performance at �� resources most
likely due to the fact that a DEE heuristic is being
used� not the theoretically perfect form of DEE� By
de�nition about half of the branches have prediction
accuracies less than the average accuracy of �������
performance would be improved if these branches were
DEE�d earlier� at lower levels of ET branch path re�
sources� This implies that DEE paths could be use�
fully employed with many fewer than � branch path
resources�

The performance of the DEE models is quite good�
The number of branch path resources in Levo is tar�
geted to be the equivalent of ET � ���� From the
graph� at this level of resources DEE�CD�MF is bet�
ter than SP �plain branch prediction only� by a factor
of ���� and better than EE �Eager Execution� by a
factor of ���� At this point� DEE�CD�MF exhibits a
speedup over the sequential execution of code of a fac�
tor of ����� or ������� It is also seen that DEE�CD�MF
with � branch path resources has the same performance
as EE with �� branch path resources� We also note
that overall� DEE�CD�MF achieves about ��� of or�
acle performance� the theoretical maximum� this has
not been done before�

The major limiting factor of the machine� the
limited�size window on the code� is included in the DEE
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Figure 
� DEE simulation results on 	ve of the six SPECint�� benchmarks�
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simulator� and in all of the simulations made� therefore�
performance reductions due to hardware constraints
have largely been taken into account� It is not yet
clear what the net e�ect of assuming non�unit latencies
on the DEE�CD�MF model will be� On one hand� in
other studies of other ILP models� the performance of
the models decreased signi�cantly� On the other hand�
concurrent instructions in the DEE�CD�MF model may
exhibit much more overlap than in these other cases� It
may also be the case that Levo could be built with only
� branch path resources �� DEE paths�� since the data
shows that the speedup at that level of DEE�CD�MF
is still quite high �a factor of ���

DEE performs very well in both relative and ab�
solute senses� greatly improving the performance of
typical general purpose unpredictable�branch�intensive
codes� DEE�CD�MF�s speedup of such code by a factor
of ���� is the best of any realistic ILP model considered
anywhere to date�

� Summary
Disjoint Eager Execution was shown to be an op�

timal form of speculative execution� performing bet�
ter than both SP or eager execution� for the same
resources� A DEE heuristic was described� having a
structure lending itself to ready implementation� A
DEE implementation� Levo� was presented� using the
heuristic� and including minimal control dependencies�
The basic worth of the DEE models was veri�ed by the
experimental results� Even allowing for a performance
reduction of Levo arising from other realization con�
straints� order of magnitude ILP speedups are likely to
be achieved by Levo�
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