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Abstract

This paper introduces a hardware method of improving the performance of any synchronous
digital system� We exploit the well�known observation that typical delays in synchronous
systems are much less then the worst�case delays usually designed to� typically by factors
of two or three or more� Our proposed family of hardware solutions employs timing error
toleration �TIMERRTOL� to take advantage of this characteristic� Brie�y� TIMERRTOL
works by operating the system at speeds corresponding to typical delays� detecting when timing
errors occur� and then allocating more time for the signals to settle to their correct values�
The reference paths in the circuitry operate at lower speeds so as to always exhibit correct
values �worst�case delays�� The nominal speedups of the solutions are the same as the ratio
of worst�case to typical delays for the application system� The increases in cost and power
dissipation are reasonable� We present the basic designs for a family of three solutions� and
examine and test one solution in detail� it has been realized in hardware� It works� and
exhibits substantially improved performance�
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� Introduction and Background

Ever since synchronous digital systems were �rst proposed� it has been necessary to make
the operating frequency of a system much less than necessary in typical situations to ensure
that the system operates correctly assuming worst case conditions� both operating and man	
ufacturing� The basic clock period of the system is padded with a guard band of extra time
to cover extreme conditions� There are three sources of time variation requiring the guard
band� First� the manufacturing process has variations which can lead to devices having
greater delay than the norm� Second� adverse operating conditions such as temperature and
humidity extremes can lead to greater device delays� Lastly� one must allow for the data
applied to the system to take the worst delay path through the logic�

However� none of these extremes is likely to be present in typical operating conditions�
The only known method to still obtain typical delays in all cases is to change the basic
model to an asynchronous model of operation
��� But this is undesirable� asynchronous
systems are notoriously hard to design� and there are few automated design aids available
for asynchronous systems�

This paper proposes a family of TIMing ERRor TOLeration synchronous digital systems�
or TIMERRTOL� to realize typical delays using standard synchronous design methodologies�
Our methods of doing this will increase the performance of any synchronous digital system
commonly by a factor of two or more� assuming the system runs under typical operating
conditions e�g�� temperature� altitude� and is a typical product of the manufacturing pro	
cess� Of course� our solutions function correctly even if the typical constraints are not met�
The implementations dynamically adapt to achieve the best performance possible under the
actual operating or prior� manufacturing conditions� The cost varies from an increase of
greater than the performance factor increase to signi�cantly less than the performance fac	
tor� Cycle time need not be impacted� Power dissipation increases by about the same as
the performance factor up to the square of the performance factor increase� across the im	
plementation family� In the case of our physical example� the power dissipation is much less
than the latter pessimistic limit�

This means that virtually every digital device design today could be operated twice as fast
as it is now� In general� devices would have to be redesigned� but the process is conceptually
straightforward�

We have designed an example of one of the implementations and realized it in a Xilinx
FPGA Field Programmable Gate Array�� Although it is desirable to perform chip fab	
rication as well� FPGA realization gave us great �exibility in experimentation� being able
to rapidly change the design and quickly evaluate it� FPGAs are also becoming mainline
realization platforms� given such features� as well as easy upgrade� etc�

The realized adder is a ��	bit adder operating at a frequency about twice that of a
baseline FPGA adder� It is likely that this could be improved upon� Although the nominal
cost and power increases can be quite high in the style of implementation employed� the
adder application lent itself to much less additional hardware and power dissipation� It
remains to be seen if this will be a common phenomenon�

The paper is organized as follows� A review of synchronous system timing is given in
Section �� In Section � the basic ideas of timing error toleration are presented� including
our family of three solutions or implementations� Section � describes our realization of a
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high	performance ��	bit adder for an FPGA using the third solution� Our experimental
methodology is described in Section �� with the experimental results presented in Section ��
Other related work is discussed in Section �� We conclude in Section ��

� Timing Background

Digital circuits that compute a result based solely on the state of the circuits� current inputs
are said to be constructed of combinational logic� Combinational systems can be used in
many applications� but for any interesting digital system to be realized the system must
base its output on both current inputs and the system�s prior outputs or state�

There are two types of digital systems with state� The �rst type� asynchronous digital
systems� change state as soon as an input changes its value� Modeling� designing and verifying
asynchronous systems has in practice been found to be extremely di�cult� even with modern
asynchronous techniques� Further� there is substantial cost and performance overhead with
asynchronous systems
��� Hence� asynchronous digital systems are rarely used� This is
unfortunate� because asynchronous systems operate as fast as the logic delays will allow�

Virtually all digital systems today are synchronous systems� In these systems� the state
only changes at times determined by a global system clock that is� in synchronism with the
clock�� For example� if we consider a ��� MHz Intel Pentium III processor� its basic on	chip
CPU� clock oscillates ��� million times a second� the processor will only change its state at
the start of one or more of those oscillations� Since a designer and the machine� is thus only
concerned with the state at instants of time� rather than over a continuous period of time�
as in the asynchronous approach� the synchronous approach makes the design� construction
and use of digital systems highly straightforward and reliable at least as far as the hardware
is concerned��

All synchronous digital systems can be represented by the model shown in Figure ��
The two components to the system are the Combinational Logic �CL� and the Flip�Flops or
latches �FF��

The latches hold the current or Present State �PS� of the system� Each latch typically
stores one bit of information� having a value of � or �� A �ip	�op only changes its contents or
state when a clock signal makes a transition say �	to	��� The same clock goes to all latches�
clock signals typically oscillate at Megahertz frequencies�

The logic has no clock input or feedback loops� a change in one of its inputs propagates to
one or more outputs with a delay due only to electrical circuit and speed	of	light constraints�
A latch also has a propagation delay� but from the clock transition to a change in its output�

The system operates by using the logic to compute the Next State NS� of the system
from its present state and the current values of the inputs to the system� The next state
is then stored in the latches when the clock rises� and the process repeats� In order for the
system to function properly� the computation must propagate through the logic and appear
at the inputs to the latches before the relevant transition of the clock occurs at the latches�

So far so good� if one knew the exact delays through the logic and latches� the clock
frequency could be set to the inverse of the sum of the delays� and the system would operate
at peak performance as measured by computations per second�� However� the delays are
not constant� but vary with di�erences in the manufacturing process� variations in the power
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Figure �� Standard digital system� All synchronous digital systems can be modeled by this
diagram�

supply voltage� variations in the operating temperature and humidity� variations in the in	
put data� as well as other factors� As a result of these wide variations� and the necessity
to guarantee the operation of the digital system in the worst	case situation e�g�� tempera	
ture extremes�� the clock period must be set to a higher value lower performance� than is
necessary in most� typical cases� Consequently� the average user will experience signi�cantly
lower performance than is actually necessary� perhaps half as much or less�

TIMERRTOL gets around this reduction in performance� allowing speeds corresponding
to the actual delays usually typical� in the digital system� by increasing the speed fre	
quency� of the clock until one or more errors occur� then backtracking to a known good
state� discarding the erroneous computation� and resuming operation from there� If the
error rate gets too large� the operating frequency is reduced to a value resulting in an ac	
ceptable error rate� The adjustment of the operating frequency can be done statically �xed
at system design time�� or dynamically� as the system operates� the latter is preferred� The
dynamic case requires special circuitry� it is discussed later in this document�

� Timing Error Toleration� TIMERRTOL

��� The Crux of the Timing Error Toleration Idea

The basic idea is to perform a digital computation with a lower than worst	case	required
clock period faster�� At the same time� perform the same computation with a larger� worst	
case	assumed� clock period slower� on a second system with identical hardware� At a later
time� compare the two computations� If there is a di�erence in the two answers� the faster
computation must be in error� a miscalculation has occurred� and the digital system uses the
answer from the slower system�

The question arises� aren�t we then limited by the speed of the slower system� and have
gained nothing� No� because we actually have two copies of the slower system� thus� although
they each run half as fast as the main system� they still produce results in the aggregate
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at the same rate as the main system� which is running at a much faster rate than possible
without TIMERRTOL� Hence we have improved performance� albeit with more hardware�

The rest of this section is organized as follows� The �rst� motivating� solution in the
TIMERRTOL family is described� following the description above� An alternative solu	
tion is next described� using less hardware and power� in this� the proportional solution�
the hardware cost and power consumption are proportional to the nominal performance
improvement factor� It is usable with pipelined systems� The last solution is then given�
the sub�proportional solution� which has cost growing slower than the nominal performance
increase� although the power may grow quadratically� it is also applicable to any digital
system� not just a pipelined one� The last subsection gives an overview of how the clock
speed would be controlled in such systems�

��� A Motivating TIMERRTOL

The �rst solution will serve to motivate the discussion and present the basic operating ideas
in a circuit which is easy to understand� though requiring much hardware and power� More
pragmatic solutions appear in following sections�

This solution is described as it can be realized at the gate and latch level� Realizations
at other levels such as with entire systems are straightforward extensions of these ideas�

The motivating solution is shown in Figure �� with its corresponding timing diagram in
Figure �� The basic idea is to run two additional copies of the system each at half the speed
of the main system� one copy replicating the results of the main system in odd cycles and
the other in even cycles� The two half	speed systems are operated one main system cycle
out	of	sync with each other� Both of the half	speed systems�s outputs are compared with
the main system outputs in alternate cycles� if there is a di�erence between the two sets of
outputs� an error is detected� and the main system�s outputs for that cycle are replaced with
those correct� of the comparing half	speed system� One cycle of operation is lost for every
correction necessary� this is called the miscalculation penalty�

Referring to the timing diagram� the �rst three cycles of operation are for the case when
no errors occur� The numbers within the individual signals� timing charts indicate which
computation the signal is working on or holds at that time� At the end of cycle three at
the asterisk�� a comparison of CL�� half	speed� with Qsys indicates an error in computation
�� The system then stalls one cycle� with the next state remaining at � in cycle � see ����
which it gets from CL��� having the correct version of computation �� and the system resumes
operation with the correct result� In cycles � and later the ideal computation numbers are
shown without parentheses� and the actual with miscalculation delay� computation numbers
are shown with parentheses�

This solution is for the case when performance is to be increased no more than a factor of
two from the performance in the original� worst	case delay system� The half	speed systems
must not be operated faster than the original worst	case system speed in order to provide
a guaranteed error	free computation to compare the high	speed main computation with�
This solution requires more than three times the hardware of the original system� and has
quadruple the power dissipation� The cycle time of the system is also negatively impacted
with the addition of the multiplexors to the critical path�

It is possible to modify the solution so as to allow performance increases greater than
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Figure �� General digital system employing timing error toleration �TIMERRTOL�� The top
combination of combinational logic and �ip	�ops is the original system� operated at system
frequency� The two copies of the original are below the original� each copy operates at
one	half the system frequency� see Figure � for the details of the timing�

a factor of two� For each increment of factor increase� e�g�� increment of one from X� to
X�� another copy of the hardware must be used� Further� the slow comparison systems use
a clock an increment of factor slower� e�g�� in the X� performance increase case� the now
third	clock systems operate at a third of the frequency of the main system clock� For each
increment of factor increase� the miscalculation penalty increases by a cycle� e�g�� for the X�
case� the penalty is two cycles� Other cases are handled accordingly� Note that all of the
clocks in the overall system are synchronized�

��� Second Solution� Performance Proportional to Hardware Used

It is actually not necessary to have three copies of the hardware� as used in the �rst solution�
In fact� the original copy� that operated at the system frequency� can be eliminated� It is
also not necessary to use any multiplexors� Thus� the hardware cost approximately doubles
for a doubling of performance� For a tripling of performance� the cost triples� and so forth�

This proportional solution is also easier to build and does not increase the amount of
logic gate delay� in the critical path� This solution is applied at the functional or register
level�

The proportional solution is shown in Figure �� with a representative timing diagram
in Figure �� In the block diagram� a higher level system than in the motivating solution
is assumed� In the proportional solution� we assume that the system is pipelined� this is
common in current digital systems�
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Figure �� TIMERRTOL timing� This is the basic timing of the TIMERRTOL system of
Figure �� The two half	speed clocks are skewed by one system clock cycle� The non	�cycle�
numbers enumerate the computation being performed by a set of combinational logic at a
given time� The delay through two system �clk� cycles is used for the basic clock period of
the low	speed and checking systems� CL�� and CL��� this larger delay is made equal to the
worst	case delay of the original system�
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Figure �� Pipelined digital system employing timing error toleration �TIMERRTOL� with
proportional hardware cost� The solution uses two identical copies of the original system�
adding comparators� and clocking adjacent stages on alternate system clock cycles� The two
copies use complementary clocks at corresponding stages�

We �rst describe the system�s operation from an intuitive viewpoint� We take the virtual
or implicit system clock to be at twice the frequency of the actual clk�� and clk��� Typically
the system clock would run at twice the frequency as the original non	TIMERRTOL system
clock� As a system� therefore� results are coming out twice as fast as before� Inputs alternate
between pipe A and pipe B� as do system outputs� clk�� and clk�� are ��� degrees out of
phase with each other� the pipes operate in a non	uniform fashion� even stages clocked at
di�erent times than odd numbered stages�

Let�s now look at a single pipeline� pipe A� First� note that the time allowed for signals
to go from R� through CL� into R� is the same as the system clock period� thus� CL� is
operating at the full improved speed� However� the inputs to CL� do not change for another
system clock period� until the next rising edge of clk��� Therefore� at the next edge of clk���
the current output of CL� not held in R�� has had two system clock cycles to settle� i�e��
it has had the worst	case propagation time allowed to it and thus it can now be used as the
guaranteed correct answer� and is compared with the output of R� which only had one cycle
to settle� to see if the latter is correct or not� At the same time CL� has been computing its
result based on the faster one cycle computation of CL�� Thus� at the second rising edge of
clk��� two things are true� we know if the output from R� is correct and we have the result
of the next stage�s computation ready from CL��� Finally� similar things go on in pipe B�
and since pipe B is out of phase with pipe A� results come out of the entire system at a rate
nominally twice as fast as the original system clock speed�

The detailed operation is as follows� Assume that the hardware shown in the diagram
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Figure �� Proportional TIMERRTOL timing� This is the basic timing of the proportional
TIMERRTOL system of Figure �� NOTE� only the A pipeline is shown� The two half	speed
clocks are skewed by one system clock cycle� The top diagram shows the timing when no
errors occur� the bottom shows the timing when an error has been detected at the output of
R�� in pipe A� Computations are labeled �c��� c� and c� are in pipe B� not shown�
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is part of the system�s overall pipeline� The primed �� hardware is a copy of the unprimed
top� hardware� Inputs to the overall system come in at the system clock rate� Note that
as least as far as this hardware is concerned� there is no actual clock operating at the full
rate� The inputs go to each pipeline in alternate cycles� At time �� an input is latched into
R� by clk��� The �rst computation occurs in Combinational Logic block CL�� and is latched
one system cycle later at time � into R� by clk��� As before� clk�� and clk�� run at half the
rate of the system clock� Therefore the computation in CL� as latched in R� takes � system
cycle� However� CL� does not have its inputs changed until time �� At the end of the second
cycle� the output of R� one cycle computation time� is compared with the current output
of CL� two cycles of computation time� hence the guaranteed correct answer�� If the two
results� slow one and fast one� are equal good�� is true� then the fast computation is correct
and no action need be taken� At time � the output of the second computation� from CL��
is latched into R�� Similar operations happen in the rest of the pipeline A stages� as well as
in pipeline B� Results leave pipeline A and B� at a rate one	half of the system clock rate�
where the system clock rate is twice as fast as the system clock rate without the solution�
However� there are two pipelines� so results are produced at ������� � � times the rate of
the original system� So far� no miscalculations have been assumed� the normal situation�

If a miscalculation occurs� we then have the timing of the lower diagram� In this case�
R� has latched incorrect results from CL�� This is detected at the end of time � good�� is
false�� CL� thus also has an incorrect answer� therefore clk�� is disabled for all of pipeline
A at time �� CL� is still computing the same result for the original inputs� and therefore at
time � R� latches in the correct result from CL�� CL� has now had more than two cycles
to compute its result� which is thus correct� This correct CL� result is now in the pipeline�
and normal high	throughput operation resumes� The miscalculation penalty is two system
clock cycles for pipeline A� Overall� this could lead to a system miscalculation penalty of �
cycle� but if we require that the outputs from the two pipelines be in order� pipeline B must
also be stalled by two system cycles� and hence we assume the penalty is two cycles for a
miscalculation in the proportional solution�

If typical delays are one	third the original system�s worst	case delays� and we thus would
like to improve performance by a factor of three� a third copy of the system would be needed�
with three clocks running at a third of the system clock rate� which is itself running three
times faster that the original system clock� Note that the power required to operate the new
system also increases proportionally to the performance increase� of course� it is not good to
use more power� but it is expected� The miscalculation penalty also increases proportionally
to three cycles�

One added feature of the proportional solution over the base TIMERRTOL solution is
the elimination of the multiplexors� This allows a faster clock� or rather� does not increase
the delay through a stage�

Note that the hardware cost does actually more than double� since we need to add the
comparators� It is still much less hardware than the motivating TIMERRTOL solution�

Comment on Implementation� Implementing the proportional solution is potentially
complicated due to its use of pipelining� Note that as described above the two pipelines are
independent� i�e�� no computation in one pipe depends on a computation in the other pipe�
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Processor pipelines do not typically follow this assumption� in that intermediate computa	
tions may be sent back to earlier stages� With the proportional solution� if the feedback is
to a stage in the other pipe� design is more complicated�

Nonetheless� it is doable� We have designed a simple RISC processor employing data
forwarding using the proportional solution� The main e�ect on the processor design is to
approximately double the number of bypass paths needed in the original pipeline� Further�
bypass paths not only go within a pipe A� but also across pipes pipe A to B and B to A��
We will report on our results with this processor in a later paper� It has not yet been tested�

��� Third Solution� Sub�Proportional�cost TIMERRTOL

The �nal solution� the sub	proportional solution� realizes �x performance for ��x increase
in hardware cost� power increases by at most �x� A major feature is its applicability to all
digital systems� via the general digital system model as presented earlier�

The third solution is applied directly to the elemental digital system of Figure �� Referring
to the top part of Figure � above the dashed line�� the basic idea is to create a mini	version of
a proportional pipe� having its same error toleration characteristics� but construct the stages�
combinational logic di�erently� Assuming the original combinational logic is CL� we now split
it into two equal	delay sections� CLa and CLb� i�e�� we increase the pipelining by a factor
of two� This allows the clock frequency to be doubled� If we then apply the TIMERRTOL
idea and use a two	phase clocking system� we can increase the implicit system frequency by
another factor of two� However� since we only get a result every complete pass through the
pipeline� that is every two system clock cycles� the overall performance increases by a factor
of two�

In Figure � the logic below the dashed line is necessary to control the unit and handle
errors accordingly� The �rst logic expression generates LDR�a� the synchronous load enable
line for register Ra� This register is loaded when LDR�a is true and Ra�s clock goes from � to
�� Therefore the register is loaded when either there was an error out of CLa� and CLa needs
more time to compute its result� or when the prior stage produced a valid result without
extra delay� The logic for LDRb is similar�

Referring to Figure �� the timing of the sub	proportional TIMERRTOL is seen to be
similar to the proportional TIMERRTOL� In the sub	proportional case� however� sequential
results follow each other in the pipeline� and there is only one pipeline�

The cost potentially increases by less than a factor of two sub	proportional increase��
the number of registers doubles� and we need comparators� but the core combinational logic
stays the same� The actual increase in cost is application	dependent�

In other metrics� the miscalculation penalty is two implicit system cycles� or one explicit
cycle� Since the number of storage elements doubles� and their frequency doubles� the power
consumption quadruples�

As with the proportional solution the performance of the sub	proportional	cost solution
can be increased by increasing the number of sections of the system� For example� in order
to increase the performance by a factor of three� the combinational logic would be split into
three sections� each ending in a register clocked by one distinct phase of a three	phase clock�
The cost would again increase potentially sub	proportionally� A three	phase system is used
in our test hardware� discussed later�
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Figure �� General digital system employing timing error toleration �TIMERRTOL� with
sub�proportional hardware cost� The solution splits the single combinational logic block of
the original system into two blocks� each with its own staging register� as in a pipeline�
except the stages are clocked on alternate system cycles� Comparators are also used� but no
multiplexors� as was the case in the proportional solution� The system clock frequency is �x
the original� The explicit physically existing� stage clock frequencies of the solution are �x
the original system clock frequency�
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Figure �� Sub�Proportional TIMERRTOL timing� This is the basic timing of the sub	
proportional TIMERRTOL system of Figure �� The two half	speed clocks are skewed by
one implicit system clock cycle� The top diagram shows the timing when no errors occur�
the bottom shows the timing when an error has been detected at the output of Ra� The
nomenclature� �s�a� indicates that state �� part a the �rst half of the original state� is
being computed�
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��� Adaptive Performance Maximizing Controller

The problem is how to set the clock frequency to as high a level as possible� As the frequency
increases� the basic performance of the system increases� but at some point the degradation
in performance due to the miscalculation penalties from an increasing error rate will o�set
the basic clock rate� performance� decreasing the performance overall� Thus� we need a
device to �nd the maximumperformance point� and we need one that will adapt to changing
conditions to adjust the system and have it adapt appropriately� so as to always �nd the
best performance given the actual operating conditions and manufacturing conditions�

The solution is to apply control theory to the adjustment of the system clock frequency in
real time� as the system works� The basic operation of such a system would be biased towards
increasing the clock rate� At the same time� it would have input from the comparators
of the timing error detection circuitry� The system clock drives a counter having a clock
enable function� The counter is only disabled when an error is detected in the case of our
performance doubling example� this is for one cycle per error�� The overall absolute averaged
count rate of this counter is thus a direct measure of the system�s performance� as errors
increase� it will count less often� although at a faster rate 	 the same dynamics as those of
TIMERRTOL�s performance�

The smoothed output of the counter is fed back into the system�s clock generator� ad	
justing the frequency of the clock appropriately� If the averaged counter output is low� it
increases the clock frequency and the counter output will also increase� until the averaged
counter output begins to decline� the frequency is then incrementally lowered� increasing
the counter output� until the output starts to decline again� at which point the frequency
reverses course once again� Put another way� the frequency of the clock increases while
the derivative of the performance integrated counter output� increases� when the latter de	
creases� the clock frequency is decreased� when the performance begins to increase again�
the clock frequency is once again increased�

This kind of system is readily designable using standard control theory�

� Realization of a High�Performance ���bit ��phase

Sub�Proportional TIMERRTOL Adder for an FPGA

We designed a self	contained ��	bit test adder using the methods of the sub	proportional
TIMERRTOL� It has been realized on an FPGA� The adder could be plugged into any system
using a registered adder� additional clocks might be needed� as discussed in Section ���� The
basic design of the adder is as shown in Figure �� basically a three stage version of Figure ��
Each stage of the adder is driven by one phase of a �	phase clock�

Xilinx utilizes special carry paths which make ripple	carry adder realizations the fastest
for the FPGA up to about ��	bit long adders
��� Our results would apply for any kind of
adder�

Each of the solution�s three stages contains the logic for about �� consecutive bits of the
ripple	carry adder� The carry	out of one stage�s adder is pipelined into the carry	in of the
next stage� Each stage computes ��	�� bits of the sum output� We sought to obtain a �x
improvement in performance�
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Figure �� 	
�bit ripple carry adder realized with 	�stage sub�proportional TIMERRTOL de�
sign� Each stage contains about � � of a ��	bit ripple carry adder� Only the carry out from
an adder section is propagated to the next stage� The registers !Rrnd� are connected as a
feedback shift register for pseudo	random number generation� the interconnections are not
shown�

The cost of the test adder is much less than the nominal sub	proportional �gures would
indicate� The baseline unmodi�ed ��	bit adder requires the same overall combinational logic
combinational adder itself�� In a real system at least two ��	bit registers for the inputs
��	bits of registers total�� and in some cases an additional ��	bit register for the output
would be needed� although in a pipelined system the output register would be counted as
part of the next stage� The sub	proportional adder uses ��	bits of registers total and three
ten	 or eleven	bit comparators� Making a rough assumption that a bit�s	worth of comparator
costs the same as a �	bit register� the total hardware cost for the sub	proportional adder
is ���	register	bit equivalents� Including the combinational logic no change�� this is less
than twice the original cost� much less than the nominal speedup factor �x�� The power
dissipation increases by a factor of about ���� given the small increase in register bits and
the achieved performance increase� this is much less than the nominal increase in power
dissipation of a �	phase sub	proportional system�

For ease of experimentation� the adder was con�gured as an accumulator� with both
adder inputs changing at the same time� This was done so that we could let the adder
free	run for many iterations without interaction with and delays from the host� A Linear
Feedback Shift Register arrangement was used for the non	accumulator input� employing the
generating polynomial� � " x� " x��� 
��� The shift register is initialized at the beginning of
every run with a C	library generated random number as a seed� However� the adder could
be used with completely independent inputs� anywhere a normal registered adder could�

The adder has been physically designed� �constructed� downloaded� and tested� It
works� detecting errors and then obtaining corrections� The entire process proved to be
substantially trickier than expected� Our main problem was that the design was mainly
limited not by the speed of the ��	bit adder segments� but by the comparators used to
check the results� It took many iterations with the Xilinx M� tools via varying constraints
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and tweaking the design to obtain a satisfactory result� The adder exhibited a substantial
performance speedup over the baseline adder� but not the �x hoped for� A characteristic
of the sub	proportional solution is that unlike the proportional solution� it adds pipeline
stages� The delays through these extra registers detracted from the potential performance
achievable�

� Experimental Methodology

All of our experimental work was performed on a Xilinx XC����E	�	HQ��� Field Pro	
grammable Gate Array� The FPGA is contained on an EVC� virtual computer card made
by Virtual Computer Corporation� The EVC� is mounted inside a Sun SparcStation � ���
MHz Ultra Sparc� and is connected to the Sun�s general purpose I O bus� the SBUS� The
SBUS is synchronous and operates at �� MHz� The EVC� is equipped with a software	
settable variable frequency oscillator ��� KHz to ��� MHz�� This was extremely useful
in measuring performance� We heavily modi�ed software drivers provided to us by Virtual
Computer Corp�� and used them to communicate with designs downloaded to the FPGA
and to run the experiments�

The FPGA has many advantages� it can have its internal wiring and logical structure
altered an unlimited number of times� special design programs are used to create the low	level
settings for such a device that realize the desired logic functionality of a new digital system�
Further� pre	designed high	level functions are available from the device manufacturers that
can be combined in arbitrary ways to allow easy construction of complex digital systems on
the FPGA�

The designs were entered in the Mentor Graphics Renoir VHDL synthesis tool� Exem	
plar�s Galileo synthesized the VHDL into Xilinx FPGA primitives� These primitives were
then combined� mapped� and placed and routed by the XilinxM� FPGA design tool Version
���i�� Xilinx Logiblox macros were heavily used�

Our software driver allowed us to make individual or multi	pass measurements� One of
the latter was a bisection algorithm used to �nd the maximum operating frequency of the
unit under test UUT�� For both sets of experiments� the hardware in the FPGA� contained
circuitry that checked on the correctness of results� the results were also computed on the
host the Sun� and checked with the raw results coming back from the UUT�

	 Experimental Results� Performance Potentials and

Actuals

Our �rst set of experiments sought to validate the basic TIMERRTOL ideas and stage con	
struction by examining the operation of a basic ��	bit adder� The second set of experiments
investigated a test adder� a real �	phase ��	bit sub	proportional adder� We realized it�
veri�ed its operation� and measured its performance� a baseline non	phased adder was also
examined for purposes of comparison�
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	�� Experimental Veri
cation of the Ideas of TIMERRTOL

Using the hardware and software described in Section �� we built a complex piece of combi	
national logic and tested its operation as would happen in our solutions�

The function realized is a ��	bit adder in isolation not in one of our solutions�� The
inputs to the adder come from registers using the same clock� There are also two registers
on the output of the adder� The �rst is loaded exactly one cycle after the input registers
to the adder are loaded with test data� The second is loaded exactly two clock cycles after
the inputs are loaded� A comparator compares the outputs of the �rst and second output
registers� hence at times di�ering by one cycle� There are two one	bit registers on the
comparator output� to save sample� the comparison output at di�erent times� Thus� we
have modeled all of the major basic elements of the solutions� For each event� two random
numbers are applied to the inputs of the adder at the same time� The output of the adder is
latched both one and two clock cycles later� By adjusting the clock frequency and looking at
the output register results and the comparator results� we can see when the adder produces
correct results and if correct incorrect operation is detected by a slower system the second
register� which gives the adder twice the time to compute its result�� The overall system is
driven and examined by a host computer� which further veri�es the additions�

The primary experiment seeks to determine the maximum frequency that the system can
operate at without error� or rather� with very few all tolerated� errors� As a base frequency�
we use the results of the design tools which tell us that the adder in the system� that is�
including register delays� can operate at about �� MHz �� million adds per second� assuming
worst case conditions� That corresponds to a clock period of about �� nanoseconds�

The experiment consists of a number of passes� Each pass consists of performing twenty
di�erent additions on random numbers at one operating frequency� The system is initialized
to a low frequency� As previously mentioned� the clock oscillator is variable from about ���
KHz to ��� MHz� The host computer sets the frequency� Using the bisection algorithm
mentioned above� it quickly �nds the highest operating frequency with no errors among the
�� additions�

After the �rst run� we found the operating frequency to be about ��" MHz� However�
certain aspects of the data led us to believe that the system could actually be operated faster�
the comparator was actually too slow� We re	ran the experiment giving the comparator more
time to operate but still looking at the two output registers clocked at the original times��
The operating frequency increased to about �� MHz� Thus� we can potentially realize about
a factor of three improvement in adder performance with TIMERRTOL�

One of the key contributors to synchronous adders� propagation delay is the worst	case
carry propagation delay through the adder� However� with typical input data sets this hardly
ever happens� In fact� with �� sets of random input data� the maximum carry propagation
length is only about seven bits� TIMERRTOL is able to take advantage of this situation and
decrease the actual time allowed for typical additions� This phenomenon occurs in digital
circuits in general� that is� it usually does not take the worst case number of gate propagation
delays for a signal to fully propagate through a circuit�

From this set of experiments we conclude that the potential of TIMERRTOL is great� at
least for common	sized addition operations�
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Figure �� TIMERRTOL characteristics�

	�� Evaluation of the ��Phase Sub�Proportional Adder

Our test case consisted of running the Adder Under Test AUT� for ��� iterations per run or
system frequency setting� always using the same seed� The resultant sum was checked by the
software� The adder was also instrumented with a set of three counters� one per stage� each
one counting detected errors in its stage� The tolerated errors should lead to an increased
cycle count� but still a correct sum� One other adder was used in the test system� to count
the overall number of cycles that the adder was active during an experimental run� its count
included miscalculation penalty cycles�

Baseline Data� The ��	bit single	phase adder had a design maximum frequency of �����
MHz� corresponding to a worst	case period of ���� ns� this assumes a ��# safety margin�
This data came from the post	place	and	route timing analysis section of the M� tool�

The baseline adder was able to run as fast as ����� MHz ����� million ��	bit adds per
second� without error� This is slower than seen in the �rst set of experiments� it is due both
to variations in the automated design results and to requiring correct data over �� times as
many iterations as in the �rst set of experiments�

��phase Adder Data� Our data is presented in Figure �� The system frequency was
increased from about �� MHz to over �� MHz� At each frequency setting ��� additions of
random data were performed by the sub	proportional adder� The right	hand !Operation�
chart shows the total number of system clock cycles necessary to perform the ��� additions�
including miscalculation cycles� and the number of miscalculations themselves� At lower
frequencies there are no miscalculations� and the total computation takes exactly ��� cycles�
At about �� MHz errors in stage !a� start to be generated� detected and tolerated� stages !b�
and !c� do not exhibit errors� Each error results in a one system cycle miscalculation penalty�
As the frequency continues to increase� more errors occur during the computations and thus
the number of total execution cycles also increases�

Looking at the left	hand chart� !Performance�� the overall performance in MOPS millions
of addition operations per second� is plotted� Also shown is the speedup over the baseline
adder equal to sub	proportional performance divided by the baseline performance�� and the
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system frequency plotted against itself� giving a straight line� The latter is provided to show
the trajectory the sub	proportional adder�s performance would take if no miscalculations
were to occur�

For all data shown� the system tolerated removed� all of the errors and produced the
correct sum� Above �� MHz� the adder failed as a system� producing untolerated errors� Note
that the frequency safety margin is great� about � MHz or ��# between error detection and
system failure�

Roughly� the performance of the sub	proportional adder is seen to increase steadily below
a system frequency of �� MHz and then ever more slowly with increasing system frequency�
up to a peak performance of ���� MOPS at a system frequency of ���� MHz� At the latter
frequency there were nine miscalculations in the ��� additions� Therefore there is an overall
improvement in performance of the �	phase sub	proportional TIMERRTOL adder over the
baseline adder of a factor of ���� or ��#� This is not the �x nominal desired� but is good for
our �rst attempt�

It may be possible that we were too aggressive and optimistic in the choice of a �	phase
adder� a �	phase unit might have performed better� The layout on the FPGA of the baseline
adder by the M� design tool was also substantially better than its layout of the �	phase
adder� more comparable layouts would have likely led to better gains�


 Other Related Work

To our knowledge� no one has taken an approach anything like ours� The closest work we
are aware of is 
���� In this work a microcontroller has been modi�ed so that it can self	tune
its clock for �maximum� frequency� It does this by periodically pausing computation for up
to �� cycles� during which time it forces extreme inputs � and all ��s� into the ALU� The
ALU has the longest critical path�� The output of the adder is checked� if it is correct� the
frequency is increased� if incorrect� the frequency is decreased by a safety margin� at which
time the computation resumes� This scheme takes advantage of some attributes of typical
delays� but not those coming from typical data� It also must pause operation to perform
its tuning� Further� it can not recover from any timing errors introduced by its self	tuning�
Therefore TIMERRTOL is more robust and higher	performing than this scheme�

There has been a large amount of work on asynchronous systems� See� for example�

�� for a description of the �rst asynchronous microprocessor and 
�� for a brief tutorial
on modern asynchronous circuit design� Modern asynchronous design techniques either use
much more hardware than synchronous ones self�timed circuits� or are very hard to design
delay matching� 
����

There have been many methods created to improve the performance of synchronous
circuits� The main approach is to retime
�� the registers or latches so as minimize the worst
case necessary clock period� This is done by a variety of methods� including moving the
registers or latches in the circuit� Software pipelining has been applied to synchronous
digital circuits to generate optimal clocking schemes
��� However� worst case delays between
storage elements must still be maintained�

Multisynchronous systems
�� have also been proposed in which the circuitry on a chip
is divided into semi	autonomous modules� each with its own clock� All of the clocks have
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the same frequency� but may be out of phase� This addresses part of the worst case timing
problem� but only at the system level� handling part of the chip clock drive problem�

Wave pipelined arithmetic units have been proposed� but have implementation di�culties
��
���� including the inability to easily stall the pipeline� since it depends on time	of	�ight data
storage like a mercury delay	line�� The design of such devices is also di�cult� it is hard to
ensure that signals arrive at the same time�

In one existing method used in some laptop computers� the temperature of the processor
is measured and fed back to control throttle� the operating frequency� This only adjusts
for one parameter and usually the frequency is not increased above the nominal operating
frequency� In 
�� a control technique is given that does allow the frequency to improve�
However� it is an open	loop system� errors are not explicitly detected� and in one variation
the temperature is not measured� just estimated� The TIMERRTOL approach subsumes
many of the bene�ts of such systems and can take advantage of more of the typically	valued
parameters in a system�

In 
��� a hybrid synchronous asynchronous system is proposed having an on	chip clock
generator whose frequency tracks changes in operating temperature and voltage� There	
fore the system is able to partially take advantage of typical operating and manufacturing
conditions� However� it is an open	loop system� errors are not detected� this limits its
e�ectiveness� Further� the system is unable to take advantage of typical data sets in its
synchronous sections�

� Conclusions

Timing error toleration allows synchronous digital systems in general to operate potentially
twice or more faster than in their current embodiments� This is done without changing
the basic structure of the existing digital system� The proposed system adapts to existing
environmental conditions� pre	existing manufacturing characteristics and actual system data�
always obtaining the best performance possible�

This is achieved by operating digital systems without assuming worst	case conditions� In
most cases� digital systems today must be operated assuming worst	case conditions� which
is overly conservative and results in much worse performance than what could be realized
assuming typical actual� conditions� Typical conditions can only be used if errors are
detected and removed� Our designs actually tolerate errors in the digital system� part of the
hardware runs at full speed� and part runs at much lower speed� at a speed guaranteed to give
correct results� The outputs are constantly compared to detect an error� when one occurs�
the correct answer is substituted for the incorrect one� and normal high	speed operation
resumes� The operating frequency is adjusted to maximize performance� balancing high
clock frequencies with low	enough error rates� The output of the overall system is always
correct� there are no errors presented to the user of the system�

A prototype test adder was constructed and tested� demonstrating the functionality of
our approach as well as substantial performance gains� One of the key areas of future work
is to devise and codify design guidelines and design rules for such systems� to ease their use�
Another area is the design of fast comparators� or the development of an alternative for error
detection�
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We also plan to test our proportional TIMERRTOL CPU and report on the results�
Further� it is desirable to actually build and test the feedback control system� However� no
surprises are expected from that study since the control system design is not complicated�
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