Problem 4.1

(a) The impulse response of the matched filter is
\[h(t) = s(T-t) \]
The s(t) and h(t) are shown below:

(b) The corresponding output of the matched filter is obtained by convolving h(t) with s(t). The result is shown below:

(c) The peak value of the filter output is equal to \(A^2 T/4 \), occurring at \(t = T \).
Ideal low-pass filter with variable bandwidth. The transfer function of the matched filter for a rectangular pulse of duration \(\tau \) and amplitude \(A \) is given by

\[
H_{\text{opt}}(f) = \text{sinc}(f\tau)\exp(-j\pi f\tau)
\]

The amplitude response \(|H_{\text{opt}}(f)| \) of the matched filter is plotted in Fig. 1(a). We wish to approximate this amplitude response with an ideal low-pass filter of bandwidth \(B \). The amplitude response of this approximating filter is shown in Fig. 1(b). The requirement is to determine the particular value of bandwidth \(B \) that will provide the best approximation to the matched filter.

We recall that the maximum value of the output signal, produced by an ideal low-pass filter in response to the rectangular pulse occurs at \(t = T/2 \) for \(BT \leq 1 \). This maximum value, expressed in terms of the sinc integral, is equal to \((2A/\pi)\text{Si}(\pi BT) \). The average noise power at the output of the ideal low-pass filter is equal to \(BN_0 \). The maximum output signal-to-noise ratio of the ideal low-pass filter is therefore

\[
(SNR)_o = \frac{(2A/\pi)^2\text{Si}^2(\pi BT)}{BN_0}
\]

Thus, using Eqs. (1) and (2), and assuming that \(AT = 1 \), we get

\[
\frac{(SNR)'_o}{(SNR)_o} = \frac{2}{\pi^2 BT} \text{Si}^2(\pi BT)
\]

This ratio is plotted in Fig. 2 as a function of the time-bandwidth product \(BT \). The peak value on this curve occurs for \(BT = 0.685 \), for which we find that the maximum signal-to-noise ratio of the ideal low-pass filter is 0.84 dB below that of the true matched filter. Therefore, the "best" value for the bandwidth of the ideal low-pass filter characteristic of Fig. 1(b) is \(B = 0.685/T \).
Problem 4.6

The average probability of error is

\[P_e = p_1 \int_{-\infty}^{\lambda} f_Y(y \mid 1) \, dx + p_0 \int_{\lambda}^{\infty} f_Y(y \mid 0) \, dx \]

(1)

An optimum choice of \(\lambda \) corresponds to minimum \(P_e \). Differentiating Eq. (1) with respect to \(\lambda \), we get:

\[\frac{\partial P_e}{\partial \lambda} = p_1 f_Y(\lambda \mid 1) - p_0 f_Y(\lambda \mid 0) \]

Setting \(\frac{\partial P_e}{\partial \lambda} = 0 \), we get the following condition for the optimum value of \(\lambda \):

\[\frac{f_Y(\lambda_{\text{opt}} \mid 1)}{f_Y(\lambda_{\text{opt}} \mid 0)} = \frac{p_0}{p_1} \]

which is the desired result.
Problem 4.8

(a) The average probability of error is

\[P_e = \frac{1}{2} \text{erfc}\left(\frac{E_b}{\sqrt{N_0}}\right) \]

where \(E_b = A^2 T_b \). We may rewrite this formula as

\[P_e = \frac{1}{2} \text{erfc}\left(\frac{A}{\sigma}\right) \quad (1) \]

where \(\Lambda \) is the pulse amplitude at \(\sigma = \sqrt{N_0 T_b} \). We may view \(\sigma^2 \) as playing the role of noise variance at the decision device input. Let

\[u = \frac{E_b}{\sqrt{N_0}} = \frac{A}{\sigma} \]

We are given that

\[\sigma^2 = 0.2 \text{ volts}^2, \quad \sigma = 0.1 \text{ volt} \]

\[P_o = 10^{-8} \]

Since \(P_o \) is quite small, we may approximate it as follows:

\[\text{erfc}(u) = \frac{\exp(-u^2)}{\sqrt{\pi} u} \]
We may thus rewrite Eq. (1) as (with $P_0 = 10^{-6}$)

$$\frac{\exp(-u^2/2\sqrt{\pi u})}{u} = 10^{-8}$$

Solving this equation for u, we get

$$u = 3.97$$

The corresponding value of the pulse amplitude is

$$A = \sigma u = 0.1 \times 3.97$$
$$= 0.397 \text{volts}$$

(b) Let σ_1^2 denote the combined variance due to noise and interference; that is

$$\sigma_T^2 = \sigma^2 + \sigma_1^2$$

where σ^2 is due to noise and σ_1^2 is due to the interference. The new value of the average probability of error is 10^{-6}, Hence

$$10^{-6} = \frac{1}{2} \text{erfc} \left(\frac{A}{\sigma_T} \right)$$

$$= \frac{1}{2} \text{erfc}(u_T)$$

where

$$u_T = \frac{A}{\sigma_T}$$

210
Equation (2) may be approximated as (with $P_e = 10^{-6}$)

$$\frac{\exp\left(-\frac{u_T^2}{2\sqrt{\pi} u_T}\right)}{2\sqrt{\pi} u_T} = 10^{-6}$$

