The Sequential Attack against Power Grid Networks

Yihai Zhu, Jun Yan, Yufei Tang, Yan (Lindsay) Sun, Haibo He

Presenter: Yan (Lindsay) Sun
Associate Professor at
University of Rhode Island
Email: yansun@ele.uri.edu
Massive Blackouts

- **The Electric Grid**
 - Critical infrastructure
 - Complicated cyber-physical systems
 - Experiences of power outages

- **Massive Blackouts**
 - Large-scale power outage
 - Affecting millions of people
 - Tremendous economic loss

- **Northeast Blackout in 2003**
 - 50 million people
 - 10 billion U.S. dollar

Northeast blackout of 2003
Main Causes

Exterior reasons of blackouts affecting at least 50,000 customers between 1984 and 2006. Data from NERC records. [2]
Media Report

- **Truthstream Media** (August 30, 2013)

 “The former DHS chief Janet Napolitano says: Cyber Attack Will Bring Down Power Grid: ‘When Not If’ ”

- **The Wall Street Journal** (February 5, 2014)

 “Assault on California Power Station Raises Alarm on Potential for Terrorism”
Two Real-life Cases

❖ Case I: The attack from an individual
 ▪ On Oct. 6, 2013, a man attacked a high-voltage transmission line near Cabot, Arkansas, USA.
 ▪ 10,000 customers lost power as a result.

❖ Case II: The attack from a team
 ▪ At the mid night on Apr. 16, 2013, a team of armed people shot on a transmission substation near San Jose, California, USA.
 ▪ 17 giant transformers were knocked out, and this substation was closed for a month.
Power Grid Information Collection

- Ways of Information Collection
 - Online tools
 - Purchasing the grid’s information
 - Hacking or spying

- Online tools are useful to collect the topological information.
 - Google Maps
 - Online websites
 - Topology of the high-voltage transmission lines in U.S.
Outline

- Background
- Related Work
- The Sequential Attack
 - Motivation & Challenge
 - Cascading Failure Simulator
 - A Case Study
 - Vulnerability Analysis
 - Metric Study
- Summary & Future Work
Outline

- Background
- Related Work
- The Sequential Attack
 - Motivation & Challenge
 - Cascading Failure Simulator
 - A Case Study
 - Vulnerability Analysis
 - Metric Study
- Summary & Future Work
Related Work

Vulnerability Analysis of Power Grids

- Cascading Models\(^{[10,11,12]}\)
- Contingency Analysis\(^{[12]}\)
- Cyber Vulnerability Analysis\(^{[15]}\)
- Defense Analysis\(^{[16]}\)
- Attack Analysis:
 - The simultaneous attack\(^{[13,14]}\)
 - The sequential attack
Outline

➢ Background
➢ Related Work
➢ The Sequential Attack
 ➢ Motivation and Challenge
 ➢ Cascading Failure Simulator
 ➢ A Case Study
 ➢ Vulnerability Analysis
 ➢ Metric Study
➢ Summary & Future Work
The Sequential Attack

❖ Motivation

- The attackers are able to launch multiple-target attacks sequentially, but not simultaneously.
- Provide a new angle to conduct the vulnerability analysis of power transmission systems.

❖ Challenges

- Developing the cascading failure simulator
- Mimicking sequential attacks
- Conducting vulnerability analysis
- Studying metrics to find strong sequential attacks
Cascading Failure Simulator

- **DC power-flow model**
- **Blackout size → damage**
- **Ten steps**
 - Step 1: Initialization
 - Step 2: Apply an attack,
 - Step 3: Check "Stop simulator",
 - Step 4: Redispatch power and recalculate power flows,
 - Step 5: Check "Overloading",
 - Steps 6, 7, 8: Trip one overcurrent line,
 - Step 9: Check "More Attacks",
 - Step 10: Evaluate damage.

Flowchart of cascading failure simulator
IEEE 39 Bus System

< #: Node Index G#: Generator Index ↓: Demand Node
A Case Study

- A case study on the combination of lines 26 and 39
 - The simultaneous attack: upper subplot
 - The sequential attack: lower subplot
 - Blue-star points stand for a line trip.

