Matrix M_t contains c column vectors, m_1 through m_c.

\[M_t = \begin{bmatrix} m_1 & m_2 & \ldots & m_c \end{bmatrix} \]

Taking the SVD of M_t gives us

\[M_t = [\hat{U}_t \ \tilde{U}_t] \begin{bmatrix} \hat{\Sigma}_t & 0 \\ 0 & \tilde{\Sigma}_t \end{bmatrix} [\hat{V}_t \ \tilde{V}_t]^H \]

where \hat{U}_t contains the k left singular vectors of M_t corresponding to its largest singular values, which are the orthonormal basis vectors of the desired subspace.