Solving for u_T, we get

$$u_T = 3.37$$

The corresponding value of σ_T^2 is

$$\sigma_T^2 = \left(\frac{\Lambda}{u_T}\right)^2 \left(\frac{0.397}{3.37}\right)^2 = 0.0138 \text{ volts}^2$$

The variance of the interference is therefore

$$\sigma_i^2 = \sigma_T^2 - \sigma^2$$

$$= 0.0138 - 0.01$$

$$= 0.0038 \text{ volts}^2$$
Problem 4.13

Since \(P(f) \) is an even real function, its inverse Fourier transform equals

\[
p(t) = 2 \int_0^\infty P(f) \cos(2\pi ft) \, df
\]

(1)

The \(P(f) \) is itself defined by Eq. (7.60) which is reproduced here in the form

\[
P(f) = \begin{cases}
\frac{1}{2W}, & 0 < |f| < f_L \\
\frac{1}{4W} \left(1 + \cos \left(\frac{\pi |f| - f_L}{2W - 2f_L} \right) \right) & f_L < f < 2W-f_L \\
0, & |f| > 2W-f_L
\end{cases}
\]

(2)

Hence, using Eq. (2) in (1):

\[
p(t) = \frac{1}{W} \int_0^{f_L} \cos(2\pi ft) \, df + \frac{1}{2B} \int_0^{2W-f_L} \left[1 + \cos \left(\frac{\pi (f-f_L)}{2W} \right) \right] \cos(2\pi ft) \, df
\]

\[
= \left[\frac{\sin(2\pi ft)}{2\pi Wt} \right]_0^{f_L} + \left[\frac{\sin(2\pi ft)}{4\pi Wt} \right]_0^{2W-f_L}
\]

\[
+ \frac{1}{4} \left[\frac{\sin \left(2\pi ft + \frac{\pi (f-f_L)}{2W} \right)}{2\pi t + \pi/2W} \right]_0^{2W-f_L}
\]

\[
+ \frac{1}{4} \left[\frac{\sin \left(2\pi ft - \frac{\pi (f-f_L)}{2W} \right)}{2\pi t - \pi/2W} \right]_0^{2W-f_L}
\]

\[
= \frac{\sin(2\pi f_L t)}{4\pi Wt} + \frac{\sin(2\pi f_L t)}{4\pi Wt}
\]

\[
- \frac{1}{4W} \left[\frac{\sin(2\pi f_L t) + \sin(2\pi t/(2W-f_L))}{2\pi t - \pi/2W} \right] + \frac{\sin(2\pi f_L t) + \sin(2\pi t/(2W-f_L))}{2\pi t - \pi/2W}
\]

\[
= \frac{1}{W} \left[\sin(2\pi f_L t) + \sin(2\pi t(2W-f_L)) \right] \left[\frac{1}{4\pi t} - \frac{\pi t}{(2\pi t)^2 - (\pi/2W)^2} \right]
\]
\[
\frac{1}{W} \left[\sin(2\pi W t) \cos(2\pi \alpha W) \right] \left[\frac{-(\pi/2W\alpha)^2}{4\pi^2 ((2\pi t)^2 - (\pi/2W\alpha)^2)} \right] \\
= \sin(2Wt) \cos(2\pi \alpha W) \left[\frac{1}{1 - 16 \alpha^2 W^2 t^2} \right]
\]

Problem 4.16

The bandwidth \(B \) of a raised cosine pulse spectrum is \(2W = f_1 \), where \(W = 1/2T_0 \) and \(f_1 = W(1-\alpha) \). Thus \(B = W(1+\alpha) \). For a data rate of 56 kilobits per second, \(W = 28 \) kHz.

(a) For \(\alpha = 0.25 \),

\[
B = 28 \text{ kHz} \times 1.25 \\
= 35 \text{ kHz}
\]

(b) \(B = 28 \text{ kHz} \times 1.5 \)

\[
= 42 \text{ kHz}
\]

(c) \(B = 49 \text{ kHz} \)

(d) \(B = 56 \text{ kHz} \)

Problem 4.17

The use of eight amplitude levels ensures that 3 bits can be transmitted per pulse. The symbol period can be increased by a factor of 3. All four bandwidths in problem 7.12 will be reduced to \(1/3 \) of their binary PAM values.

Problem 4.19

The raised cosine pulse bandwidth \(B = 2W - f_1 \), where \(W = 1/2T_0 \). For this channel, \(B = 75 \) kHz. For the given bit duration, \(W = 50 \) kHz. Then,

\[
f_1 = 2W - B \\
= 25 \text{ kHz} \\
\alpha' = 1 - f_1/B \\
= 0.5
\]