- Observation
 - The sequential attack can discover new vulnerability of power systems.
Vulnerability Analysis

❖ Concept
 ▪ Test benchmark: IEEE 39 bus system that has 39 substations and 46 transmission lines.
 ▪ Damage evaluation: Blackout size (λ)
 ▪ Analysis on transmission lines

❖ Demonstration
 ▪ Two-line combinations: 1035
 ▪ For each two-line combination, obtaining
 • Its sequential attack strength: λ_{seq}
 • Its simultaneous attack strength: λ_{sim}
 ▪ Plot λ_{seq} v.s. λ_{sim} to reveal the relationship between the sequential attack and the simultaneous attack.
 ▪ Each dot in the figure represents an two-line combination.
Discovery

- **Red dots**
 - These dots represent that the non-vulnerable combination of links that corresponds to a weak simultaneous attack can become highly vulnerable when the sequential attack is considered.

- **Three categories**
 - Category II: the sequential attack is much stronger than the simultaneous attack.
 - There are more strong sequential attacks than strong simultaneous attacks

\[
\begin{align*}
\text{Category I: } & \lambda_{seq} - \lambda_{sim} \leq \theta \\
\text{Category II: } & \lambda_{seq} - \lambda_{sim} > \theta \\
\text{Category III: } & \lambda_{seq} - \lambda_{sim} < -\theta \\
\text{When: } & \theta = 0.1
\end{align*}
\]
More experiments and analysis on three-line or four-line combinations

- Two-line combination: 1035 (Category I: 85.6%, Category II: 13.14%, Category III: 1.26%)
- Three-line combinations (15,180)
- Four-line combinations (163,185)

Observation

- The sequential attack can be stronger than the simultaneous attack.
- As k increases, Category II becomes increasingly dominant.
Metric Study

- **Goal**
 - It is to study existing metrics to find whether metric(s) can help to reduce the search space for finding strong sequential attacks.

- **Four existing metrics**
 - **Metric 1**: Random selection, determining candidate links by randomly choosing among all links.
 - **Metric 2**: Generator-connection, selecting the links that are connected with generators as candidate links.
 - **Metric 3**: Degree, choosing candidate links by ranking degree values of links from high to low.
 - **Metric 4**: Load, choosing candidate links by ranking load values of links from high to low.
Experiment

- 11 lines for Metric 2, because 11 lines are originally connected with generators.
- 11 lines for Metrics 3 and 4.
- Conducting k-line sequential attacks, where k is set be 2, 3, 4, 5 and 6, respectively.
- Randomly choosing k lines for each metric.
- 1000 times and average results.

Observation

- Metric 4: load
 - Strong performance
 - Reducing search space
Summary & Future Work

- **Summary**
 - Discover the sequential attack scenario against power transmission systems.
 - Discover many new vulnerabilities.
 - Investigate four existing metrics on reducing the search space to find strong sequential attacks.

- **Future Work**
 - Investigate the sequential attack on substations.
 - Investigate the sequential attack strategy.

The simultaneous attack versus the sequential attack

- **The simultaneous attack**
 - Conduct multiple removals simultaneously.

- **The sequential attack**
 - Conduct multiple removals in the predefined sequence.
Summary of typical works in studying the attacks against power systems

<table>
<thead>
<tr>
<th>Attack Strategy</th>
<th>Single-node Synchronous</th>
<th>Multiple-node Synchronous</th>
<th>Multiple-node Sequential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random removal [25]</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Search-based approaches [4]</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Attack metrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree [25]</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Load [21]</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>RIF [9]</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>LDV [10]</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Geographic information [12]</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>RG [11]</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Proposed work</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Models of Cascading Failures

