\[
x = \sqrt{\frac{\sigma^2}{2}} \ln \left(\frac{1 - e^{-\frac{1}{2} \ln^2 \frac{x}{\sigma \sqrt{2 \pi}}} - \frac{1}{2}}{\sigma \sqrt{2 \pi}}\right), \quad 0 \leq x \leq \frac{1}{2} \\
\text{NEGATIVE VALUES OF X}
\]

\[
\text{POSITIVE VALUES OF X}
\]

Figure 10.30: Computer generation of Laplacian random variable outcomes using inverse probability integral transformation.

ESTIMATING THE PDF

RECALL \[P_X(x_0) = \frac{P \left[x_0 - \Delta x \leq x \leq x_0 + \Delta x \right]}{\Delta x} \]

BUT \[P \left[x_0 - \frac{\Delta x}{2} \leq x \leq x_0 + \frac{\Delta x}{2} \right] \approx \frac{\text{NUMBER OF OUTCOMES IN } [x_0 - \frac{\Delta x}{2}, x_0 + \frac{\Delta x}{2}]}{M} \]

\[\Rightarrow P_X(x_0) = \frac{\text{NUMBER OF OUTCOMES IN } [x_0 - \frac{\Delta x}{2}, x_0 + \frac{\Delta x}{2}]}{M \Delta x} \]
IN PREVIOUS EXAMPLE $\Delta x = 0.5$ AND
BINS ARE $[-4.25, -3.75], [-3.75, -3.25], \ldots ,$
$[3.75, 4.25] \uparrow \uparrow \uparrow \uparrow \uparrow \hat{p}_x(-4.5) \hat{p}_x(-3.5)$
$\hat{p}_x(4.5)$

SEE MATLAB CODE ON PG. 328 AND EXAMPLE 2.1

CHAPTER 11 - EXPECTED VALUES

FOR A DISCRETE R.V. $E[x] = \sum_{i} x_i p(x_i)$
(SEE SECTION 6.3)

EXAMPLE: FAIR DIE TOSS
$S_x = \{1, 2, 3, 4, 5, 6\}$

$E(x) = \frac{6}{2} = \frac{1}{6} (1 + 2 + 3 + 4 + 5 + 6)$
$= \frac{1}{2}$

FOR A CONT. R.V. WE DEFINE $E(x)$ AS

$E(x) = \int_{-\infty}^{\infty} x p(x) dx$

CAN BE THOUGHT OF AS LIMIT OF
\[\sum_{i=1}^{n} x_i p(x_i) \Delta x \quad \text{as } \Delta x \to 0 \]

\[\approx p \left[\frac{x_i - \Delta x/2}{\Delta x} \leq x_i + \Delta x/2 \right] \]

\[\approx p(x_i) \]

See book for discrete to continuous definition example.

Example: \(x \sim U(0, 1) \)

\[E[x] = \int_0^1 x \cdot 1 \, dx = \frac{x^2}{2} \bigg|_0^1 = \frac{1}{2} \]

Example:

\[E[x] = \int_0^2 x^2 \cdot \frac{x}{2} \, dx \]

\[= \left. \frac{x^3}{2} \right|_0^2 = \frac{8}{2} = 4 \]

\[= \frac{4}{2} = 1.83 \]

(a) PDF

(b) Typical outcomes and expected value of 1.33

Figure 11.1: Example of nonuniform PDF and its mean.

Analogous to center of mass

\[CM = \int_0^2 x m(x) \, dx \]

\[\uparrow \text{Mass density } = \frac{\Delta m}{\Delta x} \]

As \(\Delta x \to 0 \)
TOTAL VOLUME = 1

\[M(x) = \lim_{\Delta x \to 0} \frac{\Delta M}{\Delta x} \]

\[\Delta V = \Delta A \times \text{AREA} \]

\[\Delta A = \frac{1}{2} \Delta x \left(\frac{x - \Delta x}{2} + \frac{x + \Delta x}{2} \right) = \frac{1}{2} x \Delta x \]

\[\Delta y = \frac{x}{2} \Delta x \]

But \(\Delta = \frac{M}{V} = 1 \Rightarrow \Delta M = \Delta V \)

\[\frac{\Delta M}{\Delta x} = \Delta y = \frac{1}{2} x \text{ and as } \Delta x \to 0 \]

\[\frac{\Delta M}{\Delta x} \to \frac{1}{2} x = m(x) \]

\[\left[m(x) \right] \]

\[\int_{0}^{2} x m(x) \, dx = E(x) \]

Says we can balance cheese at \(x = 4/3 \) or \(\int_{0}^{2} (x - CM) \frac{m(x)}{M} \, dx = 0 \)

\[\int_{-\infty}^{\infty} (x - E[x]) p(x) \, dx = 0 \]
IF \(p_x(\cdot) \) SYMMETRIC ABOUT \(\mu = \alpha \) \\
\(E[X] = \alpha \). CONVERSE TRUE?

