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Abstract

This paper introduces a new caching structure to im-
prove server performance by minimizing data traffic over
the system bus. The idea is to form a bottom-up caching
hierarchy in a networked storage server. The bottom level
cache is located on an embedded controller that is a com-
bination of a network interface card (NIC) and a storage
host bus adapter (HBA). Storage data coming from or go-
ing to a network are cached at this bottom level cache and
meta-data related to these data are passed to the host for
processing. When cached data exceed the capacity of the
bottom level cache, some data are moved to the host RAM
that is usually larger than the bottom level cache. This new
cache hierarchy is referred to as bottom-up cache structure
(BUCS) in contrast to a traditional CPU-centric top-down
cache where the top-level cache is the smallest and fastest,
and the lower in the hierarchy the larger and slower the
cache. Such data caching at the controller level dramati-
cally reduces bus traffic and leads to great performance im-
provement for networked storages. We have implemented a
proof-of-concept prototype using Intel’s IQ80310 reference
board and Linux network block device. Through perfor-
mance measurements on the prototype implementation, we
observed up to 3 times performance improvement of BUCS
over traditional systems in terms of response time and sys-
tem throughput.
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1. Introduction

Rapid technology advances have resulted in dramatic in-
crease in CPU performance and network speed over the past
decade. Similarly, throughput of data storages have also im-

proved greatly due to technologies such as RAID and exten-
sive caching. In contrast, the performance increase of sys-
tem interconnects such as PCI bus have not kept pace with
these improvements. As a result, it has become the major
performance bottleneck for high performance servers. Ex-
tensive research has been done in addressing this bottleneck
problem [2][4]. Most notable research efforts in this area
aim at increasing the bandwidth of system interconnects by
replacing PCI with PCI-X, PCI Express, or InfiniBand [1].
The InfiniBand technology uses a switch fabric as opposed
to a shared bus thereby increasing bandwidth greatly [11].

It is interesting to recall the great amount of research ef-
forts in designing various types of interconnection networks
for multiprocessors for high communication bandwidth in
the 80’s and 90’s, while at the same time there was also
a great deal of research in minimizing communication by
means of data caching. Both tracks of efforts contributed
greatly to the architecture advance of parallel/distributed
computing. We believe that it is both feasible and benefi-
cial to build a cache hierarchy with an intelligent controller
to minimize communication cost across the system inter-
connects.

Feasibility comes from the fact that embedded proces-
sor chips are becoming more powerful and less costly. This
fact makes it cost-effective to offload many I/O and network
functions at controller level [7][6] and to cache I/O and net-
work data close to such embedded processors [12]. Table
1 lists performance parameters of three generation I/O pro-
cessors (IOP) from Intel [10]. Compared to i960 proces-
sors that are still widely used in many RAID controllers,
an IOP315 chip set has 6 times higher frequency and sup-
ports up to 12 GB on-board memory. Most Gigabit net-
work adapters support checksum offloading by computing
and checking packet checksums at the NIC level.

Potential benefit of such data caching is also fairly clear
because data localities exist in many applications. Kim, Pai
and Rixner have shown in their recent research [12] that



I/O Processor i960 IOP310 IOP315
Bus Speed 33 MHz 66 MHz 133 MHz PCI-X
Bus Width 64/32-bit 64-bit 64-bit

CPU Speed 100 MHz 733 MHz 733 MHz
Memory Type 32/64-bit 64-bit 32/64-bit
Max Memory 128 MB 512 MB 12 GB

Table 1. Performance parameters of three generations of
I/O Processor.

data locality exists in web applications and significant per-
formance gain can be obtained with network interface data
caching. The research work by Yocum and Chase [19] also
showed the benefit of “payload caching” for network inter-
mediary servers. By temporarily storing the payload of a
packet in a NIC, they were able to improve system perfor-
mance substantially. These existing research works indicate
a great potential for reducing unnecessary data traffic across
a system bus by means of data caching.