<table>
<thead>
<tr>
<th>Models of Cascading Failures</th>
<th>Models of Cascading Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASCADE mode</td>
<td>Topology</td>
</tr>
<tr>
<td>Identical components</td>
<td>Randomly choosing load values between a range</td>
</tr>
<tr>
<td>Overloading when the load exceeds a threshold.</td>
<td></td>
</tr>
<tr>
<td>Wang-Rong model</td>
<td>Topology</td>
</tr>
<tr>
<td>Identical components</td>
<td>Using the degree to calculate load</td>
</tr>
<tr>
<td>Overloading when the load exceeds the capacity.</td>
<td>The capacity is proportional to the initial load.</td>
</tr>
<tr>
<td>Motter-Lai model</td>
<td>Topology</td>
</tr>
<tr>
<td>Identical components</td>
<td>Calculating the betweenness as the load</td>
</tr>
<tr>
<td>Overloading when the load exceeds the capacity</td>
<td>The capacity is proportional to the initial load.</td>
</tr>
<tr>
<td>Betweenness model</td>
<td>Topology</td>
</tr>
<tr>
<td>Identical components</td>
<td>Calculating the betweenness to calculate the load</td>
</tr>
<tr>
<td>Overloading when the load exceeds a threshold.</td>
<td></td>
</tr>
<tr>
<td>Efficiency model</td>
<td>Topology</td>
</tr>
<tr>
<td>Identical components</td>
<td>Calculating the betweenness as the load.</td>
</tr>
<tr>
<td>Overloading components can be recovered.</td>
<td>Network efficiency</td>
</tr>
<tr>
<td>Extended model</td>
<td>Topology</td>
</tr>
<tr>
<td>Identical components</td>
<td>Calculating the extended betweenness as the load, based on PTDFs.</td>
</tr>
<tr>
<td>Overloading when the load exceeds the capacity.</td>
<td>Net-ability</td>
</tr>
<tr>
<td>Hines model</td>
<td>Topology</td>
</tr>
<tr>
<td>Substation type</td>
<td>Line impedance</td>
</tr>
<tr>
<td>DC power flows</td>
<td>Calculating DC power flows</td>
</tr>
<tr>
<td>Generation dispatch and load shedding</td>
<td>Trip lines due to overheat.</td>
</tr>
<tr>
<td>Blackout Size</td>
<td></td>
</tr>
<tr>
<td>OPA model</td>
<td>Topology</td>
</tr>
<tr>
<td>Substation type</td>
<td>Line impedance</td>
</tr>
<tr>
<td>DC power flows</td>
<td>Calculating DC power flows</td>
</tr>
<tr>
<td>Probability of line failure</td>
<td>Generation dispatch and load shedding</td>
</tr>
<tr>
<td>Trip lines with probability.</td>
<td>Both fast and slow dynamics</td>
</tr>
<tr>
<td>Hidden failure model</td>
<td>Topology</td>
</tr>
<tr>
<td>Substation type</td>
<td>Line impedance</td>
</tr>
<tr>
<td>DC power flows</td>
<td>Calculating DC power flows</td>
</tr>
<tr>
<td>Probability of line failure</td>
<td>Generation dispatch and load shedding</td>
</tr>
<tr>
<td>Trip lines with probability.</td>
<td>Hidden failures</td>
</tr>
<tr>
<td>Manchester model</td>
<td>Topology</td>
</tr>
<tr>
<td>Substation type</td>
<td>Line impedance</td>
</tr>
<tr>
<td>AC power flows</td>
<td>Calculating AC power flows</td>
</tr>
<tr>
<td>Tripping lines</td>
<td>System convergence</td>
</tr>
<tr>
<td>Fast dynamics</td>
<td></td>
</tr>
</tbody>
</table>
Attackers and Means of Attacks

Attackers
- Disgruntled individuals
- Terrorist teams
- Computer hackers
- Energy companies
- Hostile Countries

Attacker can be from inside and outside.

Attackers can well organize the attacks, aiming to cause large damage.

Means of Attacks
- Physical sabotages
 - Failing down poles that support high-voltage transmission lines.
 - Cutting a tree to fail a line
 - Fire on substations
 - Air force attacks
 - EMP attacks
 - Etc.

- Cyber intrusions
 - Cyber attacks
 - Cyber worms
 - Etc.
Cyber Attacks

Simulated Cyber Attack

- Name: Aurora Generator Test
- Participants: Idaho National Laboratories (INL) and Department of Homeland Security, USA
- Time: 2007
- Object: A large diesel-electric generator
- Procedure: Researchers sent malicious commands to force the generator overheat and shut down.
- Results: the generator was completely destroyed.
- Effects: Cyber vulnerabilities of many generators that are currently in use in USA.
Commercially Available

Bay Area power grid

Platts.com

GIS raw data