NOT ALL PDFS HAVE EXPECTED VALUES. TRY SIMULATING \(p_x(x) = \begin{cases}
\frac{1}{2x^{3/2}} & x > 1 \\
0 & x < 1
\end{cases} \)

AND AVERAGING VALUES. FOR \(E(X) \) TO EXIST REQUIRE \(\int_0^\infty |x| p_x(x) dx < \infty \)

EXPECTED VALUES FOR IMPORTANT PDFS

1) \(X \sim U(a, b) \) \(E[X] = \frac{1}{2}(a + b) \)

2) \(X \sim Exp(\lambda) \) \\
\(E[X] = \int_0^\infty X \lambda e^{-\lambda x} dx \) \\
\[= \left[-\lambda e^{-\lambda x} - \frac{1}{\lambda} e^{-\lambda x} \right]_0^\infty = \frac{1}{\lambda} \]

(SEE TABLE OF INTEGRALS, SERIES,
AND PRODUCTS BY GRADSHTEYN
AND RYZHIK, ACADEMIC PRESS, 1994)

3) \(X \sim N(\mu, \sigma^2) \) \\
PDF IS SYMMETRIC ABOUT \(\mu = \alpha \) \\
\(\Rightarrow E[X] = \mu \) ALSO CALLED MEAN
OR AVERAGE VALUE
A direct computation yields

\[E(x) = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi} \sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx \]

\[= \int_{-\infty}^{\infty} (x-\mu) \frac{1}{\sqrt{2\pi} \sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx \]

\[+ \int_{-\infty}^{\infty} \mu \frac{1}{\sqrt{2\pi} \sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx \]

Let \(u = x-\mu \) in first integral

\[= \int_{-\infty}^{\infty} u \frac{1}{\sqrt{2\pi} \sigma^2} e^{-\frac{u^2}{2\sigma^2}} \, du = 0 \]

Odd \quad Even

Second integral = \(\mu \) \quad Why?

4) Laplacian

\[p_X(x) = \frac{1}{\sqrt{2\sigma^2}} e^{-\sqrt{2\sigma^2} |x|} \quad -\infty < x < \infty \]

\[\Rightarrow E(x) = 0 \quad \text{Why?} \]

See others in book

Expected value of \(y = g(x) \)

Assume \(x \) and \(y \) are cont. r.v.s

By definition \(E(y) = \int_{-\infty}^{\infty} y \, p_Y(y) \, dy \)
REQUIRES US TO FIND $\mathbb{E}(y)$. TO AVOID THIS, USE

$$E(g(x)) = \int_{-\infty}^{\infty} g(x) p_x(x) \, dx$$

VERY USEFUL! SEE APPENDIX IIA FOR PROOF.

(IF $g(x) = x \Rightarrow$ DEFINITION OF $E(x)$).

Example: $g(x) = ax + b$

$$E(g(x)) = \int_{-\infty}^{\infty} (ax + b) p_x(x) \, dx$$

$$= a \underbrace{\int_{-\infty}^{\infty} x p_x(x) \, dx}_{E(x)} + b \underbrace{\int_{-\infty}^{\infty} p_x(x) \, dx}_{1} = 1$$

$$= a E(x) + b$$

In general, $E(a_1 g_1(x) + a_2 g_2(x)) = a_1 E(g_1(x)) + a_2 E(g_2(x))$ \Rightarrow **Expectation operation is linear**.

Example: $y = x^2$, $x \sim N(0,1)$

$E(y) = \frac{\text{Average Power Across 1 Ohm Resistor}}{x = \text{Voltage}}$

$$E(x^2) = \int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \, dx$$
USE INTEGRATION BY PARTS

\[\int u \, dv = uv - \int v \, du \]

\[u = x, \quad dv = x \frac{i}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx \]
\[du = dx, \quad v = -\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \]

Also, \[E(x^2) = 2 \int_0^\infty x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx \]

Why?

\[E(x^2) = 2 \left[-x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \right]_0^\infty \]
\[- \int_0^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx \]
\[= 2 \left[0 + \frac{1}{2} \right] = 1 \]

Note: Limit of \(xe^{-\frac{1}{2}x^2} \) as \(x \to \infty \)

is zero (L'Hospital's Rule)

and \(\int_0^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = \frac{1}{2} \)

Why?

