Objective:
Voltage Controlled Oscillators (VCOs) form central units in Phase-Locked-Loops (PLLs). PLLs can generate multiple outputs whose frequencies bear a prescribed relation (e.g. an integer multiple) to the frequency of a reference input. The output signals are typically generated by a VCO, which is controlled by the phase difference of the output to a fixed reference. PLL based frequency synthesizers are widely used in modern communication systems.

This lab presents an application of op-amps as building blocks in a nonlinear circuit. The particular VCO depicted in figure 1 generates a sawtooth shaped output (V_2) whose frequency is proportional to a control voltage V_{ctl}. As you may recognize, the first opamp in this circuit implements a continuous-time integrator while the second acts as a (voltage) comparator whose output is either high (≈ positive supply) or low (≈ negative supply). This binary output is used to control the analog switch, which periodically discharges the integrating capacitor.

Tasks:
1. Familiarize yourself with the data sheets of the LF353 dual JFET opamp chip and the MC14066 quad multiplexer/analog switch. Note that both chips will be operated with a supply of ±5 V. Pre-lab assignment.
2. Assume that the transmission gate depicted in figure 1 (¼ MC14066) is ideal, i.e., it shorts when V_2 exceeds V_r and acts as an open circuit when V_2 is less than V_r. Furthermore, we expect C_1 to rapidly and completely discharge while V_3 is high. Compute the value of V_r and try to sketch the expected time-domain waveforms of V_2 and V_3. Pre-lab assignment.
3. Considering the expected waveform of V_2, can you find a symbolic relationship between the RC time constant $\tau_1=R_1C_1$ of the integrator, the reference voltage V_{ctl} and the resulting repetition rate or frequency of V_2? Pre-lab assignment.
4. If R_1 equals 100 kΩ and V_{ctl}=-2V, find a value for C_1 such that the frequency of V_2 approximates 5 kHz.
5. Simulate the VCO in PSpice using the opamp macro-model posted on the ele344 website. The transmission gate can be implemented either by an ideal switch (symbol S) or by a sufficiently wide n-channel MOS device yielding an on resistance of not more than 50 Ω.
6. Find a way to covert the sawtooth output to a square wave. If you have succeeded, increase the control voltage V_{ctl} from -5 V to -1 V in steps of 0.5 V and record the resulting output frequency of V_2. How well does the V_{ctl} versus f_{out} relationship you derived in task 3 hold up?
7. Realize the sawtooth VCO on the Protoboard. After you have confirmed its proper operation, repeat the voltage versus frequency test you conducted in task 6. If you have 3 independent voltage sources at your disposal, you can use one source to directly alter the control voltage V_{ctl}, otherwise, vary V_{ctl} by means of a potentiometer as shown in figure 1. Comment on the potential differences between simulation and measurement.

8. Can you find a purpose for the 50 nF load capacitance of the comparator? Observe how your outputs change if you remove this element and try to find and explanation for your observation.

9. Consider the oscillator in figure 2 and try to sketch the waveforms at outputs V_2 and V_4, respectively. Can you find the relationship between the frequency of V_2 or V_3 and the RC time constant $\tau_1=R_1C_1$?

10. Verify the expected performance of the oscillator depicted in figure 2 using PSpice. Comment on how closely your formula for the frequency of V_2 or V_3 holds up!

Figure 1: Voltage Controlled Oscillator generating a sawtooth output (node V_2) whose frequency is proportional to the control input V_{ctl}. The control voltage can be an independent source or, as shown, can be tuned with a potentiometer.

Figure 2: Alternative oscillator obtained by replacing the comparator in figure 1 by a Schmitt Trigger. The two MOS devices act as ideal switches, which connect the input to either V_{DD} or V_{SS}. Note that V_r is not constant in this circuit.