The above observations motivate us to introduce a new
caching structure for the purpose of minimizing data traffic
over a system bus. The idea is to form a bottom-up cache
hierarchy in a server. The bottom level cache is located
on an embedded controller that is a combination of a net-
work interface card (NIC) and a storage host bus adapter
(HBA). Storage data coming from or going to a network
are cached at this bottom level cache and meta-data related
to these storage data are passed to the host for processing.
When cached data exceeds the capacity of the bottom level
cache, some data are moved to the host RAM that is usually
larger than the RAM on the controller. We call the cache on
the controller level-1 (L-1) cache and the host RAM level-2
(L-2) cache. This new system is referred to as bottom-up
cache structure (BUCS) in contrast to a traditional CPU-
centric top-down cache where the top-level cache is the
smallest and fastest, and the lower in the hierarchy the larger
and slower the cache. BUCS tries to keep frequently-used
data at a lower-level cache as much as possible to minimize
data traffic over the system bus as opposed to placing fre-
quently used data at a higher-level cache as much as pos-
sible in a traditional top-down cache hierarchy. For stor-
age read requests from a network, most data are directly
passed to the network through a L-1 cache. Similarly for
storage write requests from the network, most data are di-
rectly written to the storage device through a write-back L-1
cache without copying them to the host RAM as being done
in existing systems. Such data caching at a controller level
dramatically reduces traffic on the system bus such as PCI
bus and leads to a great performance improvement for net-
worked storages. We have implemented a proof-of-concept
prototype using Intel’s IQ80310 reference board and Linux

NBD (network block device). Measured results show that
BUCS improves response time and system throughput over
traditional systems by as much as a factor of 3.

The research contributions of this paper are four fold.
Firstly, we proposed a new concept of a bottom-up cache
structure. This caching structure clearly minimizes data
traffic over a PCI bus and increases throughput for net-
worked storages. Secondly, we proposed a marriage be-
tween a storage HBA and a NIC with unified cache memory.
Although there exist controller cards containing both a stor-
age HBA and a NIC [13], these cards mainly concentrate
on the direct data bypass rather than the functional mar-
riage of the two that share RAM and other resources as we
proposed here. Such a marriage is both feasible with high
performance embedded processors and beneficial because
of short circuit of data transfer between storage device and
network interface. Third, we have implemented a proof-of-
concept prototype BUCS using Intel’s IQ80310 with Intel
XScaleTM IOP310 processor and embedded Linux. And
finally, we have carried out performance measurements on
the prototype to show that the BUCS system provides up
to 3 times performance improvement in terms of response
time and system throughput over a traditional server.

The paper is organized as follows. The next section gives
a detailed description of BUCS architecture and designs.
Section 3 presents the prototype implementation of BUCS
and reports the performance results. Related work is dis-
cussed in Section 4. Section 5 concludes the paper.

2. Bottom-Up Cache Structure and Design

Data flow inside a normal storage server as results of
read/write requests is shown in Figure 1. The server sys-
tem consists of a system RAM, an HBA card controlling
the storage device, and a NIC interconnected by a system
interconnect typically a PCI bus. Upon receiving a read
request over the NIC, the server host OS checks if the re-
quested data are already in the host RAM. If not, the host
OS invokes I/O operations to the storage HBA and loads the
data from the storage device via the PCI bus. After the data
are loaded to the host RAM, the host generates headers and
assembles response packets to be transferred to NIC via the
PCI bus. The NIC then sends the packets out to the request-
ing client. As a result, data are moved across the PCI bus
at least once or even twice. Upon receiving a write request
over the NIC, the host OS first loads the data from NIC to
host RAM via the PCI bus and then stores the data into the
attached storage device later, via the PCI bus again . There-
fore, for write operations, one piece of data travels through
the PCI bus twice. An important thing here is that the host
never examines the data contents for either read operations
or write operations except for moving data from one periph-
eral to another.
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Figure 1. Data flows in a traditional system for three
cases: (1) A network read request finds data in the system
RAM. Data go through bus once. (2) The requested data
is not in the system RAM. Data goes through bus twice:
one from storage device to the RAM and the other from
the RAM to network. (3) A write request from the network
goes through the bus twice: one from network to the system
RAM and the other from the system RAM to the storage.

