ELE432 Quiz 1

Question 1:

Arays are produced by shooting high energy electrons into a fixed (atomic) target. Upon impact, the energy of the electron is released as EM radiation (German "Bremsstrahlung"). A small percentage of the accelerated electrons will produce x-rays. Assume that the electrons are accelerated between 2 conductive parallel plates, which are spaced 0.5 m apart. If you want to generate x-rays with a wavelength of 0.02 nm, what voltage do you have to apply between the two plates.

Answer: V = 62 kV

Physical Constants

-	
Plank's constant	h=6.63x10 ⁻³⁴ Js
Electron charge	q=-1.60x10 ⁻¹⁹ As
Electron rest mass	m ₀ =9.11x10 ⁻³¹ kg
Boltzmann's constant	k=1.38x10 ⁻²³ J/ºK
Permeability in vacuum	μ ₀ =4π x10 ⁻⁷ Vs/Am
Permittivity in vacuum	ε ₀ =8.85x10 ⁻¹² As/Vm
Electron volt	1 eV=1.6x10 ⁻¹⁹ J
Si Bandgap energy	E _G =1.12 eV
Si Lattice constant	a=0.543 nm
Si relative permittivity	ε _{si} =11.7
SiO ₂ relative permittivity	ε _{SiO2} =3.9

ELE432 Spring 2008

Question	2:			
Why is silio List 2 argu	con the most pre ments.	eferred semico	onductor materi	al?
Answer: Abundant, comparativ	inexpensive, sir vely balanced el	nple processi ectron and ho	ng, wide extrins le mobility valu	sic range, es

Question 3:		
Silicon crystalliz distance betwee attice constant	es in a diamond lattice structure. On 2 nearest atomic neighbours if w of silicon is 0.543 nm.	Compute the ve know that the
Answer: d = 0.235 nm		

ELE432 Quiz 1			
Question 4:			
How many silicon a	toms fit into a cub	e of 1 mm side	e-length?
Answer: 5.0 x 10 ¹⁹ Atoms			

Question 5.	
What is the density of silicon atoms oplane?	atoms per m ²) in the (110)
Answer: $d_A(110) = 9.59 \times 10^{18} \text{ Atoms/m}^2$	