VARIANCE AND MOMENTS

VARIANCE MEASURES VARIABILITY OF R.V. OUTCOMES
Figure 10.9: Examples of Gaussian PDF with different σ^2's.

Appears as if the wider the PDF the more variability. To measure width define variance

$$\text{VAR}(x) = \int_{-\infty}^{\infty} (x - E(x))^2 p_X(x) \, dx$$

Averaging PDF

= Average squared deviation from mean

Example: $\mathcal{N}(\mu, \sigma^2)$

$$\text{VAR}(x) = \int_{-\infty}^{\infty} (x - E(x))^2 \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx$$
LET \(u = \frac{X - \mu}{\sigma} \) \(\sigma = \sqrt{\sigma^2} > 0 \)

\[
= \int_{-\infty}^{\infty} \sigma^{-u^2} e^{-\frac{1}{2} u^2} \sigma \, du
\]

\[
= \sigma^{-u^2} \int_{-\infty}^{\infty} u e^{-\frac{1}{2} u^2} \, du = \sigma^{-u^2} E[x^2]
\]

For \(X \sim N(0,1) \)

\[
= \sigma
\]

HENCE \(X \sim N(\mu, \sigma^2) \)

\(\mu \) \(\uparrow \) \(\uparrow \) \(\text{mean variance} \)

\(\sigma = \sqrt{\sigma^2} \) CALLED THE STANDARD DEVIATION

NOTE THAT A \(N(\mu, \sigma^2) \) RV WILL DEVIATE FROM MEAN ABOUT 99.8\% OF TIME

\(\mu - 3\sigma \leq X \leq \mu + 3\sigma \) (USEFUL FOR QUICK ASSESSMENT OF RANGE OF OUTCOMES).

Figure 11.5: Percentage of outcomes of \(N(1,1) \) random variable that are within \(k = 1, 2, \) and 3 standard deviations from the mean. Shaded regions denote area within interval \(\mu - k\sigma \leq x \leq \mu + k\sigma \).
VERIFY THIS:
\[P \left(|x - 35| \leq 2 \sigma \right) \]
For \(x \sim N(\mu, \sigma^2) \)

Properties:

1. \(\text{VAR}(c) = 0 \quad \text{C = CONSTANT} \)
2. \(\text{VAR}(x + c) = \text{VAR}(x) \)
3. \(\text{VAR}(cx) = c^2 \text{VAR}(x) \)

Note: \(\text{VAR} \left(g_1(x) + g_2(x) \right) \neq \text{VAR}(g_1(x)) + \text{VAR}(g_2(x)) \)

Not Linear

Also, \(\text{VAR}(x) = E \left(x^2 \right) - E^2(x) \)

\(E(x) \) also called **First Moment**
\(E \left(x^r \right) \) = **r-th Moment**

(If \(E \left(x^s \right) < \infty \Rightarrow E \left(x^r \right) < \infty \) for \(r < s \))

(If \(E \left(x^r \right) = \infty \Rightarrow E \left(x^s \right) = \infty \))

If the RV has \(E(x) = \infty \)
\(\Rightarrow E(x^2) = \infty \Rightarrow \text{VAR}(x) \) is not defined.
Example: \(X \sim \text{Exp}(\lambda) \)

\[
E(x^n) = \int_0^\infty x^n \lambda e^{-\lambda x} \, dx \quad n = 1, 2, 3, \ldots
\]

Use integration by parts to find \(E(x^n) \) **as function of** \(E(x^{n-1}) \) **(standard trick)**

Let \(u = x^n \), \(dv = \lambda e^{-\lambda x} \, dx \)
\[du = nx^{n-1} \, dx \quad v = -e^{-\lambda x}\]

\[
E(x^n) = -x^n e^{-\lambda x} \bigg|_0^\infty - \int_0^\infty -e^{-\lambda x} \, n x^{n-1} \, dx
\]
\[
= 0 - n \int_0^\infty x^{n-1} e^{-\lambda x} \, dx = \frac{n}{\lambda} \int_0^\infty x^{n-1} e^{-\lambda x} \, dx
\]

Since \(E(x') = \frac{1}{\lambda} \) **(easy to verify)**

\[
E(x^2) = \frac{2}{\lambda} \frac{1}{\lambda} = \frac{2}{\lambda^2}
\]

\[
E(x^3) = \frac{3}{\lambda^2} \frac{2}{\lambda} = \frac{6}{\lambda^3}
\]

\[
E(x^n) = \frac{n!}{\lambda^n}
\]

Characteristic functions

Useful to find moments, and later will allow us to find PDF of
Sum of R.V.s

Defined as \(\phi_x(w) = E[e^{jwx}] \)

Recall \(E[g(x)] = \int_{-\infty}^{\infty} g(x) p_x(x) dx \)

\[\phi_x(w) = E[\cos(wx) + j \sin(wx)] \]
\[= E[\cos(wx)] + j E[\sin(wx)] \]
\[= \int_{-\infty}^{\infty} \cos(wx) p_x(x) dx + j \int_{-\infty}^{\infty} \sin(wx) p_x(x) dx \]
\[= \int_{-\infty}^{\infty} e^{jwx} p_x(x) dx \]

or \(= \int_{-\infty}^{\infty} p_x(x) e^{jwx} dx \)

Continuous Fourier Transform

Recall \(S(t) \leftrightarrow S(w) \)

Now \(p_x(t) \leftrightarrow \phi_x(w) \)

Only difference is use of \(+j \) or \(e^{+jwx} \) instead of \(e^{-jwx} \).

Also, using Fourier Transform Theory

\[p_x(x) = \int_{-\infty}^{\infty} \phi_x(w) e^{-jwx} \frac{dw}{2\pi} \]
JUST AN INVERSE FOURIER TRANSFORM

TO FIND MOMENTS USING \(\phi_x(w) \):

\[
E(x^n) = \frac{1}{2\pi} \left. \frac{d^n \phi_x(w)}{dw^n} \right|_{w=0}
\]

ALWAYS EASIER TO DIFFERENTIATE THAN INTEGRATE! (ONCE \(\phi_x(w) \) KNOWN)

EXAMPLE: \(x \sim \exp(\lambda) \)

TO FIND \(\phi_x(w) \):

\[
\phi_x(w) = E(e^{jwx}) = \int_{-\infty}^{\infty} p_x(x) e^{jwx} dx = \int_{0}^{\infty} e^{-\lambda e^{-\lambda x} x} dx
\]

\[
= \frac{e^{-j\lambda \omega x}}{-\lambda-j\omega} \bigg|_{0}^{\infty} = -\frac{1}{\lambda-j\omega} \left[e^{-(\lambda-j\omega) \infty} - 1 \right]
\]

BUT \(\lim_{x \to \infty} e^{-(\lambda-j\omega) x} = 0 \) FOR \(\lambda > 0 \)

WHY?

\[
\phi_x(w) = \frac{1}{\lambda-j\omega} \quad \text{(OR COULD LOOK UP IN TABLES)}
\]

TO FIND \(E(x^n) \) USE FORMULA.
\[
\frac{d \phi_x(w)}{dw} = \frac{d}{dw} \log(1 - g w) = \frac{1}{1 - g w} \cdot \frac{d}{dw} (1 - g w)^{-1} = \frac{1}{1 - g w} \cdot (-g) \cdot (1 - g w)^{-2} = -g (1 - g w)^{-3} \\
\frac{d^2 \phi_x(w)}{dw^2} = \frac{d}{dw} \left(\frac{-g}{1 - g w} \cdot (1 - g w)^{-3} \right) = \frac{g^2}{(1 - g w)^2} \cdot (1 - g w)^{-4} \\
\frac{d^n \phi_x(w)}{dw^n} = \frac{d}{dw} \left(\frac{g^n}{1 - g w} \cdot (1 - g w)^{-n+1} \right) = \frac{g^n}{1 - g w} \cdot (1 - g w)^{-n+2} \\
\text{AT } w = 0 = \frac{g^n}{1 - g w} \cdot (1 - g w)^{-n+1} \cdot (1 - g w)^{-n+2} = \frac{g^n}{1^n} \\
E(x^n) = \frac{1}{g^n} \cdot \frac{d^n \phi_x(w)}{dw^n} \bigg|_{w=0} = \frac{n!}{1^n} \\
\]

Chebyshev Inequality

The variance can also be used to bound a probability. Consider finding

\[P \left(|X - E[X]| > \delta \right) \]

What can be said if we can't integrate \(E(x) - \delta \) or if we don't know \(\phi_x(x) \)?
Assume we know $E(x)$ and $\text{VAR}(x)$ (We will see how to estimate these next!). Then, Chebyshev's Inequality provides a bound B so that

$$P\left(\mid x - E(x)\mid > \delta \right) \leq B$$

Probability of x deviating from mean by more than δ is less than or equal to B.

$$B = \frac{\text{VAR}(x)}{\delta^2}$$

Example: $X \sim N(0, 1)$

$E(x) = 0$, $\sigma = 1$, $\text{VAR}(x) = 1$

$$P(\mid x - 0 \mid > 3) \leq \frac{1}{3^2} = \frac{1}{9} = 0.11$$

Actually, $P(\mid x \mid > 3) = 2 P(\mid x \mid > 3) = 2 \phi(3) = 0.0027$

Bound holds but not very "tight" for this example.

Example: For a Laplacian PDF with $\sigma^2 = 1 = \text{VAR}(x)$

$$P(\mid x \mid > 3) \leq \frac{1}{3^2} = 0.11$$
SAME BOUND FOR ALL PDFs WITH $\text{VAR}(x) = 1$ (DON'T NEED TO KNOW PDF)

$P(|x| > 3) = 0.0027$ FOR GAUSSIAN

$P(|x| > 3) = 0.0144$ FOR LAPLACIAN

Figure 11.8: Probabilities $P(|X| > \gamma)$ for Gaussian and Laplacian random variables with zero mean and unity variance compared to Chebyshev inequality.

MOST USEFUL FOR THEORETICAL WORK - CAN PROVE THAT AS $\text{VAR}(x) \to 0$,

$P(|x - E(x)| > \gamma) \to 0$ FOR ANY $\gamma > 0$.

PROOF:

$$\text{VAR}(x) = \int_{-\infty}^{\infty} (x - E(x))^2 p(x) dx$$

$$= \int_{\{x: |x - E(x)| > \delta\}} (x - E(x))^2 p(x) dx + \int_{\{x: |x - E(x)| \leq \delta\}} (x - E(x))^2 p(x) dx$$

$$\geq \int_{\{x: |x - E(x)| > \delta\}} (x - E(x))^2 p(x) dx$$

$$\geq \int_{\{x: |x - E(x)| > \delta\}} \delta^2 p(x) dx$$

$$= \delta^2 P(|x - E(x)| > \delta)$$
ESTIMATING MEAN AND VARIANCE

ASSUME X IS A DISCRETE RANDOM VARIABLE

\[E(x) = \sum_{k=1}^{5} k \cdot p_x(k) \]

BUT \[p_x(k) = P(X = k) \approx \frac{N_k}{M} \]

\[E(x) \approx \frac{5}{2} \sum_{k=1}^{5} \frac{N_k}{M} = \frac{5}{2} \frac{K N_k}{M} \]

BUT IF \[\{1, 1, 5, 3, 2, 3, 4, 1\} \]

\[N_1 = 3, \quad N_2 = 1, \quad N_3 = 2, \quad N_4 = 1, \quad N_5 = 1 \]

\[\frac{5}{2} \sum_{k=1}^{5} k N_k = 1(3) + 2(1) + 3(2) + 4(1) + 5(1) = 20 = \frac{5}{2} \sum_{i=1}^{5} X_i \quad (M = 8) \]
\[E(x) \approx \frac{\sum x_i}{8} \]

or in general
\[E(x) = \frac{1}{M} \sum_{i=1}^{M} x_i \]

is the sample mean, and
\[\text{VAR}(x) = E(x^2) - E(x)^2 \]

so that
\[\text{VAR}(x) = E(x^2) - \left(\frac{1}{M} \sum_{i=1}^{M} x_i \right)^2 \]

Figure 6.7: Estimated mean and variance for computer data shown in Figure 6.6.

See also Example 2.3.

For a cont. r.v.
\[E(x) = \int_{-\infty}^{\infty} x f(x) \, dx \]

\[\approx \sum_{k} x_k P(x_k - \Delta x/2 \leq x \leq x_k + \Delta x/2) \]

\[\Delta x \approx 2 \times \Delta y \times x_k \]
\[
\sum_{k=1}^{N_k} \frac{x_k}{M} \\
N_k = \text{NUMBER OF } x \text{'S FALLING IN } x_k \text{ INTERVAL}
\]

\[
\frac{1}{M} \sum_{i=1}^{M} x_i^2 \quad (\text{AS BEFORE})
\]

We will justify this more rigorously latter (Law of Large Numbers)

Chapter 12 - Multiple Cont. Rvs

We will consider two RVs, \(x \) and \(y \). They are said to be jointly distributed if the original experimental sample space \(S \) maps into two numbers \(x(s) = x \) and \(y(s) = y \) \(s \in S \)

![Diagram](image)

Figure 12.1: Mapping of the outcome of a thrown dart to the plane (example of jointly continuous random variables).

In general, outcomes are now pairs of numbers \((x, y)\) and hence \(S_{x,y} = \{(x, y): -\infty < x < \infty, -\infty < y < \infty\} \)

(For discrete RVs height and weight of individual are jointly distributed)