The idea of BUCS is very simple. Instead of moving
data back and forth every time between a peripheral device
and host RAM across a PCI bus, we try to keep frequently
used data in a cache at a controller level, the lowest level.
Only meta-data that describe storage data and commands
are transferred to the host system every time for necessary
processing. Most of storage data do not travel through the
PCI bus between host RAM and controllers because of ef-
fective caching at the low level. Since the lowest level cache
(L-1 cache) is usually limited in size because of power and
cost constraints, we use the host RAM as a L-2 cache to
cache data replaced from the L-1 cache. The two level
caches work together and are managed by a BUCS cache
manager residing in the kernel of host OS.
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Figure 2. Data flows in a BUCS system for four cases:
(1) A read request finds data in L-1 cache. Data do not
go through system bus. (2) The requested data is not in L-
1 cache but in L-2 cache. Data go through bus once. (3)
The requested data is missed from both L-1 cache and L-2
cache. Data is loaded from the storage, cached at L-1 cache,
and sent out to the network. No bus transfer is necessary.
(4) Written data goes to L-1 cache and the storage device.

Figure 2 shows the data flow inside the server system as

result of networked storage requests. For a read request,
the BUCS cache manager checks if data are already in the
L-1 or L-2 cache. If data is in the L-1 cache, the host pre-
pares headers and invokes the BUCS controller to send data
packets to the client over the network. If the data is in the
L-2 cache, the cache manager moves the data from the L-
2 cache to the L-1 cache. If the data is still in the storage
device, the cache manager reads them out and puts them
directly into the L-1 cache. In both cases, the host gener-
ates packet headers and transfers them to the BUCS con-
troller. The controller then sends assembled packets includ-
ing headers and data out to the client.

For a write request, the controller only generates a
unique identifier for the data contained in a data packet and
notifies the host of this id. The host then attaches this id
with the meta-data in the corresponding previous command
packet. The cache manager check if the old data are still in
the L-1 cache or L-2 cache. If the data is in the L-1 cache,
then new data will overwrite the old data directly. If the old
data are in the L-2 cache, the old copy will be discarded and
the actual data are stored in the L-1 cache directly. If old
data are not found, the data are stored in the L-1 cache di-
rectly and later persisted into correct location in the attached
storage device. The server simply responds the client with
an acknowledge packet. Compared to the traditional system
described above, BUCS does not transfer large bulk of data
to host RAM but only related commands and meta-data via
the PCI bus. As a result, the PCI bus is removed from the
critical data path for most of operations.
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Figure 3. Functional block diagram of a BUCS controller.
It integrates a storage HBA and NIC with a unified RAM.

BUCS controller is a marriage between a HBA and a
NIC by integrating the functionalities of storage HBA and
NIC, as shown in Figure 3. The firmware in the Flash ROM
on-board contains the embedded OS code, the microcode
of a storage controller, and some network protocol func-
tions. Besides a high performance embedded processor, the
BUCS controller has a storage controller chip that manip-
ulates attached disks and a network media access control
(MAC) chip that transmits and receives packets. An impor-
tant component on the BUCS board is the on-board RAM,
most of which is used as a L-1 cache except for some re-
served space for on-board code. The BUCS controller is
connected to a server host via a PCI or PCI-X interface.



Data placement and Identifying a data item in the
cache: The basic unit for caching is a file block for file sys-
tem level storage protocols or a disk block for block-level
storage protocols allowing the system to maintain cache
contents independently from network request packets. A
special cache manager manages this two level cache hierar-
chy. All cached data are organized and managed by a single
hashing table that uses the on-disk offset of a data block
as its hash key. The size of each hash entry is around 20
bytes. If the average size of data represented by each entry
is 4096 bytes, the hash entry cost is less than 5%, which is
reasonable and feasible. When one data block is added to
the L-1 or the L-2 cache, an existed hash entry is modified
or a new hash entry is created by the cache manager, filled
with meta-data about this data block, and inserted into the
appropriate place in the hash table. Because the cache is
managed by software, data mapping becomes trivial with
addresses and pointers. We let a cache manager reside on
the host and maintain meta-data in a host memory for both
L-1 cache and L-2 cache. The cache manager sends dif-
ferent messages via APIs to the BUCS controller that acts
as a slave to finish cache management tasks. The reason
we choose this method is that network storage protocols are
still processed at the host side, thus only the host can easily
extract and acquire the meta-data about all cached data.

Data replacement policy: To make a room for new data
to be placed in a cache upon cache full, we implement a
LRU replacement policy in our cache manager while other
replacement policies can be used as well. Most frequently
used data are kept at L-1 cache. After the L-1 cache is full,
least recently used data is replaced from the L-1 cache to
the L-2 cache. The dirty data will be written to the stor-
age device before be replaced to the L-2 cache. The cache
manager updates the corresponding entry in the hash table
to reflect such replacement. When a piece of data in the L-2
cache is accessed again and needs to be placed in the L-1
cache, it is prompted back to the L-1 cache. A hash entry
is unlinked from the hash table and discarded by the cache
manager when the data is discarded.

Write operations: Because a single cache manager
manages the cache hierarchy, it is fairly easy to make sure
that data in L-1 cache and L-2 cache are exclusive rather
than inclusive. Data exclusivity not only makes efficient use
of RAM space but also simplifies write operations because
of no consistency issue between the two caches. Therefore,
write operation is performed only at the cache where the
data is located and there is no write-back or write-through
issue between the two caches. Between cache and storage
device, a write-back policy is used.

Interfaces between BUCS and Host OS: With a new
integrated BUCS controller, interactions between host OS
and controllers are changed and thus the interface between
OS and BUCS has to be carefully designed. Our current

design is to make the host system treat BUCS controller as
a normal NIC with some additional functionalities. This
greatly simplifies our implementation and keep changes to
OS kernel minimum as opposed to introducing a whole new
class of devices. In this way, interface design is similar
to that of [12] with some modifications to satisfy our spe-
cific requirements. We add codes in the host OS to export
several APIs that can be utilized by other parts of the OS
and also add corresponding microcodes in BUCS controller.
The APIs we have implemented include bucs cache init(),
bucs append data(), bucs read data(), bucs write data(),
bucs destage l1(), bucs prompt l2(), and etc. The detailed
description of these APIs can be found in [20]. For each
API, the host OS writes a specific command code and pa-
rameters to the registers of BUCS controller, and the com-
mand dispatcher invokes the corresponding microcode on-
board to finish desired tasks.

3. Experimental Study

3.1. Prototype Implementation

We have implemented a proof-of-concept prototype of
our BUCS using an Intel IQ80310 reference board driven
by an IOP310 CPU. The board is plugged into a PCI slot
of a host and is driven by an embedded Linux. We run
the BUCS microcode as a kernel module running under this
embedded Linux. The code uses the DMA engine and Mes-
sage Unit provided by the hardware to communicate with
the cache manager on the host. We modified the Linux ker-
nel on the host to add a preliminary cache manager and to
implement the APIs. Because of the time limitation, we did
not finish the integration with the host OS and can not pro-
vide transparent support to all user space programs. Instead
we reimplemented one of the data access protocols, NBD,
to utilize our BUCS. We believe that fully integration with
OS only need more programming work and our current pro-
totype is sufficient to demonstrate the potential benefits of
BUCS. The reason we choose NBD is that it is a simple pro-
tocol that can be easily modified and customized. A NBD
client in Linux OS is a kernel module that exports a block
device that can be partitioned, read, and written just like a
normal disk device. It connects to a NBD server and redi-
rects I/O requests to the server. We rewrite the user space
NBD server to be a kernel module so that it can accept re-
quests from clients in kernel and/or interact with the BUCS
directly.

3.2. Experimental Environment and Workloads

Using the prototype implementation discussed above, we
carried out performance measurements of BUCS compared
to traditional servers. Five PCs are used in our experiments



with one PC acting as a server and remaining 4 PCs act-
ing as clients. All the PCs have single Pentium III 866
MHz CPU, 512 MB PC133 SDRAM, 64bit-33MHz PCI
bus, and Maxtor 10 GB IDE Disk. They are intercon-
nected by an Intel NetStructure 470T Gigabit Switch via
Intel Pro1000 Gigabit NICs. An Intel IQ80310 board acts
as a BUCS controller and is plugged into one of the PCI
slots in the server PC. It has an Intel Pro1000T Gigabit NIC,
an Adaptec 39160 Ultra 160 SCSI controller, and a Seagate
Cheetah 15,000 rpm SCSI disk (ST318453LW) as storage
device. We reserved 128 MB memory on IQ80310 as the L-
1 cache and 256 MB memory in the host as the L-2 cache.

Two kinds of workloads are used in our measurements.
The first one is a micro-benchmark that generates continu-
ous storage requests with pre-specified data sizes. The pur-
pose of the benchmark is to observe performance behav-
iors of the BUCS system under various request data sizes
and request types. The second workload is a real block
level trace downloaded from the Trace Distribution Center
at Brigham Young University. They had run TPC-C bench-
mark with 20 data warehouses using Postgres database on
Redhat Linux 7.1 and collected the trace using their kernel
level disk trace tool, DTB. We ignored the time stamp val-
ues in the trace and sent one request immediately after the
previous request is completed since we are interested in the
response time value under two different systems. The trace
file contains more than 3 million requests with size ranging
from 4KB to 124KB. It has an average request size (mean
value) about 92.4 KB and is read-dominated with 99% of its
operations being read operations. The average request rate
(mean value) is about 282 requests/second.

3.3. Numerical Results and Discussions

Our first experiment is to measure performances of the
BUCS and the traditional server for read requests generated
from one NBD client over the network using the micro-
benchmark. Figure 4 shows our measured results for both
BUCS and the traditional server. In this figure, response
times and throughput speedup are plotted as functions of
data sizes of read requests. Throughput speedup is de-
fined as the ratio between the average throughput of the
BUCS and the throughput of the traditional system with
same speed network. For each system, two sets of data were
collected corresponding to 100 Mbps network and 1Gbps
network, respectively. As shown in Figure 4, performances
of the BUCS are significantly better than that of the tradi-
tional system. As the data size increases, performance im-
provements of the BUCS increase. This result agrees well
with our initial expectation. The larger data size is, the more
data will travel through the PCI bus between host RAM and
the NIC/HBA in the traditional system. As a result, BUCS
shows greater advantages because of effective data caching

and minimization of PCI traffic. The performance improve-
ment goes as high as a factor of 3. For example, the average
response time of BUCS is 8.88 ms compared to 27.36 ms of
the traditional system for data size of 128KB on the 1Gbps
network. The throughput speedup goes as high as 3.09 with
1 Gbps network.
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Figure 4. Measured read performance of the traditional
system and the BUCS system with single NBD client.

The throughput speedup increases when we increase the
network speed from 100 Mbps to 1 Gbps as shown in Fig-
ure 4. For example, with data block size being 128 KB, the
speedup of BUCS is 2.53 with 100 Mbps network while it
becomes 3.09 with 1 Gbps network. It is clearly shown that
our BUCS benefits more from network improvement than
the traditional system. While throughput speedup increases
greatly as network bandwidth increases, the response time
change is not as significant. This is because network la-
tency does not reduce linearly with the increase of network
bandwidth. For example, we measured average network
latencies (mean value) over 100 Mbps and 1 Gigabit Eth-
ernet switches to be 128.99 and 106.78 microseconds, re-
spectively [9]. These results indicate that network laten-
cies resulting from packet propagation delays do not change
dramatically as Ethernet switches increase their bandwidth
from 100 Mbps to 1 Gbps.

Similar performance results were observed for write op-
erations as shown in Figure 5. Again, performance im-
provement of BUCS increases with the increase of data size.
However, such increase is not monotonic. At size 32KB, the
speedup of BUCS with 1Gbps network reaches a peak point
and comes down for larger sizes. While analyzing this re-
sult, we noticed that the on-chip data cache of IOP310 is
32KB [10]. Our current implementation utilizes the TCP/IP
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Figure 5. Measured write performance of the traditional
system and the BUCS system with single NBD client.

stack of the embedded Linux that carries out more memory
data copies when receiving data than sending out data. As
a result, when write operations are performed the cache ef-
fects make a more difference in throughput. Such effects are
not clearly shown for read operations and for lower speed
network. Therefore, it further implies that there is room
for additional performance improvement through code op-
timizations on the BUCS board.
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Figure 6. Speedup measured using four clients.

Our next experiment is to increase the number of clients
that generate networked storage requests in order to ob-

serve how BUCS performs with higher workloads. Figure
6 shows the server throughput speedup with four clients in
the network. Three sets of bars were drawn for three differ-
ent data sizes, 8KB, 32KB, and 128KB, respectively. It is
observed that the throughput speedup of BUCS is similar to
the one-client case implying that BUCS can handle higher
load and scale fairly well with more clients. Similar to the
single client case, up to a factor of 3 performance improve-
ment was observed for the 4-client cases. Therefore, we
can claim with experimental backing that BUCS effectively
reduces bottleneck of the system bus.

Figure 7 shows the response time plots measured for
TPC-C trace. Each dot in this figure represents the exact
response time of one storage request. We plotted 10,000
requests randomly selected from the 3 million requests. It
is clearly seen from this figure that BUCS dramatically re-
duces response time as compared to traditional systems. For
the 100 Mbps network, most requests finish within about
12 ms with BUCS system as opposed to 30 ms with tra-
ditional systems. For 1Gbps network, similar performance
differences are observed between BUCS and traditional sys-
tems with slightly lower response times. To further observe
the distribution of response times, we summarized num-
ber of requests finished in different time intervals in Ta-
ble 2. As shown in Table 2, BUCS can finish over 50%
of storage requests within 10 ms and close to 100% re-
maining requests within 20 ms. With traditional system,
only about 20% of requests can finish within 10 ms and
over 58% of requests complete in longer than 20 ms. For
1Gbps network, 99.89% of requests complete within 10 ms
with BUCS while only 24.29% of requests finish within 10
ms and majority take more than 20 ms with traditional sys-
tems. The average response time of BUCS is about three
times faster than that of traditional systems. Performance
results for TPC-C trace are fairly consistent with the results
of the micro-benchmarks describe above. Although other
researchers [21] had observed the poor temporal locality of
TPC-C I/O accesses after being filtered by a large database
buffer cache, our BUCS still provides a data ”shortcut” to
avoid extra PCI bus traffic.

4. Related Work

The bus contention problem is not new and was pointed
out a few years ago by Arpaci-Dusseau et al [2] for stream-
ing applications. Barve et al [4] found that the overall per-
formance of the storage subsystem is bound by the perfor-
mance of the I/O bus that connects multiple disks because
all disk services are serialized due to bus contention.

An interesting work done by Krishnamurthy et al [13]
offloads scheduling functions to network interface equipped
with an i960 processor, improving greatly scalability in me-
dia services. Their approach allows direct data forwarding



0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35
BUCS w/ 100Mbps

R
es

po
ns

e 
tim

e 
(m

s)

Req. No.
0 2000 4000 6000 8000 10000

0

5

10

15

20

25

30

35
Trad w/ 100Mbps

R
es

po
ns

e 
tim

e 
(m

s)

Req. No.
0 2000 4000 6000 8000 10000

0

5

10

15

20

25

30

35
BUCS w/ 1Gbps

R
es

po
ns

e 
tim

e 
(m

s)

Req. No.
0 2000 4000 6000 8000 10000

0

5

10

15

20

25

30

35
Trad w/ 1Gbps

R
es

po
ns

e 
tim

e 
(m

s)

Req. No.

Figure 7. Measured response times (millisecond) of the BUCS and the traditional system using TPC-C trace.

Number of requests with response time t Avg. Response Time
t < 10 ms 10 ≤ t < 20 ms 20 ≤ t < 30 ms 30 ms ≤ t (mean value)

Traditional w/ 100 Mbps 2218 1856 5897 29 20.553 ms
BUCS w/ 100 Mbps 5116 4879 4 1 8.207 ms

Traditional w/ 1 Gbps 2429 2151 5419 1 18.513 ms
BUCS w/ 1 Gbps 9989 8 0 3 6.103 ms

Table 2. The number of requests finished in different time intervals using TPC-C trace. We sampled 10000 requests randomly.

from a disk to network eliminating traffic from host CPU
and host RAM by using the co-processor. Our work differs
from this work in that we propose a general cache hierarchy
for general storage servers as opposed to scalable schedul-
ing for stream media applications.

There are several research projects that study data
caching at network adapter level. The “payload caching”
[19] by Yocum and Chase employs cache on a NIC as a
short-term buffer for payloads of packets in a network in-
termediary to reduce bus traffic. It is shown in their re-
search that substantial performance gains are obtained by
caching part of incoming packet stream and directly for-
warding them from the cache to the network. A research
work by Kim et al [12] introduces a network interface data
caching to reduce local interconnect traffic on networking
servers. They have shown such caching reduces PCI traffic
and increases web server throughput significantly because
of high data locality that exists in web applications. Walton
et al [17] combined two Myrinet cards on a same bus for
efficient IP forwarding by transferring data directly from
one card to another, called peer DMA, without involving
the host processor. Although our BUCS shares some com-
mon objectives with the above work of network interface
caching, the difference of our work from that of above is the
integration of the storage controller cache and NIC cache
eliminating data copy between storage subsystem and net-
work subsystem via PCI bus. Furthermore, our two-level
cache hierarchy and efficient management of the caches al-
low much larger cache size to be seen by clients than a sin-
gle on-board cache that is usually limited because of cost
and power constraints.

Recently, there has been a great deal of research in of-
floading computation tasks to programmable and intelligent
devices to improve system performance. Most of the mod-
ern Gigabit NICs can compute the checksum in hardware,
which was proposed in RFC1936 [16]. By utilizing this fea-
ture and other optimizations, Trapeze/IP [8] yielded a TCP
bandwidth of 988 Mbps on a Gigabit network. In order to
reduce the CPU utilization and achieve wire speed in a Gi-
gabit network environment, various TOE [18] products and
iSCSI accelerators are under production. Buonadonna and
Culler [5] proposed a new system area network architec-
ture, Queue Pair IP, that provides a QP abstraction on exist-
ing inter-network protocols and effectively reduces the CPU
utilization by offloading part of the network protocol to a
programmable NIC. EMP [15] also provides a zero-copy
OS-bypass message passing interface by offloading the pro-
tocol to programmable NICs. TCP Server [14] and Split-OS
[3] decouple various OS functionalities and offload them
to different intelligent devices. TCP Server achieves per-
formance gains of up to 30% by using dedicated network
processors on a symmetric multiprocessor server or dedi-
cated nodes on a cluster-based server. Our intention is to
improve the server performance by reducing bus traffics. In-
stead of offloading computation tasks, our work “offloads”
frequently used data to an intelligent adapter.

5. Conclusions and Future Work

This paper has introduced a new caching structure,
BUCS, to address the bus contention problem, which limits
the further performance improvement of a storage server.



In a BUCS system, a storage controller and a NIC are re-
placed by a BUCS controller that integrates the functional-
ities of both and has a unified cache memory. By placing
frequently used data in the on-board cache memory, the L-1
cache, many read requests can be satisfied directly. A write
request from a client can be satisfied by putting data in the
L-1 cache directly, without invoking any bus traffic. The
data in the L1 cache will be replaced to the host memory,
the L2 cache, when needed. With effective caching pol-
icy, this two level cache can provide a high speed and large
size cache for networked storage data accesses. Through
experiments on our prototype implementation using micro-
benchmark and real world traces, we have observed up to 3
times performance improvement of BUCS over traditional
systems in terms of response time and system throughput.
We are currently working on our prototype and hope to have
a fully functional and highly optimized implementation in
the near future.
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