
University of Rhode Island
Dept� of Electrical and Computer Engineering
Kelley Hall
� East Alumni Ave�
Kingston� RI �����	���
� USA

Technical Report No� �����������

Achieving Typical Delays in

Synchronous Systems via
Timing Error Toleration

Augustus K� Uht
Department of Electrical and Computer Engineering

University of Rhode Island

Email� uht�ele�uri�edu
Web� www�ele�uri�edu��uht

March ��� ����

This work has been submitted for publication�

Abstract

This paper introduces a hardware method of improving the performance of any synchronous
digital system� We exploit the well�known observation that typical delays in synchronous
systems are much less then the worst�case delays usually designed to� typically by factors
of two or three or more� Our proposed family of hardware solutions employs timing error
toleration �TIMERRTOL� to take advantage of this characteristic� Brie�y� TIMERRTOL
works by operating the system at speeds corresponding to typical delays� detecting when timing
errors occur� and then allocating more time for the signals to settle to their correct values�
The reference paths in the circuitry operate at lower speeds so as to always exhibit correct
values �worst�case delays�� The nominal speedups of the solutions are the same as the ratio
of worst�case to typical delays for the application system� The increases in cost and power
dissipation are reasonable� We present the basic designs for a family of three solutions� and
examine and test one solution in detail� it has been realized in hardware� It works� and
exhibits substantially improved performance�

This work was partially supported by the National Science Foundation through grants� MIP�������	

DUE��������
 EIA������	�
 by an equipment grant from the Champlin Foundations
 by software donations

from Mentor Graphics Corporation
 Xilinx Corporation
 Virtual Computer Corporation
 and equipment

donations from Virtual Computer Corporation Patent applied for

�

� Introduction and Background

Ever since synchronous digital systems were �rst proposed� it has been necessary to make
the operating frequency of a system much less than necessary in typical situations to ensure
that the system operates correctly assuming worst case conditions� both operating and man	
ufacturing� The basic clock period of the system is padded with a guard band of extra time
to cover extreme conditions� There are three sources of time variation requiring the guard
band� First� the manufacturing process has variations which can lead to devices having
greater delay than the norm� Second� adverse operating conditions such as temperature and
humidity extremes can lead to greater device delays� Lastly� one must allow for the data
applied to the system to take the worst delay path through the logic�

However� none of these extremes is likely to be present in typical operating conditions�
The only known method to still obtain typical delays in all cases is to change the basic
model to an asynchronous model of operation
��� But this is undesirable� asynchronous
systems are notoriously hard to design� and there are few automated design aids available
for asynchronous systems�

This paper proposes a family of TIMing ERRor TOLeration synchronous digital systems�
or TIMERRTOL� to realize typical delays using standard synchronous design methodologies�
Our methods of doing this will increase the performance of any synchronous digital system
commonly by a factor of two or more� assuming the system runs under typical operating
conditions e�g�� temperature� altitude� and is a typical product of the manufacturing pro	
cess� Of course� our solutions function correctly even if the typical constraints are not met�
The implementations dynamically adapt to achieve the best performance possible under the
actual operating or prior� manufacturing conditions� The cost varies from an increase of
greater than the performance factor increase to signi�cantly less than the performance fac	
tor� Cycle time need not be impacted� Power dissipation increases by about the same as
the performance factor up to the square of the performance factor increase� across the im	
plementation family� In the case of our physical example� the power dissipation is much less
than the latter pessimistic limit�

This means that virtually every digital device design today could be operated twice as fast
as it is now� In general� devices would have to be redesigned� but the process is conceptually
straightforward�

We have designed an example of one of the implementations and realized it in a Xilinx
FPGA Field Programmable Gate Array�� Although it is desirable to perform chip fab	
rication as well� FPGA realization gave us great �exibility in experimentation� being able
to rapidly change the design and quickly evaluate it� FPGAs are also becoming mainline
realization platforms� given such features� as well as easy upgrade� etc�

The realized adder is a ��	bit adder operating at a frequency about twice that of a
baseline FPGA adder� It is likely that this could be improved upon� Although the nominal
cost and power increases can be quite high in the style of implementation employed� the
adder application lent itself to much less additional hardware and power dissipation� It
remains to be seen if this will be a common phenomenon�

The paper is organized as follows� A review of synchronous system timing is given in
Section �� In Section � the basic ideas of timing error toleration are presented� including
our family of three solutions or implementations� Section � describes our realization of a

�

high	performance ��	bit adder for an FPGA using the third solution� Our experimental
methodology is described in Section �� with the experimental results presented in Section ��
Other related work is discussed in Section �� We conclude in Section ��

� Timing Background

Digital circuits that compute a result based solely on the state of the circuits� current inputs
are said to be constructed of combinational logic� Combinational systems can be used in
many applications� but for any interesting digital system to be realized the system must
base its output on both current inputs and the system�s prior outputs or state�

There are two types of digital systems with state� The �rst type� asynchronous digital
systems� change state as soon as an input changes its value� Modeling� designing and verifying
asynchronous systems has in practice been found to be extremely di�cult� even with modern
asynchronous techniques� Further� there is substantial cost and performance overhead with
asynchronous systems
��� Hence� asynchronous digital systems are rarely used� This is
unfortunate� because asynchronous systems operate as fast as the logic delays will allow�

Virtually all digital systems today are synchronous systems� In these systems� the state
only changes at times determined by a global system clock that is� in synchronism with the
clock�� For example� if we consider a ��� MHz Intel Pentium III processor� its basic on	chip
CPU� clock oscillates ��� million times a second� the processor will only change its state at
the start of one or more of those oscillations� Since a designer and the machine� is thus only
concerned with the state at instants of time� rather than over a continuous period of time�
as in the asynchronous approach� the synchronous approach makes the design� construction
and use of digital systems highly straightforward and reliable at least as far as the hardware
is concerned��

All synchronous digital systems can be represented by the model shown in Figure ��
The two components to the system are the Combinational Logic �CL� and the Flip�Flops or
latches �FF��

The latches hold the current or Present State �PS� of the system� Each latch typically
stores one bit of information� having a value of � or �� A �ip	�op only changes its contents or
state when a clock signal makes a transition say �	to	��� The same clock goes to all latches�
clock signals typically oscillate at Megahertz frequencies�

The logic has no clock input or feedback loops� a change in one of its inputs propagates to
one or more outputs with a delay due only to electrical circuit and speed	of	light constraints�
A latch also has a propagation delay� but from the clock transition to a change in its output�

The system operates by using the logic to compute the Next State NS� of the system
from its present state and the current values of the inputs to the system� The next state
is then stored in the latches when the clock rises� and the process repeats� In order for the
system to function properly� the computation must propagate through the logic and appear
at the inputs to the latches before the relevant transition of the clock occurs at the latches�

So far so good� if one knew the exact delays through the logic and latches� the clock
frequency could be set to the inverse of the sum of the delays� and the system would operate
at peak performance as measured by computations per second�� However� the delays are
not constant� but vary with di�erences in the manufacturing process� variations in the power

�

CL
(Combinational

Logic)

DQ

ff
clk

NS
(Next State)

PS
(Present State)

In Out

(state
storage)

Figure �� Standard digital system� All synchronous digital systems can be modeled by this
diagram�

supply voltage� variations in the operating temperature and humidity� variations in the in	
put data� as well as other factors� As a result of these wide variations� and the necessity
to guarantee the operation of the digital system in the worst	case situation e�g�� tempera	
ture extremes�� the clock period must be set to a higher value lower performance� than is
necessary in most� typical cases� Consequently� the average user will experience signi�cantly
lower performance than is actually necessary� perhaps half as much or less�

TIMERRTOL gets around this reduction in performance� allowing speeds corresponding
to the actual delays usually typical� in the digital system� by increasing the speed fre	
quency� of the clock until one or more errors occur� then backtracking to a known good
state� discarding the erroneous computation� and resuming operation from there� If the
error rate gets too large� the operating frequency is reduced to a value resulting in an ac	
ceptable error rate� The adjustment of the operating frequency can be done statically �xed
at system design time�� or dynamically� as the system operates� the latter is preferred� The
dynamic case requires special circuitry� it is discussed later in this document�

� Timing Error Toleration� TIMERRTOL

��� The Crux of the Timing Error Toleration Idea

The basic idea is to perform a digital computation with a lower than worst	case	required
clock period faster�� At the same time� perform the same computation with a larger� worst	
case	assumed� clock period slower� on a second system with identical hardware� At a later
time� compare the two computations� If there is a di�erence in the two answers� the faster
computation must be in error� a miscalculation has occurred� and the digital system uses the
answer from the slower system�

The question arises� aren�t we then limited by the speed of the slower system� and have
gained nothing� No� because we actually have two copies of the slower system� thus� although
they each run half as fast as the main system� they still produce results in the aggregate

�

at the same rate as the main system� which is running at a much faster rate than possible
without TIMERRTOL� Hence we have improved performance� albeit with more hardware�

The rest of this section is organized as follows� The �rst� motivating� solution in the
TIMERRTOL family is described� following the description above� An alternative solu	
tion is next described� using less hardware and power� in this� the proportional solution�
the hardware cost and power consumption are proportional to the nominal performance
improvement factor� It is usable with pipelined systems� The last solution is then given�
the sub�proportional solution� which has cost growing slower than the nominal performance
increase� although the power may grow quadratically� it is also applicable to any digital
system� not just a pipelined one� The last subsection gives an overview of how the clock
speed would be controlled in such systems�

��� A Motivating TIMERRTOL

The �rst solution will serve to motivate the discussion and present the basic operating ideas
in a circuit which is easy to understand� though requiring much hardware and power� More
pragmatic solutions appear in following sections�

This solution is described as it can be realized at the gate and latch level� Realizations
at other levels such as with entire systems are straightforward extensions of these ideas�

The motivating solution is shown in Figure �� with its corresponding timing diagram in
Figure �� The basic idea is to run two additional copies of the system each at half the speed
of the main system� one copy replicating the results of the main system in odd cycles and
the other in even cycles� The two half	speed systems are operated one main system cycle
out	of	sync with each other� Both of the half	speed systems�s outputs are compared with
the main system outputs in alternate cycles� if there is a di�erence between the two sets of
outputs� an error is detected� and the main system�s outputs for that cycle are replaced with
those correct� of the comparing half	speed system� One cycle of operation is lost for every
correction necessary� this is called the miscalculation penalty�

Referring to the timing diagram� the �rst three cycles of operation are for the case when
no errors occur� The numbers within the individual signals� timing charts indicate which
computation the signal is working on or holds at that time� At the end of cycle three at
the asterisk�� a comparison of CL�� half	speed� with Qsys indicates an error in computation
�� The system then stalls one cycle� with the next state remaining at � in cycle � see ����
which it gets from CL��� having the correct version of computation �� and the system resumes
operation with the correct result� In cycles � and later the ideal computation numbers are
shown without parentheses� and the actual with miscalculation delay� computation numbers
are shown with parentheses�

This solution is for the case when performance is to be increased no more than a factor of
two from the performance in the original� worst	case delay system� The half	speed systems
must not be operated faster than the original worst	case system speed in order to provide
a guaranteed error	free computation to compare the high	speed main computation with�
This solution requires more than three times the hardware of the original system� and has
quadruple the power dissipation� The cycle time of the system is also negatively impacted
with the addition of the multiplexors to the critical path�

It is possible to modify the solution so as to allow performance increases greater than

�

1

0

1

0

=

=

CL.0

DQ

ff

CL.1

DQ

ff

CL

DQ

ff
clk

clk.1

clk.0

good.1

good.0

inout
clk.1

keep

keep = (clk.1 * good.0) + (clk.0 * good.1)

NS

Qsys

Figure �� General digital system employing timing error toleration �TIMERRTOL�� The top
combination of combinational logic and �ip	�ops is the original system� operated at system
frequency� The two copies of the original are below the original� each copy operates at
one	half the system frequency� see Figure � for the details of the timing�

a factor of two� For each increment of factor increase� e�g�� increment of one from X� to
X�� another copy of the hardware must be used� Further� the slow comparison systems use
a clock an increment of factor slower� e�g�� in the X� performance increase case� the now
third	clock systems operate at a third of the frequency of the main system clock� For each
increment of factor increase� the miscalculation penalty increases by a cycle� e�g�� for the X�
case� the penalty is two cycles� Other cases are handled accordingly� Note that all of the
clocks in the overall system are synchronized�

��� Second Solution� Performance Proportional to Hardware Used

It is actually not necessary to have three copies of the hardware� as used in the �rst solution�
In fact� the original copy� that operated at the system frequency� can be eliminated� It is
also not necessary to use any multiplexors� Thus� the hardware cost approximately doubles
for a doubling of performance� For a tripling of performance� the cost triples� and so forth�

This proportional solution is also easier to build and does not increase the amount of
logic gate delay� in the critical path� This solution is applied at the functional or register
level�

The proportional solution is shown in Figure �� with a representative timing diagram
in Figure �� In the block diagram� a higher level system than in the motivating solution
is assumed� In the proportional solution� we assume that the system is pipelined� this is
common in current digital systems�

�

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

clk

clk.0

clk.1

NS

CL

CL.0

CL.1

Qsys

0 1 2 3 4cycle:

*

*

(3)

(3)

(4)

(4)

(4)

Figure �� TIMERRTOL timing� This is the basic timing of the TIMERRTOL system of
Figure �� The two half	speed clocks are skewed by one system clock cycle� The non	�cycle�
numbers enumerate the computation being performed by a set of combinational logic at a
given time� The delay through two system �clk� cycles is used for the basic clock period of
the low	speed and checking systems� CL�� and CL��� this larger delay is made equal to the
worst	case delay of the original system�

�

CL2CL1

= good.1= good.0

CL3
R0

clk.0

R1

clk.1

R2

clk.0

CL2’CL1’

= good.1’= good.0’

CL3’
R0’

clk.1

R1’

clk.0

R2’

clk.1

A

B

Figure �� Pipelined digital system employing timing error toleration �TIMERRTOL� with
proportional hardware cost� The solution uses two identical copies of the original system�
adding comparators� and clocking adjacent stages on alternate system clock cycles� The two
copies use complementary clocks at corresponding stages�

We �rst describe the system�s operation from an intuitive viewpoint� We take the virtual
or implicit system clock to be at twice the frequency of the actual clk�� and clk��� Typically
the system clock would run at twice the frequency as the original non	TIMERRTOL system
clock� As a system� therefore� results are coming out twice as fast as before� Inputs alternate
between pipe A and pipe B� as do system outputs� clk�� and clk�� are ��� degrees out of
phase with each other� the pipes operate in a non	uniform fashion� even stages clocked at
di�erent times than odd numbered stages�

Let�s now look at a single pipeline� pipe A� First� note that the time allowed for signals
to go from R� through CL� into R� is the same as the system clock period� thus� CL� is
operating at the full improved speed� However� the inputs to CL� do not change for another
system clock period� until the next rising edge of clk��� Therefore� at the next edge of clk���
the current output of CL� not held in R�� has had two system clock cycles to settle� i�e��
it has had the worst	case propagation time allowed to it and thus it can now be used as the
guaranteed correct answer� and is compared with the output of R� which only had one cycle
to settle� to see if the latter is correct or not� At the same time CL� has been computing its
result based on the faster one cycle computation of CL�� Thus� at the second rising edge of
clk��� two things are true� we know if the output from R� is correct and we have the result
of the next stage�s computation ready from CL��� Finally� similar things go on in pipe B�
and since pipe B is out of phase with pipe A� results come out of the entire system at a rate
nominally twice as fast as the original system clock speed�

The detailed operation is as follows� Assume that the hardware shown in the diagram

�

c1

c1

c1

c3

c3

c3

c5

clk

clk.0

clk.1

CL1

CL2

R1

0 1 2 3 4cycle:

time:0 1 2 3 4

good.0

c1 c3R2

good.1

1 - OK c3 - OK

c1 - OK c3 - OK

c

c1

c1

c1

c3

c1

c1

CL1

CL2

R1

good.0

c1R2

good.1

1 -NG c1 - OK

c1 - OK

c

normal
operation

mis-
calculation

Figure �� Proportional TIMERRTOL timing� This is the basic timing of the proportional
TIMERRTOL system of Figure �� NOTE� only the A pipeline is shown� The two half	speed
clocks are skewed by one system clock cycle� The top diagram shows the timing when no
errors occur� the bottom shows the timing when an error has been detected at the output of
R�� in pipe A� Computations are labeled �c��� c� and c� are in pipe B� not shown�

�

is part of the system�s overall pipeline� The primed �� hardware is a copy of the unprimed
top� hardware� Inputs to the overall system come in at the system clock rate� Note that
as least as far as this hardware is concerned� there is no actual clock operating at the full
rate� The inputs go to each pipeline in alternate cycles� At time �� an input is latched into
R� by clk��� The �rst computation occurs in Combinational Logic block CL�� and is latched
one system cycle later at time � into R� by clk��� As before� clk�� and clk�� run at half the
rate of the system clock� Therefore the computation in CL� as latched in R� takes � system
cycle� However� CL� does not have its inputs changed until time �� At the end of the second
cycle� the output of R� one cycle computation time� is compared with the current output
of CL� two cycles of computation time� hence the guaranteed correct answer�� If the two
results� slow one and fast one� are equal good�� is true� then the fast computation is correct
and no action need be taken� At time � the output of the second computation� from CL��
is latched into R�� Similar operations happen in the rest of the pipeline A stages� as well as
in pipeline B� Results leave pipeline A and B� at a rate one	half of the system clock rate�
where the system clock rate is twice as fast as the system clock rate without the solution�
However� there are two pipelines� so results are produced at ������� � � times the rate of
the original system� So far� no miscalculations have been assumed� the normal situation�

If a miscalculation occurs� we then have the timing of the lower diagram� In this case�
R� has latched incorrect results from CL�� This is detected at the end of time � good�� is
false�� CL� thus also has an incorrect answer� therefore clk�� is disabled for all of pipeline
A at time �� CL� is still computing the same result for the original inputs� and therefore at
time � R� latches in the correct result from CL�� CL� has now had more than two cycles
to compute its result� which is thus correct� This correct CL� result is now in the pipeline�
and normal high	throughput operation resumes� The miscalculation penalty is two system
clock cycles for pipeline A� Overall� this could lead to a system miscalculation penalty of �
cycle� but if we require that the outputs from the two pipelines be in order� pipeline B must
also be stalled by two system cycles� and hence we assume the penalty is two cycles for a
miscalculation in the proportional solution�

If typical delays are one	third the original system�s worst	case delays� and we thus would
like to improve performance by a factor of three� a third copy of the system would be needed�
with three clocks running at a third of the system clock rate� which is itself running three
times faster that the original system clock� Note that the power required to operate the new
system also increases proportionally to the performance increase� of course� it is not good to
use more power� but it is expected� The miscalculation penalty also increases proportionally
to three cycles�

One added feature of the proportional solution over the base TIMERRTOL solution is
the elimination of the multiplexors� This allows a faster clock� or rather� does not increase
the delay through a stage�

Note that the hardware cost does actually more than double� since we need to add the
comparators� It is still much less hardware than the motivating TIMERRTOL solution�

Comment on Implementation� Implementing the proportional solution is potentially
complicated due to its use of pipelining� Note that as described above the two pipelines are
independent� i�e�� no computation in one pipe depends on a computation in the other pipe�

��

Processor pipelines do not typically follow this assumption� in that intermediate computa	
tions may be sent back to earlier stages� With the proportional solution� if the feedback is
to a stage in the other pipe� design is more complicated�

Nonetheless� it is doable� We have designed a simple RISC processor employing data
forwarding using the proportional solution� The main e�ect on the processor design is to
approximately double the number of bypass paths needed in the original pipeline� Further�
bypass paths not only go within a pipe A� but also across pipes pipe A to B and B to A��
We will report on our results with this processor in a later paper� It has not yet been tested�

��� Third Solution� Sub�Proportional�cost TIMERRTOL

The �nal solution� the sub	proportional solution� realizes �x performance for ��x increase
in hardware cost� power increases by at most �x� A major feature is its applicability to all
digital systems� via the general digital system model as presented earlier�

The third solution is applied directly to the elemental digital system of Figure �� Referring
to the top part of Figure � above the dashed line�� the basic idea is to create a mini	version of
a proportional pipe� having its same error toleration characteristics� but construct the stages�
combinational logic di�erently� Assuming the original combinational logic is CL� we now split
it into two equal	delay sections� CLa and CLb� i�e�� we increase the pipelining by a factor
of two� This allows the clock frequency to be doubled� If we then apply the TIMERRTOL
idea and use a two	phase clocking system� we can increase the implicit system frequency by
another factor of two� However� since we only get a result every complete pass through the
pipeline� that is every two system clock cycles� the overall performance increases by a factor
of two�

In Figure � the logic below the dashed line is necessary to control the unit and handle
errors accordingly� The �rst logic expression generates LDR�a� the synchronous load enable
line for register Ra� This register is loaded when LDR�a is true and Ra�s clock goes from � to
�� Therefore the register is loaded when either there was an error out of CLa� and CLa needs
more time to compute its result� or when the prior stage produced a valid result without
extra delay� The logic for LDRb is similar�

Referring to Figure �� the timing of the sub	proportional TIMERRTOL is seen to be
similar to the proportional TIMERRTOL� In the sub	proportional case� however� sequential
results follow each other in the pipeline� and there is only one pipeline�

The cost potentially increases by less than a factor of two sub	proportional increase��
the number of registers doubles� and we need comparators� but the core combinational logic
stays the same� The actual increase in cost is application	dependent�

In other metrics� the miscalculation penalty is two implicit system cycles� or one explicit
cycle� Since the number of storage elements doubles� and their frequency doubles� the power
consumption quadruples�

As with the proportional solution the performance of the sub	proportional	cost solution
can be increased by increasing the number of sections of the system� For example� in order
to increase the performance by a factor of three� the combinational logic would be split into
three sections� each ending in a register clocked by one distinct phase of a three	phase clock�
The cost would again increase potentially sub	proportionally� A three	phase system is used
in our test hardware� discussed later�

��

CLa

= good.a= good.b

CLb
Rb

clk.a

Ra

clk.b

EN

LDR.b LDR.a

EN

good.a

clk.a

D Q gooddel.a good.b

clk.b

D Q gooddel.b

LDR.a = good.b (gooddel.a)
LDR.b = good.a (gooddel.b)

or not

or not

Figure �� General digital system employing timing error toleration �TIMERRTOL� with
sub�proportional hardware cost� The solution splits the single combinational logic block of
the original system into two blocks� each with its own staging register� as in a pipeline�
except the stages are clocked on alternate system cycles� Comparators are also used� but no
multiplexors� as was the case in the proportional solution� The system clock frequency is �x
the original� The explicit physically existing� stage clock frequencies of the solution are �x
the original system clock frequency�

��

s1a

s1a

s1b

s2a

s2a

s2b

s3a

2x sysclk

clk.a

clk.b

CLa

CLb

Ra

0 1 2 3 4cycle:

time:0 1 2 3 4

good.a

s1b s2bRb

good.b

s1a - OK s2a - OK

s1b - OK s2b - OK

s1a

s1a

s1b

s2a

s1a

s1b

CLa

CLb

Ra

good.a

s1bRb

good.b

-NG s1a - OK

s1b - OK

s1a

normal
operation

mis-
calculation

Figure �� Sub�Proportional TIMERRTOL timing� This is the basic timing of the sub	
proportional TIMERRTOL system of Figure �� The two half	speed clocks are skewed by
one implicit system clock cycle� The top diagram shows the timing when no errors occur�
the bottom shows the timing when an error has been detected at the output of Ra� The
nomenclature� �s�a� indicates that state �� part a the �rst half of the original state� is
being computed�

��

��� Adaptive Performance Maximizing Controller

The problem is how to set the clock frequency to as high a level as possible� As the frequency
increases� the basic performance of the system increases� but at some point the degradation
in performance due to the miscalculation penalties from an increasing error rate will o�set
the basic clock rate� performance� decreasing the performance overall� Thus� we need a
device to �nd the maximumperformance point� and we need one that will adapt to changing
conditions to adjust the system and have it adapt appropriately� so as to always �nd the
best performance given the actual operating conditions and manufacturing conditions�

The solution is to apply control theory to the adjustment of the system clock frequency in
real time� as the system works� The basic operation of such a system would be biased towards
increasing the clock rate� At the same time� it would have input from the comparators
of the timing error detection circuitry� The system clock drives a counter having a clock
enable function� The counter is only disabled when an error is detected in the case of our
performance doubling example� this is for one cycle per error�� The overall absolute averaged
count rate of this counter is thus a direct measure of the system�s performance� as errors
increase� it will count less often� although at a faster rate 	 the same dynamics as those of
TIMERRTOL�s performance�

The smoothed output of the counter is fed back into the system�s clock generator� ad	
justing the frequency of the clock appropriately� If the averaged counter output is low� it
increases the clock frequency and the counter output will also increase� until the averaged
counter output begins to decline� the frequency is then incrementally lowered� increasing
the counter output� until the output starts to decline again� at which point the frequency
reverses course once again� Put another way� the frequency of the clock increases while
the derivative of the performance integrated counter output� increases� when the latter de	
creases� the clock frequency is decreased� when the performance begins to increase again�
the clock frequency is once again increased�

This kind of system is readily designable using standard control theory�

� Realization of a High�Performance ���bit ��phase

Sub�Proportional TIMERRTOL Adder for an FPGA

We designed a self	contained ��	bit test adder using the methods of the sub	proportional
TIMERRTOL� It has been realized on an FPGA� The adder could be plugged into any system
using a registered adder� additional clocks might be needed� as discussed in Section ���� The
basic design of the adder is as shown in Figure �� basically a three stage version of Figure ��
Each stage of the adder is driven by one phase of a �	phase clock�

Xilinx utilizes special carry paths which make ripple	carry adder realizations the fastest
for the FPGA up to about ��	bit long adders
��� Our results would apply for any kind of
adder�

Each of the solution�s three stages contains the logic for about �� consecutive bits of the
ripple	carry adder� The carry	out of one stage�s adder is pipelined into the carry	in of the
next stage� Each stage computes ��	�� bits of the sum output� We sought to obtain a �x
improvement in performance�

��

= good.a

R
rnd

clk.a
Ra

clk.b

CLaR
acc

clk.a

11

11

1

= good.b

R
rnd

clk.b
Rb

clk.c

CLb

cin

R
acc

clk.b

11

11

1

= good.c

R
rnd

clk.c
Rc

clk.a

CLc

cin

R
acc

clk.c

10

10

Figure �� 	
�bit ripple carry adder realized with 	�stage sub�proportional TIMERRTOL de�
sign� Each stage contains about � � of a ��	bit ripple carry adder� Only the carry out from
an adder section is propagated to the next stage� The registers !Rrnd� are connected as a
feedback shift register for pseudo	random number generation� the interconnections are not
shown�

The cost of the test adder is much less than the nominal sub	proportional �gures would
indicate� The baseline unmodi�ed ��	bit adder requires the same overall combinational logic
combinational adder itself�� In a real system at least two ��	bit registers for the inputs
��	bits of registers total�� and in some cases an additional ��	bit register for the output
would be needed� although in a pipelined system the output register would be counted as
part of the next stage� The sub	proportional adder uses ��	bits of registers total and three
ten	 or eleven	bit comparators� Making a rough assumption that a bit�s	worth of comparator
costs the same as a �	bit register� the total hardware cost for the sub	proportional adder
is ���	register	bit equivalents� Including the combinational logic no change�� this is less
than twice the original cost� much less than the nominal speedup factor �x�� The power
dissipation increases by a factor of about ���� given the small increase in register bits and
the achieved performance increase� this is much less than the nominal increase in power
dissipation of a �	phase sub	proportional system�

For ease of experimentation� the adder was con�gured as an accumulator� with both
adder inputs changing at the same time� This was done so that we could let the adder
free	run for many iterations without interaction with and delays from the host� A Linear
Feedback Shift Register arrangement was used for the non	accumulator input� employing the
generating polynomial� � " x� " x���
��� The shift register is initialized at the beginning of
every run with a C	library generated random number as a seed� However� the adder could
be used with completely independent inputs� anywhere a normal registered adder could�

The adder has been physically designed� �constructed� downloaded� and tested� It
works� detecting errors and then obtaining corrections� The entire process proved to be
substantially trickier than expected� Our main problem was that the design was mainly
limited not by the speed of the ��	bit adder segments� but by the comparators used to
check the results� It took many iterations with the Xilinx M� tools via varying constraints

��

and tweaking the design to obtain a satisfactory result� The adder exhibited a substantial
performance speedup over the baseline adder� but not the �x hoped for� A characteristic
of the sub	proportional solution is that unlike the proportional solution� it adds pipeline
stages� The delays through these extra registers detracted from the potential performance
achievable�

� Experimental Methodology

All of our experimental work was performed on a Xilinx XC����E	�	HQ��� Field Pro	
grammable Gate Array� The FPGA is contained on an EVC� virtual computer card made
by Virtual Computer Corporation� The EVC� is mounted inside a Sun SparcStation � ���
MHz Ultra Sparc� and is connected to the Sun�s general purpose I O bus� the SBUS� The
SBUS is synchronous and operates at �� MHz� The EVC� is equipped with a software	
settable variable frequency oscillator ��� KHz to ��� MHz�� This was extremely useful
in measuring performance� We heavily modi�ed software drivers provided to us by Virtual
Computer Corp�� and used them to communicate with designs downloaded to the FPGA
and to run the experiments�

The FPGA has many advantages� it can have its internal wiring and logical structure
altered an unlimited number of times� special design programs are used to create the low	level
settings for such a device that realize the desired logic functionality of a new digital system�
Further� pre	designed high	level functions are available from the device manufacturers that
can be combined in arbitrary ways to allow easy construction of complex digital systems on
the FPGA�

The designs were entered in the Mentor Graphics Renoir VHDL synthesis tool� Exem	
plar�s Galileo synthesized the VHDL into Xilinx FPGA primitives� These primitives were
then combined� mapped� and placed and routed by the XilinxM� FPGA design tool Version
���i�� Xilinx Logiblox macros were heavily used�

Our software driver allowed us to make individual or multi	pass measurements� One of
the latter was a bisection algorithm used to �nd the maximum operating frequency of the
unit under test UUT�� For both sets of experiments� the hardware in the FPGA� contained
circuitry that checked on the correctness of results� the results were also computed on the
host the Sun� and checked with the raw results coming back from the UUT�

	 Experimental Results� Performance Potentials and

Actuals

Our �rst set of experiments sought to validate the basic TIMERRTOL ideas and stage con	
struction by examining the operation of a basic ��	bit adder� The second set of experiments
investigated a test adder� a real �	phase ��	bit sub	proportional adder� We realized it�
veri�ed its operation� and measured its performance� a baseline non	phased adder was also
examined for purposes of comparison�

��

	�� Experimental Veri
cation of the Ideas of TIMERRTOL

Using the hardware and software described in Section �� we built a complex piece of combi	
national logic and tested its operation as would happen in our solutions�

The function realized is a ��	bit adder in isolation not in one of our solutions�� The
inputs to the adder come from registers using the same clock� There are also two registers
on the output of the adder� The �rst is loaded exactly one cycle after the input registers
to the adder are loaded with test data� The second is loaded exactly two clock cycles after
the inputs are loaded� A comparator compares the outputs of the �rst and second output
registers� hence at times di�ering by one cycle� There are two one	bit registers on the
comparator output� to save sample� the comparison output at di�erent times� Thus� we
have modeled all of the major basic elements of the solutions� For each event� two random
numbers are applied to the inputs of the adder at the same time� The output of the adder is
latched both one and two clock cycles later� By adjusting the clock frequency and looking at
the output register results and the comparator results� we can see when the adder produces
correct results and if correct incorrect operation is detected by a slower system the second
register� which gives the adder twice the time to compute its result�� The overall system is
driven and examined by a host computer� which further veri�es the additions�

The primary experiment seeks to determine the maximum frequency that the system can
operate at without error� or rather� with very few all tolerated� errors� As a base frequency�
we use the results of the design tools which tell us that the adder in the system� that is�
including register delays� can operate at about �� MHz �� million adds per second� assuming
worst case conditions� That corresponds to a clock period of about �� nanoseconds�

The experiment consists of a number of passes� Each pass consists of performing twenty
di�erent additions on random numbers at one operating frequency� The system is initialized
to a low frequency� As previously mentioned� the clock oscillator is variable from about ���
KHz to ��� MHz� The host computer sets the frequency� Using the bisection algorithm
mentioned above� it quickly �nds the highest operating frequency with no errors among the
�� additions�

After the �rst run� we found the operating frequency to be about ��" MHz� However�
certain aspects of the data led us to believe that the system could actually be operated faster�
the comparator was actually too slow� We re	ran the experiment giving the comparator more
time to operate but still looking at the two output registers clocked at the original times��
The operating frequency increased to about �� MHz� Thus� we can potentially realize about
a factor of three improvement in adder performance with TIMERRTOL�

One of the key contributors to synchronous adders� propagation delay is the worst	case
carry propagation delay through the adder� However� with typical input data sets this hardly
ever happens� In fact� with �� sets of random input data� the maximum carry propagation
length is only about seven bits� TIMERRTOL is able to take advantage of this situation and
decrease the actual time allowed for typical additions� This phenomenon occurs in digital
circuits in general� that is� it usually does not take the worst case number of gate propagation
delays for a signal to fully propagate through a circuit�

From this set of experiments we conclude that the potential of TIMERRTOL is great� at
least for common	sized addition operations�

��

Subproportional TIMERRTOL Performance

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

51
.2

51
.7

52
.2

52
.7

53
.1

53
.7

54
.2

54
.7

55
.2

55
.6

56
.2

56
.7

57
.3

57
.7

58
.1

58
.7

59
.2

59
.7

System Frequency

M
H

z
o

r
M

O
P

S

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

F
ac

to
r

S
p

ee
d

u
p

System Frequency

Performance

Speedup

Subproportional TIMERRTOL Operation

0

50

100

150

200

250

300

350

51
.2

51
.7

52
.2

52
.7

53
.1

53
.7

54
.2

54
.7

55
.2

55
.6

56
.2

56
.7

57
.3

57
.7

58
.1

58
.7

59
.2

59
.7

System Frequency

C
yc

le
s

o
r

M
is

ca
lc

u
la

ti
o

n
s

Execution Cycles

Stage 'a' Miscalculations

Figure �� TIMERRTOL characteristics�

	�� Evaluation of the ��Phase Sub�Proportional Adder

Our test case consisted of running the Adder Under Test AUT� for ��� iterations per run or
system frequency setting� always using the same seed� The resultant sum was checked by the
software� The adder was also instrumented with a set of three counters� one per stage� each
one counting detected errors in its stage� The tolerated errors should lead to an increased
cycle count� but still a correct sum� One other adder was used in the test system� to count
the overall number of cycles that the adder was active during an experimental run� its count
included miscalculation penalty cycles�

Baseline Data� The ��	bit single	phase adder had a design maximum frequency of �����
MHz� corresponding to a worst	case period of ���� ns� this assumes a ��# safety margin�
This data came from the post	place	and	route timing analysis section of the M� tool�

The baseline adder was able to run as fast as ����� MHz ����� million ��	bit adds per
second� without error� This is slower than seen in the �rst set of experiments� it is due both
to variations in the automated design results and to requiring correct data over �� times as
many iterations as in the �rst set of experiments�

��phase Adder Data� Our data is presented in Figure �� The system frequency was
increased from about �� MHz to over �� MHz� At each frequency setting ��� additions of
random data were performed by the sub	proportional adder� The right	hand !Operation�
chart shows the total number of system clock cycles necessary to perform the ��� additions�
including miscalculation cycles� and the number of miscalculations themselves� At lower
frequencies there are no miscalculations� and the total computation takes exactly ��� cycles�
At about �� MHz errors in stage !a� start to be generated� detected and tolerated� stages !b�
and !c� do not exhibit errors� Each error results in a one system cycle miscalculation penalty�
As the frequency continues to increase� more errors occur during the computations and thus
the number of total execution cycles also increases�

Looking at the left	hand chart� !Performance�� the overall performance in MOPS millions
of addition operations per second� is plotted� Also shown is the speedup over the baseline
adder equal to sub	proportional performance divided by the baseline performance�� and the

��

system frequency plotted against itself� giving a straight line� The latter is provided to show
the trajectory the sub	proportional adder�s performance would take if no miscalculations
were to occur�

For all data shown� the system tolerated removed� all of the errors and produced the
correct sum� Above �� MHz� the adder failed as a system� producing untolerated errors� Note
that the frequency safety margin is great� about � MHz or ��# between error detection and
system failure�

Roughly� the performance of the sub	proportional adder is seen to increase steadily below
a system frequency of �� MHz and then ever more slowly with increasing system frequency�
up to a peak performance of ���� MOPS at a system frequency of ���� MHz� At the latter
frequency there were nine miscalculations in the ��� additions� Therefore there is an overall
improvement in performance of the �	phase sub	proportional TIMERRTOL adder over the
baseline adder of a factor of ���� or ��#� This is not the �x nominal desired� but is good for
our �rst attempt�

It may be possible that we were too aggressive and optimistic in the choice of a �	phase
adder� a �	phase unit might have performed better� The layout on the FPGA of the baseline
adder by the M� design tool was also substantially better than its layout of the �	phase
adder� more comparable layouts would have likely led to better gains�

 Other Related Work

To our knowledge� no one has taken an approach anything like ours� The closest work we
are aware of is
���� In this work a microcontroller has been modi�ed so that it can self	tune
its clock for �maximum� frequency� It does this by periodically pausing computation for up
to �� cycles� during which time it forces extreme inputs � and all ��s� into the ALU� The
ALU has the longest critical path�� The output of the adder is checked� if it is correct� the
frequency is increased� if incorrect� the frequency is decreased by a safety margin� at which
time the computation resumes� This scheme takes advantage of some attributes of typical
delays� but not those coming from typical data� It also must pause operation to perform
its tuning� Further� it can not recover from any timing errors introduced by its self	tuning�
Therefore TIMERRTOL is more robust and higher	performing than this scheme�

There has been a large amount of work on asynchronous systems� See� for example�

�� for a description of the �rst asynchronous microprocessor and
�� for a brief tutorial
on modern asynchronous circuit design� Modern asynchronous design techniques either use
much more hardware than synchronous ones self�timed circuits� or are very hard to design
delay matching�
����

There have been many methods created to improve the performance of synchronous
circuits� The main approach is to retime
�� the registers or latches so as minimize the worst
case necessary clock period� This is done by a variety of methods� including moving the
registers or latches in the circuit� Software pipelining has been applied to synchronous
digital circuits to generate optimal clocking schemes
��� However� worst case delays between
storage elements must still be maintained�

Multisynchronous systems
�� have also been proposed in which the circuitry on a chip
is divided into semi	autonomous modules� each with its own clock� All of the clocks have

��

the same frequency� but may be out of phase� This addresses part of the worst case timing
problem� but only at the system level� handling part of the chip clock drive problem�

Wave pipelined arithmetic units have been proposed� but have implementation di�culties
��
���� including the inability to easily stall the pipeline� since it depends on time	of	�ight data
storage like a mercury delay	line�� The design of such devices is also di�cult� it is hard to
ensure that signals arrive at the same time�

In one existing method used in some laptop computers� the temperature of the processor
is measured and fed back to control throttle� the operating frequency� This only adjusts
for one parameter and usually the frequency is not increased above the nominal operating
frequency� In
�� a control technique is given that does allow the frequency to improve�
However� it is an open	loop system� errors are not explicitly detected� and in one variation
the temperature is not measured� just estimated� The TIMERRTOL approach subsumes
many of the bene�ts of such systems and can take advantage of more of the typically	valued
parameters in a system�

In
��� a hybrid synchronous asynchronous system is proposed having an on	chip clock
generator whose frequency tracks changes in operating temperature and voltage� There	
fore the system is able to partially take advantage of typical operating and manufacturing
conditions� However� it is an open	loop system� errors are not detected� this limits its
e�ectiveness� Further� the system is unable to take advantage of typical data sets in its
synchronous sections�

� Conclusions

Timing error toleration allows synchronous digital systems in general to operate potentially
twice or more faster than in their current embodiments� This is done without changing
the basic structure of the existing digital system� The proposed system adapts to existing
environmental conditions� pre	existing manufacturing characteristics and actual system data�
always obtaining the best performance possible�

This is achieved by operating digital systems without assuming worst	case conditions� In
most cases� digital systems today must be operated assuming worst	case conditions� which
is overly conservative and results in much worse performance than what could be realized
assuming typical actual� conditions� Typical conditions can only be used if errors are
detected and removed� Our designs actually tolerate errors in the digital system� part of the
hardware runs at full speed� and part runs at much lower speed� at a speed guaranteed to give
correct results� The outputs are constantly compared to detect an error� when one occurs�
the correct answer is substituted for the incorrect one� and normal high	speed operation
resumes� The operating frequency is adjusted to maximize performance� balancing high
clock frequencies with low	enough error rates� The output of the overall system is always
correct� there are no errors presented to the user of the system�

A prototype test adder was constructed and tested� demonstrating the functionality of
our approach as well as substantial performance gains� One of the key areas of future work
is to devise and codify design guidelines and design rules for such systems� to ease their use�
Another area is the design of fast comparators� or the development of an alternative for error
detection�

��

We also plan to test our proportional TIMERRTOL CPU and report on the results�
Further� it is desirable to actually build and test the feedback control system� However� no
surprises are expected from that study since the control system design is not complicated�

References

��� F� Boyer� M� Aboulhamid� Y� Savaria� and I� Bennour� Optimal Design of Synchronous Circuits
Using Software Pipelining Techniques� In Proceedings of the ���� International Conference on
Computer Design� �����

��� Xilinx Corporation� ���� Xilinx Data Book� Xilinx Corporation� San Jose� Calif�� �����
http	

www�xilinx�com
partinfo
databook�htm�

��� M� J� Flynn� P� Hung� and K� Rudd� Deep�Submicron Microprocessor Design Issues� IEEE
Micro� 	� July�August �����

�� S� Furber� Asynchronous Logic� In IberChip� � February ����� Sao Paulo� Brazil�

��� R� Ginosar and R� Kol� Adaptive Synchronization� In Proceedings of the ���� International
Conference on Computer Design� �����

��� C� Leiserson and J� Saxe� Retiming Synchronous Circuitry� Algorithmica� ���	����� �����

��� A� J� Martin� Design of an Asynchronous Microprocessor� Technical Report CS�TR�������
Computer Science Department� California Institute of Technology� �����

��� E� J� McCluskey� Logic Design Principles� Prentice�Hall� Englewood Cli�s� N� J�� �����

��� A� Merchant� B� Melamed� E� Schenfeld� and B� Sengupta� Analysis of a Control Mechanism
for a Variable Speed Processor� IEEE Transactions on Computers� ����	�������� July �����

���� S� F� Oberman� H� Al�Twaijry� and M� J� Flynn� The SNAP Project	 Design of Floating Point
Arithmetic Units� In Proceedings of the ��th IEEE Symposium on Computer Arithmetic� IEEE�
July �����

���� M� Olivieri� A� Tri�letti� and A� De Gloria� A Low�Power Microcontroller with On�Chip Self�
Tuning Digital Clock�Generator for Variable�Load Applications� In Proceedings of the ����
International Conference on Computer Design� IEEE� �����

���� A� E� Sjogren and C� J� Myers� Interfacing Synchronous and Asynchronous Modules Wihin a
High�Speed Pipeline� In Proceedings of the ��th Conference on Advanced Research in VLSI
�ARVLSI ���	� pages ����� �����

���� I� E� Sutherland� Micropipelines� Communications of the ACM� �����	�������� June �����

��

