
1 Discrete-Time Networks

1.0 Introduction

To realize a discrete-time filter with either computer software, a pro-

grammable DSP chip, or custom VLSI, a network must be specified

describing the computations to be performed. For software realizations,

the network corresponds to a flowchart of the filter algorithm, while for

hardware realizations, the network describes the actual circuit elements

and their interconnection. Many important properties of the discrete-

time filter are placed in evidence by the coefficients of certain network

structures. Significant computational savings can also be achieved in

many cases by the proper choice of the network. And finally, the perfor-

mance of a digital implementation is affected very substantially by the

choice of the network structure because of the quantization effects we

will study in chapter 11.

1.1 Flow Graph Properties

At least one implementation of a discrete-time filter is usually obvious

from the form of its system function H(z), and many others are readily

generated, as we will see. Conversely, the system function H(z) is readily

deduced, in most cases, from a block diagram of some implementation

of the filter.

The simple synthesis and analysis procedures described above for

discrete-time networks are based on the following properties of linear

flow graphs:
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Parallel

Networks

We saw in (??) that if two filters or filter elements with impulse responses

h1(n) and h2(n) are placed in parallel, the impulse response h(n) of the

combination equals h1(n) + h2(n). Hence, the system function of the

parallel network is given by

H(z) = H1(z) +H2(z). (1.1.1)

Cascade

Networks

If two filters or filter elements are placed in cascade, then from (??) we

have h(n) = h1(n) ∗ h2(n), and thus the system function of the cascade

network is simply

H(z) = H1(z)H2(z). (1.1.2)

Feedback

Networks

If three filter elements with individual system functions E(z), F (z), and

G(z) are arranged in the positive feedback configuration of figure 1.1,

the overall system function of the feedback network is given by

H(z) =
E(z)F (z)

1− F (z)G(z)
. (1.1.3)

This is readily derived by relating X(z), Y (z), and W (z), and is di-

rectly analogous to the corresponding Laplace transform property for

continuous-time networks. In words, “the system function equals the

feedforward transfer function divided by one minus the loop transfer

function”. (See problem 5.1.)

EXAMPLE

As an example of the ease with which the above properties can usually

be employed to obtain the system function from a block diagram of the

filter, consider the discrete-time network of figure ??. This network is
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F(z)E(z)

G(z)

x(n) w(n) y(n)

Figure 1.1: A general feedback configuration.

readily identified as being of the general form shown in figure 5.1 by using

the preceding parallel and cascade network properties to show that

E(z) =
M∑

m=0

bmz
−m, F (z) = 1, G(z) = −

N∑

k=1

akz
−k. (1.1.4)

But then, from (1.1.3), we have immediately that

H(z) =

∑M
m=0 bmz

−m

1 +
∑N

k=1 akz
−k

(1.1.5)

which is the same as (??) since a0 = 1 in the difference equation that

originally led to this network.

Note also that since z−1A is the loop gain of the network in state-

variable form in figure ??, we can interpret (??) as being a generalization

of (1.1.3) to include vector signals. In this case, however, we must take

care to order the vectors and matrices correctly as in (??).

EXAMPLE

We will find the system function for the interconnection of sub-systems

shown on following page. Note first that the transfer function H(z) from

x(n) to w(n) is simply

Hw(z) =
W (z)

X(z)
=

1

1−H2(z)H3(z)
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because the feedforward transfer function to w(n) is unity and the loop

transfer function is the cascade of H2(z) and H3(z). Then, there are two

parallel paths from w(n) to y(n) with transfer functions of H1(z) and

H2(z)H4(z), respectively. Therefore,

Y (z) =W (z)[H1(z) +H2(z)H4(z)]

and

H(z) =
W (z) Y (z)

X(z)W (z)
=
H1(z) +H2(z)H4(z)

1−H2(z)H3(z)
.

x(n) w(n) y(n)

H3 (z)

H2 (z) H4 (z)

H1 (z)

Another interesting and useful network property is that pertaining

to transpose networks.

Transpose

Networks

If the directions of all branches in the flow graph for a discrete-time filter

are reversed, the system function of the resulting transpose network is the

same as that of the original network. The input and output of the trans-

pose network correspond, respectively, to the output and input of the

original network. All branch nodes in the original network become sum-

mation nodes in the transpose network, and likewise summation nodes

become branch nodes. This is illustrated in figure 1.2 for a second-order

filter. The fact that the system function is unchanged by transposition

can be proved using several approaches including Tellegen’s theorem for

discrete-time networks, Mason’s rule for transfer function evaluation, or
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Figure 1.2: Transpose second-order networks.
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a state-variable formulation. We will use the last method to prove this

result, as follows: Reversing the branch directions of a network in state-

variable form as depicted in figure ??, we produce the state-variable

description of the transpose network shown in figure 1.3. Note that c

replaces b and bt replaces ct. To see that At replaces A, as indicated,

note that the gain aij from sj(n) to si(n + 1) becomes the gain from

si(n) to sj(n+1) in the transpose network. Hence, aji must replace aij .

The system function for the transpose network is, therefore,

Ht(z) = d+ z−1bt(I− z−1At)−1c. (1.1.6)

But this is just the matrix transpose of the 1 × 1 “matrix” H(z), and

thus H(z) = H t(z), which proves the assertion.

-1

c t

A

b

d

x(n) s(n + 1) s(n) y(n)_
_ __

z

t

Figure 1.3: Transpose of the state-variable description in figure ??.

Although H(z) and its associated output y(n) are unchanged by

transposition, the state vectors s(n) and ŝ(n) before and after trans-

position will be quite different, in general, and this is one of the tools we

can use to modify and/or optimize the structure and performance of a

digital filter.

1.2 Network Structures
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The variety of possible structures for discrete-time networks is extremely

wide and diverse, and the question of optimal digital-filter structures has

attracted great research interest. The term digital filter is used above in

conjunction with optimal structures because it is only when the effects

of quantization are considered that significant differences arise in the

performance of different network structures. Therefore, we will defer

most of our comparative analysis of network structures until quantization

effects are studied in chapter 11, but the most common structures and

their basic properties will be introduced in this section.

Direct Form

The structure previously shown in figure ?? is often called the direct

form of a discrete-time filter because it is a direct implementation of the

basic difference equation in (??). However, in the case of IIR filters, a

more efficient structure in the sense of fewer delays can be generated

by reversing the order of the two filter sections, which are effectively in

cascade. That is, letting

H1(z) = N(z) =
M∑

m=0

bmz
−m

and

H2(z) =
1

D(z)
=

1
∑N

k=0 akz
−k

(1.2.1)

where a0 = 1, figure ?? realizes the system function H(z)=H1(z)H2(z)

with H1(z) first, followed by H2(z). Reversing this order and eliminating

the min(N,M) delays that are thereby made redundant, we obtain the

structure shown in figure 1.4 for M = N, which we will call direct form

II.

Although direct form II still satisfies the difference equation in (??),

it does not implement this difference equation directly. Rather, it is a

direct implementation of a pair of equations relating x(n), y(n), and

w(n), as follows:

w(n) = x(n)−
N∑

k=1

akw(n− k)
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Figure 1.4: Direct-form-II structure.
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y(n) =
M∑

m=0

bmw(n−m). (1.2.2)

Note that this structure is still recursive, but in the intermediate output

w(n) and not the final output y(n).

The transpose network corresponding to direct form II, which we will

call direct form I, is shown in figure 1.5. Since the order of H1(z) and

H2(z) is reversed again by transposition in direct form I, this form is

quite similar to the original direct form in figure ??. However, up to

half of the delays have been eliminated by moving their location in the

network structure.

Direct forms I and II are examples of canonical structures in that, in

general, they realize the given system function with the smallest possible

numbers of delays, adders, and multipliers. AssumingM = N , as is often

the case for IIR filters, the number of each of these components required

in a canonical implementation is as follows:

number of delays = N,

number of adders = 2N,

number of multipliers = 2N + 1.

(1.2.3)

By adders we mean two-input adders, and thus a summation node with J

inputs implies J −1 adders in the implementation. The reader can check

that (1.2.3) is indeed satisfied by direct forms I and II when M = N .

Parallel

Form

The expansion of H(z) in a partial-fraction expansion leads to another

pair of canonical structures called the parallel forms. In order to pro-

duce real multiplier coefficients in the filter structure, the terms in the

partial-fraction expansion corresponding to complex-conjugate pole pairs

must be combined into second-order terms; and it is convenient for both

notation and implementation reasons to combine the real poles in pairs

as well. We thereby produce the following form of the system function,
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Figure 1.5: Direct-from-I structure.
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assuming again that M = N :

H(z) = γ0 +
N∑

k=1

Ak

1− pkz−1

= γ0 +
L∑

i=1

γ0i + γ1iz
−1

1 + α1iz−1 + α2iz−2
(1.2.4)

with

L =

[
N + 1

2

]

int
, (1.2.5)

where [ ]int denotes the integer part of. If N is odd, there is one first-

order term in (1.2.4), say for i = L, and we then have γ1L = α2L = 0.

We will investigate additional properties of these filter coefficients in

the next section. Equation (??) corresponds to a similar, but different

parallel structure.

Since the system function in (1.2.4) is expressed as a sum of second-

order terms, the corresponding implementations must consist of parallel

combinations of second-order networks or sections. Realizing each sec-

tion as a direct-form-II network, we obtain parallel form II, which is

shown in figure 1.6. Alternatively, we may employ direct form I net-

works for the second-order sections to produce parallel form I, shown in

figure 1.7. Note that parallel forms I and II both satisfy (1.2.3) (keeping

in mind that one section is first-order if N is odd), and hence these are

also canonical forms. Moreover, note that parallel form II is, in fact, the

transpose of parallel form I.

Cascade

Form

If, in addition to factoring the denominator polynomial D(z) in (1.2.1)

into second-order factors as for the parallel forms, the numerator poly-

nomial N(z) is similarly factored, the system function can be written as

the product

H(z) = b0

N∏

k=1

1− zkz
−1

1− pkz−1
= b0

L∏

i=1

Hi(z), (1.2.6)
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Figure 1.6: Parallel-from-II structure.
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where

Hi(z) =
1 + β1iz

−1 + β2iz
−2

1 + α1iz−1 + α2iz−2
. (1.2.7)

L is again given by (5.2.5), and α2L = β2L = 0 if N is odd. Since

H(z) is formed as the product of the second-order functions Hi(z), the

corresponding filter structure must comprise a cascade of second-order

sections. Implementing these sections in direct forms II and I, we pro-

duce cascade forms II and I, respectively, shown in figures 1.8 and 1.9.

The reader can verify that these structures are also canonical and that

they are related in topology by transposition. However, cascade form II

is actually the transpose of form I only if the order of the filter sections

is reversed from one form to the other.

. . .

z
-1

z
-1

x(n) y(n)

−α11 β11

β21−α21

b0

z
-1

z
-1

−α1L β1L

β2L
−α2L

Figure 1.8: Cascade-from-II structure.

Many other filter structures can obviously be produced using, for

example, combinations of the parallel and cascade forms, various feed-

back arrangements, continued-fraction expansions of H(z), and so forth.

Many additional structures can be generated as analogs of classical continuous-

time filters and have names such as wave digital filters, ladder structures,

and lattice structures. A complete description of all these structures is

beyond the scope of this book, but several of them will be considered in
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Figure 1.9: Cascade-from-I structure.

subsequent chapters. By far the most common digital-filter structures

are the direct, parallel, and cascade forms; and of these, the cascade

forms are most often employed for IIR filters for reasons concerning

quantization and implementation. In the case of FIR filters, only the

direct and cascade forms are applicable, with the direct form being most

commonly employed.

We will often refer in the remainder of this book to simply the “direct

form,” the “parallel form,” or the “cascade form,” although we have

actually defined two network structures in each case. This is done for

convenience in view of the fact that each pair of structures implements

the same form of the system function H(z). Thus, in effect, we refer by

this terminology to the form of the system function itself as expressed in

(1.1.5), (1.2.4), or (1.2.6).

MATLAB Exercise No. 7 - Cascade and Parallel Forms

Cascade and parallel structures for IIR filters are readily synthesized us-

ing the zp2sos or ss2sos commands in the MATLAB Signal Processing

Toolbox. As a sample IIR design, we will use a fifth-order Chebyshev

Type-2 lowpass filter with at least 30-dB stopband attenuation from 0.2π

to π (i.e., from 0.2 to 1.0 on the normalized frequency scale in MATLAB).
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(IIR filter designs are covered in chapter 8.) That is, let

[z,p,k] = cheby2(5,30,0.2)

Note that the resulting zeros and poles are either real or occur in complex-

conjugate pairs, as expected. Use zplane to draw the pole/zero diagram.

To convert the zeros (z), poles (p), and gain (k) to direct-form coeffi-

cients, type

[b,a] = zp2tf(z,p,k)

or use

b = k*poly(z)

a = poly(p)

Plot the associated magnitude (Bode) response to check the frequency

range of the stopband and its attentuation. The conversion from zero-

pole-to-second-order-sections (i.e., cascade form) is then provided by

cas = zp2sos(z,p,k)

Do the columns of cas (section coefficients) have the expected form for

zeros on the unit circle and stable poles? (See help.) Produce a mag-

nitude plot for each section, for sections 1 and 2 in cascade, and for

all three in cascade. (Individual columns are designated by cas(:,2) for

the second column, etc. Use element-by-element products of the section

magnitude responses, or simply sums in dB.) Note that the cascaded

section responses (1, 1 − 2, and 1 − 2 − 3) are scaled to unity or less to

prevent overflow in a fixed-point implementation of the cascade-form-I

filter. A parallel form can also be obtained from the partial-fraction ex-

pansion of H(z), that is,

[r,p,d] = residuez(b,a)
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However, this corresponds to a parallel form of first-order sections hav-

ing complex coefficients, in general. Figure out how to combine these

first-order complex terms into second-order sections with real-valued co-

efficients, and do this to produce the standard parallel form. Generate

the frequency response for each section, and combine them appropriately

to produce the overall frequency response.

1.3 Properties of Network Coefficients

One can quickly determine a number of important properties of a discrete-

time filter from the coefficients of certain network structures. In the

case of IIR filters, information concerning such things as stability, real

or complex singularities, transmission zeros, and quantization effects is

readily obtained from the cascade-form coefficients or, to a lesser extent,

the parallel-form coefficients. For FIR filters, such properties as linear

phase, 90◦ phase shift, or symmetrical frequency response are apparent

from the coefficients of the direct form or certain cascade structures.

The denominator factors of the parallel and cascade forms and the

numerator factors of the cascade form are all quadratic functions of the

form

Fi(z) = 1 + c1iz
−1 + c2iz

−2

= (1− q1iz
−1)(1− q2iz

−1) (1.3.1)

where the roots q1i and q2i are the corresponding singularity (pole or

zero) locations in the z plane. The roots may be real or complex, but in

either case

c1i = −(q1i + q2i), (1.3.2)

c2i = q1iq2i. (1.3.3)

If c21i ≥ 4c2i, the roots are real, while if c
2
1i < 4c2i, the roots are complex

conjugates. Letting q1i = q∗2i = qi in the latter case, we have

c1i = −2 Re(qi) = −2ri cos θi, (1.3.4)
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c2i = |qi|
2 = r2

i , (1.3.5)

where ri is the radius of the singularities in the z plane, and ±θi are

the corresponding angles. Therefore, the pole locations are quickly cal-

culated from the coefficients of the parallel or cascade forms, and for the

cascade form, the zeros are similarly determined.

Stability

As a result of the above, we can readily obtain conditions on the co-

efficients of the parallel or cascade forms to ensure the stability of the

filter. Specifically, the second-order denominator factors of these forms

are given by

Di(z) = 1 + α1iz
−1 + α2iz

−2

= (1− p1iz
−1)(1− p2iz

−1)

and the poles must lie inside the unit circle for stability, i.e.,

|p1i|, |p2i| < 1.

Hence, from (1.3.3),

|α2i| = |p1ip2i| < 1. (1.3.6)

The corresponding condition on α1i is obtained from the expression

p1i, p2i =
−α1i ±

√

α2
1i − 4α2i

2

and is given by (see problem 5.4)

|α1i| < 1 + α2i. (1.3.7)

Conditions (1.3.6) and (1.3.7) are illustrated in figure 5.10, which shows

the resulting stability triangle in the α1, α2 plane. That is, the second-

order section is stable if, and only if, α1i and α2i define a point that

lies inside this triangle. As previously noted, the poles are complex if

α2
1 < 4α2, and real otherwise.
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Figure 1.10: Region of coefficient values for which a second-order filter

is stable.

Very often, the zeros of H(z) lie on the unit circle in the z plane.

In fact, as we will see in chapter 8, this is always true for discrete-time

filters derived by bilinear transformation from the classical continuous-

time designs. If these zeros are complex conjugates (including two equal

real zeros), then from (1.3.5) we see that the numerator coefficients β2i

of the cascade form must be unity. So, in this case,

β1i = −2 cos θi and β2i = 1.

In particular, if the zeros are real and equal, we have

β1i = ±2.

If a second-order section has unequal real zeros of unit magnitude, then

they must be z1i = 1 and z2i = −1, and thus from (1.3.2) and (1.3.3),

β1i = 0 and β2i = −1.

If the numerator is actually first-order with only one zero, then of course

β1i = ±1 and β2i = 0.
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Therefore, in all of the above cases of zeros on the unit circle, the β2i

coefficients of the cascade form are always the integers ±1 or 0, and the

β1i are also integers (±2,±1, or 0) if the zeros are real. For this reason,

the β2i multipliers were shown with dotted lines in figures 1.8 and 1.9

because actual multipliers are not required to implement these integer

coefficients. This, in part, explains the popularity of the cascade form

with designers since 25% to as much as 50% of the multiplication time

or hardware can be saved in filters having zeros on the unit circle.

EXAMPLE

To practice with the polar form in (1.3.4) and (1.3.5), we will find the

poles and zeros for the cascade form

H(z) =
(1 + 1.414z−1 + z−2)(1 + 2z−1 + z−2)

(1− 0.8z−1 + 0.64z−2)(1− 1.08333z−1 + 0.25z−2)
.

Since the numerator coefficients fall on the boundary of the stability

triangle and the z−2 coefficients are unity, the radii of all the zeros must

be unity. The coefficient 1.414 = −2 cos θ implies that cos θ = −0.707,

and thus one pair of zeros lies on the unit circle at angles of ±3π/4.

The other z−1 coefficient in the numerator is 2, and so the other pair of

zeros both fall at z = −1. The first z−2 coefficient in the denominator

is 0.64, and thus if these poles are complex, their radius is 0.8. The

corresponding z−1 coefficient is −0.8 = −2(0.8) cos θ or cos θ = 0.5,

and hence one pair of poles is indeed a complex-conjugate pair with a

radius of 0.8 and angles of ±π/3. The final denominator factor has a

z−2 coefficient of 0.25, and thus if these poles are complex, their radius

is 0.5. However, −1.08333 = −2(0.5) cos θ implies that cos θ is greater

than unity, which it cannot be. Therefore, these poles are actually real

and equal 0.75 and 0.333, respectively.

Linear Phase

Turning to FIR filters, we will investigate what is perhaps their most

important property, namely, that the coefficients of an FIR filter are

easily constrained to produce a linear phase response. The correspond-

ing constraint is simply that the finite-duration impulse response have
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conjugate-even or conjugate-odd symmetry about its midpoint. To see

that this constraint ensures linear phase, consider the FIR system func-

tion

H(z) =
M∑

m=0

bmz
−m (1.3.8)

with

bm = ±b
∗
M−m = |bm|e

jφm .

If M is even, the coefficient bM/2 is real and corresponds to the center

of symmetry of h(n), while if M is odd, there is no central coefficient.

These four cases are illustrated in figure 1.11 for bm real, where we then

have

bm = ±bM−m.

Note that type-I and -II filters have even symmetry about their mid-

points, while type-III and -IV filters have odd symmetry. On the other

hand, types I and III have even order (M), while types II and IV have

odd order.

Considering the convolution of these real-valued impulse responses

with a constant (dc) input or the Nyquist-frequency sequence (−1)n, we

observe that odd-symmetry implies zero output for all dc inputs, and

hence H(z) must have a zero at z = 1 for type-III and -IV filters. That

is

M∑

n=0

h(n) = H(1) = 0 (for types III and IV).

Also, types II and III will have zero output for Nyquist-frequency inputs

because

M∑

n=0

(−1)nh(n) = H(−1) = 0 (for types II and III),
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Figure 1.11: Four cases of even/order symmetry about M/2 for real-

valued, linear-phrase FIR filters with even or odd (M).

and thus H(z) has a zero at z = −1. These constrained zeros at z = ±1

for real-valued linear-phase FIR filters are shown and marked by arrows

on the corresponding z-plane plots in figure 1.12.

A further effect of the linear-phase constraint on the zeros of H(z) is

seen by noting from (1.3.8) that

zMH(z) = ±H∗(1/z∗) (1.3.9)

because of the assumed symmetry in the bm. Equation (1.3.9) implies

that the zeros of H(z) must also be zeros of H∗(1/z∗), which means

that if zm is a zero of H(z), then l/z
∗
m is also. Therefore, the zeros of a

linear-phase filter either must lie on the unit circle or must occur in pairs

with reciprocal radii. For bm real, the zeros must also occur as complex

conjugates; and thus in that case, those not lying on the unit circle or

the real axis will actually occur in quadruples, as illustrated in figure

1.12.
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Figure 1.12: Typical Zeros locations for type-I, -II, -III, and -IV linear-

phase FIR filters from figure 1.11 showing required zeros at z = ±1.

Type I

Considering first the type-I case of conjugate-even symmetry and M

even, we may rewrite (1.3.8) as

H(z) = z−M/2

[
M∑

m=0

bmz
−m+M/2

]

= z−M/2



bM/2 +

M/2−1
∑

m=0

(bmz
−m+M/2 + bM−mz

m−M/2)



 .

(1.3.10)
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Substituting z = ejω and taking into account that b∗m = bM−m, we find

that the frequency response is given by

H ′(ω) = e−jωM/2






bM/2 +

M/2−1
∑

m=0

2|bm| cos[(
M

2
−m)ω + φm







= e−jωM/2R(ω) (1.3.11)

where R(ω) is purely real. If R(ω) is of constant sign for all ω, then

R(ω) = ±|H ′(ω)| and we indeed have the linear phase response

6 H ′(ω) = −ω
M

2
+ C

where C = 0 or π. If, however, there are sign changes in R(ω), there are

corresponding 180◦ phase shifts in 6 H ′(ω), and 6 H ′(ω) is only piecewise

linear. It is common practice, nonetheless, still to refer to the filter as

having simply linear phase. This terminology is reasonable since we are

actually trying to constrain the filter’s group delay D(ω) to be constant,

and since

D(ω) = −
d

dω
6 H ′(ω)

we have

D(ω) =
M

2
(1.3.12)

except at those frequencies where R(ω) changes sign. But at those fre-

quencies, R(ω) = |H ′(ω)| = 0, and hence there is no output contribution

anyway. Hence, the group delay is simply the delay to the midpoint of

h(n) (see figure 1.11).

The implication of constant group delay is that all frequency compo-

nents of an input sequence are similarly delayed in the output sequence.

Hence, the symmetry (odd or even) of an input pulse sequence, for ex-

ample, is preserved in the output sequence if the impulse response h(n)

has even symmetry. The delay between the corresponding centers of

symmetry is just the group delay, and this corresponds to the delay in
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h(n) at its center of symmetry. For the above case of M even, the group

delay equals an integer number of sampling periods and thus is easily

accounted for in subsequent data processing.

Type II

The type-II case of M odd leads to expressions similar to (1.3.10) and

(1.3.11), and equation (1.3.12) still holds for the group delay in this case.

However, since this delay is no longer an integer number of sampling

periods for odd M , it can be more difficult to account for unless we wish

to interpolate between samples.

EXAMPLE

Interpolator

A crude way to interpolate between adjacent samples of a signal x(n) is

simply to average each pair of adjacent samples, that is,

y(n) =
1

2
[x(n) + x(n− 1)]

corresponding to the causal first-order type-II filter

h(n) =
1

2
[δ(n) + δ(n− 1)].

The system function is thus

H(z) =
1

2
[1 + z−1],

which has a single zero at z = −1 (as expected for even symmetry and

M odd). The frequency response is

H ′(ω) =
1

2
[1 + e−jω]

=
1

2
e−jω/2[ejω/2 + e−jω/2]

= e−jω/2 cos(ω/2).

Hence, the filter is indeed linear phase with a group delay of 1/2. The

real function R(ω) is the simple lowpass response

R(ω) = cos(ω/2),
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which falls off monotonically to zero at ω = π. In general, interpolation

filters are lowpass functions, as argued in section 13.1.

Types III

and IV

Conjugate-odd symmetry in an FIR impulse response is also associated

with an important class of discrete-time filters. These filters provide a

90◦ phase shift at all frequencies, in addition to constant group delay.

This is seen by evaluating (1.3.10) for z = ejω and bM−m = −b∗m to

obtain

H ′(ω) = e−jωM/2






bM/2 + j

M/2−1
∑

m=0

2|bm| sin

[(
M

2
−m

)

ω + φm

]






= je−jωM/2R(ω) (1.3.13)

since j = ejπ/2 implies a phase shift of π/2. R(ω) is again real because

bM/2 is either purely imaginary (in the general case) or zero (in the real-

valued case) to satisfy the symmetry condition. Such FIR filters are

useful, for example, in approximating the ideal differentiator response

H ′
D(ω) = jω, −π < ω < π. (1.3.14)

As indicated above, the factor j in H ′
D(ω) is realized exactly by the

symmetry condition, and we design the coefficients bm so that R(ω)

approximates

R(ω) ≈ ω, −π < ω < π. (1.3.15)

There is, of course, an additional linear-phase factor in (1.3.13), which

can be eliminated for M even if the filter is made noncausal and is cen-

tered at n = 0. Another example is the ideal Hilbert transformer

H ′
H(ω) =

{

−j, 0 < ω < π

+j, −π < ω < 0,
(1.3.16)

in which case the coefficients bm are designed to give

R(ω) ≈

{

−1, 0 < ω < π

+1, −π < ω < 0,
(1.3.17)
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and there is, of course, a delay of M/2.

EXAMPLE

Differentiator

The simplest discrete-time approximation to a continuous-time differen-

tiator is the first-difference operation

y(n) = x(n)− x(n− 1)

corresponding to the causal first-order type-IV filter

h(n) = δ(n)− δ(n− 1).

The system function is thus

H(z) = 1− z−1

which has a single zero at z = 1, as expected for conjugate-odd symmetry.

The frequency response is

H ′(ω) = 1− e−jω

= e−jω/2[ejω/2 − e−jω/2]

= 2je−jω/2 sin(ω/2).

Hence, the filter has a linear-plus-90◦ phase response, as expected, with

a group delay of 1/2. The real function R(ω) is

R(ω) = 2 sin(ω/2)

which approximates the desired response in (1.3.15) well for ω < π/3,

but not for frequencies above that value.

As a final point concerning real FIR networks with even or odd sym-

metry in the filter coefficients, we note that these networks can be imple-

mented with only [(M/2) + 1]int multipliers. This results from writing

H(z) as

H(z) = b0(1± z−M ) + b1(z
−1 ± z−M+1) + ...+ bM/2z

−M/2

for M even, and likewise for M odd without the last term. The corre-

sponding direct-form network is shown in figure 1.13.
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...

b0

b1

b2

z
-1

z
-1

z
-1x(n)

y(n)

x(n - 1) x(n - M)
z

-1
x(n - 2)

Figure 1.13: Transversal structure with about half the multipliers for

linear-phase FIR filters.

MATLAB Exercise No. 8 - Linear-Phase FIR Filters

Generate the following type-I, -II, -III, and -IV linear- phase FIR filters

(use help remez):

hl = remez(16,[0 0.2 0.3 0.5 0.6 1],[1 1 0 0 1 1]);

h2 = remez(9,[O 0.2 0.5 1],[1 1 0 0]);

h3 = remez(12,[0.1 0.9],[1 1],‘hilbert’);

h4 = remez(9,[0 0.8],[0 0.8],‘differentiator’);

Plot the corresponding impulse responses and pole/zero diagrams, and

compare them with figures 1.11 and 1.12. Also plot the associated mag-

nitude and (unwrapped) phase responses.

Now try the highpass design

h5 = remez(9,[0 0.2 0.5 1],[0 0 1 1]);
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Since this filter is highpass and odd-order, one would expect a zero at

z = 1, that is, a type-IV design. However, remez.m increases the or-

der by one to produce an even-order type-II design. To circumvent this

problem and force the desired type-IV design, we can first generate a

lowpass filter with the frequency-reversed specification

h6 = remez(9,[0 0.5 0.8 1],[1 1 0 0]);

and then convert this to a highpass filter via the transformation H7(z) =

H6(−z), i.e.,

n = [0:9];

h7 = (-1).̂ n.*h6;

Plot the pole-zero diagrams and the impulse and magnitude responses

for H6(z) and H7(z).

1.4 Special Discrete-Time Networks

In addition to linear-phase filters, there are many other special discrete-

time networks with interesting and useful properties. Those to be con-

sidered here are the allpass filter, the comb filter, and complementary

filters.

Allpass

Filters

An allpass filter has a magnitude response that is unity for all frequencies,

i.e.,

|H ′(ω)| = 1, for all ω. (1.4.1)

Such filters are useful for phase equalization of IIR designs and low-

sensitivity IIR implementations, and they also play a central role in

discrete-time spectral transformations (see section 8.4). The system

function of an allpass filter is of the form
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H(z) =

∑N
k=0 akz

−N+k

∑N
k=0 akz

−k
=
z−N + a1z

−N+1 + ...+ aN
1 + a1z−1 + ...+ aNz−N

=
L∏

i=1

z−2 + α1iz
−1 + α2i

1 + α1iz−1 + α2iz−2
, (1.4.2)

where all coefficients are real. Hence, the numerator and denominator

coefficients are the same except that their order is reversed in both the

direct and cascade forms. To see that (1.4.2) implies (1.4.1), we rewrite

(1.4.2) as

H(z) =
z−N

∑N
k=0 akz

k

∑N
k=0 akz

−k
= z−N

D(z−1)

D(z)
. (1.4.3)

It follows immediately that

|H ′(ω)| =

∣
∣
∣
∣

D′(−ω)

D′(ω)

∣
∣
∣
∣ = 1

because |D′(ω)| is an even function if D(z) has real coefficients. From

(1.4.3) we also note that the zeros of H(z) are the reciprocals of its

poles. A typical pole/zero diagram of an allpass filter is illustrated in

figure 1.14.

A cascade-form allpass section having three multipliers is shown in

figure 1.15. Cascade-form networks with only two multipliers per section

can also be generated [?].

Note that the structure of figure 1.15 inherently satisfies the allpass

condition in (1.4.2), even with coefficient quantization.
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Im(z)

 Re(z)

Figure 1.14: Sample allpass pole/zero diagram showing reciprocal

pole/zero pairs.

+ -

-
z

-1
z

-1x(n) y(n)

α
2i

α
2i

α
1i

Figure 1.15: Second-order cascade-form allpass section.
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Many other structures, including the lattice structure (output ŷ(n) in

figure 10.11 and those in [?]), are also inherently allpass. Such allpass

structures are said to be structurally lossless or structurally passive.

Comb Filters

Given an arbitrary system function H(z), consider the response of a fil-

ter with the system function H(zk). Since H ′(ω) is periodic with period

2π, H ′(kω) must be periodic with period 2π/k. Hence, the frequency

response corresponding to H(zk) is periodic within the Nyquist inter-

val 0 ≤ ω ≤ π. Such filters are called comb filters and have various

applications, including the suppression of clutter from fixed objects in

moving-target-indicator (MTI) radars, the suppression of cross-rate in-

terference in Loran navigation systems, and pitch detection in speech

coders. The comb filter is also a useful concept for analyzing certain

algorithms such as the Arithmetic Fourier Transform (AFT) [?].

Im(z)

 Re(z)

(k = 8)

α1/8

Figure 1.16: Sample pole/zero diagram for a comb filter.

As an example of comb filters, we will transform the highpass function

H(z) =
1− z−1

1− αz−1



33

 ω

 |H'    |

 0  2π/k

(ω)

 4π/k  6π/k

Figure 1.17: Sample comb-filter magnitude response.

into a multinotch comb filter by substituting zk for z. The system

function Hk(z) for the comb filter is then

Hk(z) = H(zk) =
1− z−k

1− αz−k
,

which has the pole/zero diagram shown in figure 1.16 (for k = 8). The

corresponding frequency response is sketched in figure 1.17, and we see

that the frequency 2π/k and all its harmonics will be rejected by this

filter (as well as ω = 0, or dc). An implementation of this filter is

diagrammed in figure 1.18.

+-

x(n) y(n)

z -k

α

Figure 1.18: Comb-filter implementation for figures 1.16 and 1.17.
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Figure 1.19: Power-complementary third-order elliptic lowpass and

highpass responses.

Complementary

Filters

A pair of filters H1(z) and H2(z) (either FIR or IIR) is said to be power-

complementary if

|H ′
1(ω)|

2 + |H ′
2(ω)|

2 = 1 (1.4.4)

for all ω. For filters with real-valued coefficients, this is equivalent to the

z-transform requirement that

H1(z)H1(z
−1) +H2(z)H2(z

−1) = 1. (1.4.5)

For example, if H1(z) is lowpass, then H2(z) is highpass as illustrated

in figure 1.19, while if H1(z) is bandstop, then H2(z) is bandpass. Note

that in order for H1(z) and H2(z) to satisfy (1.4.4) and (1.4.5), they

must be bounded real, that is,

|H ′
i(ω)| ≤ 1. (1.4.6)

Given an Nth-order bounded-real filter

H1(z) =
P (z)

D(z)
(1.4.7)
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it is always possible to find the corresponding power complement

H2(z) =
Q(z)

D(z)
(1.4.8)

because, from (1.4.5),

P (z)P (z−1) +Q(z)Q(z−1) = D(z)D(z−1), (1.4.9)

and thus Q(z) can be obtained from H1(z) as a spectral factor of

Q(z)Q(z−1) = D(z)D(z−1)− P (z)P (z−1). (1.4.10)

That is, rooting the 2Nth-order zero-phase polynomial Q(z)Q(z−1), we

can separate the zeros into reciprocal pairs zk and z−1
k , k = 1, 2, .., N ,

and then select the {zk} for Q(z), leaving {z
−1
k } for Q(z

−1). Of course,

if the filters are FIR, then D(z) = 1.

In the case of classical IIR filters (Butterworth, Chebyshev, and

elliptic–see chapter 8), P (z) and Q(z) have all their zeros on the unit

circle (implying that Q(z)Q(z−1) has double zeros on the unit circle).

Hence, P (z) and Q(z) are linear-phase polynomials with even or odd

symmetry. In particular, for a lowpass or bandstop filter H1(z), we have

H1(1) 6= 0, and thus P (z) has even symmetry. If H1(1) = 1, then the

complementary highpass or bandpass filterH2(z) must satisfyH2(1) = 0,

and Q(z) has at least one zero at z = 1. If N is odd, the number of zeros

of Q(z) at z = 1 is odd, and thus Q(z) has odd symmetry. Therefore,

for H1(1) = 1 and N odd, P (z) is type II and Q(z) is type IV.

In this important special case, it can be shown [?] that H1(z) and

H2(z) can be realized as parallel combinations of two stable allpass filters

A1(z) and A2(z) with real-valued coefficients as shown in figure 1.20, i.e. ,

H1(z) =
1

2
[A1(z) +A2(z)],

H2(z) =
1

2
[A1(z)−A2(z)], (1.4.11)

from which we see that the required allpass filters are simply

A1(z) = H1(z) +H2(z),

A2(z) = H1(z)−H2(z). (1.4.12)
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+

-

1 / 2

A1(z)

x(n)

y2(n)

y1(n)

A2(z)

Figure 1.20: Allpass realization of a doubly-complementary filter pair.

SinceH1(z)+H2(z) equals the allpass filter A1(z), we say that H1(z) and

H2(z) are complementary with respect to A1(z), and since they are also

power-complementary, they are said to form a doubly-complementary

pair. If the implementations A1(z) and A2(z) are structurally lossless

(i.e., constrained to be allpass even with coefficient quantization), then

H1(z) andH2(z) must be bounded real, in which case the implementation

of figure 1.20 is structurally bounded. As discussed in chapter 11, this

implies very low sensitivity to coefficient quantization in the passband.

The allpass filters A1(z) and A2(z) have orders N1, and N2, respec-

tively, with N1 +N2 = N . That is, from (1.4.12),

A1(z) =
P (z) +Q(z)

D(z)
=
z−N1D1(z

−1)

D1(z)

A2(z) =
P (z)−Q(z)

D(z)
=
z−N2D2(z

−1)

D2(z)
(1.4.13)

with D(z) = D1(z)D2(z). Specifically, N2 zeros of P (z) + Q(z) cancel

N2 poles of 1/D(z) to yield A1(z), while N1 zeros of P (z)−Q(z) cancel

the other N1 poles of 1/D(z) to yield A2(z).

If the filter order N is even, Q(z) has even symmetry, and the sim-

ple implementation of figure 1.20 is not applicable. However, a closely

related implementation based on a complex allpass filter has been devel-

oped [?].
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EXAMPLE

The only first-order IIR lowpass filter satisfying the requirementsH1(1) =

1 and H1(−1) = 0 is

H1(z) =
1
2(1− a)(1 + z−1)

1− az−1
, (1.4.14)

and likewise, for H2(1) = 0 and H2(−1) = 1, we have the highpass filter

H2(z) =
1
2(1 + a)(1− z−1)

1− az−1
. (1.4.15)

One can readily verify that H1(z) and H2(z) are power-complementary.

Therefore, since

P (z) +Q(z) = 1− az−1 = D(z)

and

P (z)−Q(z) = z−1 − a,

we can realize H1(z) and H2(z) in the form of figure 5.20 with the allpass

filters

A1(z) = 1

and

A2(z) =
z−1 − a

1− az−1
.

1.5 Relationships between Magnitude and Phase Responses

As discussed in section 4.3, the locations of poles and zeros influence

both the magnitude and phase responses of a system. In this section, we

shall study these important magnitude and phase relationships in more

detail.
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1.5.1 Minimum-phase Systems

Consider the frequency response H1(e
jω) of a system with just one zero

located at a1, where a1 = r1e
jθ1 , r1 < 1 , i.e. ,

H1(e
jω) = 1− a1e

−jω. (1.5.1)

Taking the natural logarithm of both sides and using the power series

expansion for ln(1− x) , we have

ln(H1(e
jω)) = ln(1− a1e

−jω)

=
∞∑

n=1

−1

n
an1e

−jωn

=
∞∑

n=1

−rn1 cos(nω − nθ1)

n
︸ ︷︷ ︸

α1(ω)

+ j
∞∑

n=1

rn1 sin(nω − nθ1)

n
︸ ︷︷ ︸

α̂1(ω)

= α1(ω) + jα̂1(ω).

Thus the frequency response H1(e
jω) may be expressed in terms of the

real functions α1(ω) and α̂1(ω) as

H1(e
jω) = eα1(ω)+jα̂1(ω). (1.5.2)

Note that the log-magnitude α1(ω) and the phase response α̂1(ω) of this

system are related by the Hilbert transform because sin nω is the Hilbert

transform of cos nω.

Now consider a generalMth-order FIR system with all its zeros inside

the unit circle. Its system function (within a scale factor) may be written

as a product of first-order factors as follows :

H(z) =
M∏

k=1

(1− akz
−1). (1.5.3)

Since each factor (1− akz
−1) will contribute a term of the form

eαk(ω)+jα̂k(ω)

to the frequency response, H(ejω) is given by

H(ejω) = eα(ω)+jα̂(ω) (1.5.4)
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where

α(ω) =
M∑

k=1

αk(ω),

α̂(ω) =
M∑

k=1

α̂k(ω).

Again note that the log-magnitude and phase responses of the system

are related by the Hilbert transform. Likewise, if a system has a pole

located inside the unit circle at ak, its contribution to the frequency

response is (1 − ake
−jω)−1. Since ln(1 − ake

−jω)−1 = −αk(ω) − α̂k(ω),

the log-magnitude and phase still obey the Hilbert transform property.

Therefore, for FIR systems with all zeros inside the unit circle and stable

IIR systems with poles and zeros inside the unit circle, the phase and

magnitude responses all have the same form as in (1.5.4). Such systems

are called minimum-phase systems for reasons that we will demonstrate.

Minimum-phase systems are invertible.

1.5.2 Maximum-phase Systems

Consider again a first-order system with a zero outside the unit circle at

1/a∗1 i.e., H2(z) = z−1− a∗1, where a1 is defined as before in (1.5.1). The

logarithm of the frequency response of this system is

ln(H2(e
jω)) = ln(e−jω − a∗1)

= −jω + ln(1− a∗1e
jω)

= −jω + α1(ω)− jα̂1(ω).

The last step in the previous equation follows from the fact that ln(1−

a∗1e
jω) = ln(H∗

1 (e
jω)). Thus the frequency response H2(e

jω) may be

expressed as

H2(e
jω) = eα1(ω)−j(α̂1(ω)+ω). (1.5.5)

As expected, the magnitude responses of H1(e
jω) and H2(e

jω) are iden-

tical. However, the phase response of H2(e
jω) has an additional linear

phase term. Also the non-linear part of the phase function 6 H2(e
jω) is

equal to − 6 H1(e
jω). This system is maximum-phase.
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Considering an Mth-order maximum-phase system as a cascade of

M first-order systems, its frequency response may be expressed as

H(ejω) = eα(ω)−jα̂(ω)−jMω (1.5.6)

where α(ω) and α̂(ω) are defined as before. For a given magnitude

response, a maximum-phase system has the largest possible phase lag

due to the the linear phase term in its frequency response in (1.5.6).

The name “maximum-phase” is derived from this maximum phase-lag

property. Note that if H1(z) and H2(z) are cascaded together, then

the non-linear phase contributions from these two frequency responses

cancel each other, resulting in a linear-phase frequency response. Thus

the linear-phase contribution of a linear-phase filter actually comes from

its maximum-phase part. Zeros on the unit circle will also contribute a

linear phase term to the frequency response. Occasionally, maximum-

phase systems are defined to include zeros on the unit circle as well.

In purely minimum-phase or maximum-phase systems, the magni-

tude and phase responses are closely tied to each other, i.e., specification

of the magnitude response essentially determines the phase response, and

vice-versa. Hence filters with arbitrary magnitude and phase responses

can not be realized by purely minimum-phase or maximum-phase sys-

tems, in general.

1.5.3 Allpass Systems

Allpass systems have a constant magnitude response and a non-trivial

phase response. Consider the first-order allpass system H3(z) defined

using H1(z) and H2(z) from the previous subsections as

H3(z) =
H2(z)

H1(z)

=
z−1 − a∗1
1− a1z−1

. (1.5.7)

That is, the pole of H3(z) is located inside the unit circle at a1 and

its corresponding zero is located at the reciprocal conjugate location

1/a∗1. Substituting for the frequency responses H1(e
jω) and H2(e

jω)
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from (1.5.2) and (1.5.5), we have

H3(e
jω) =

eα1(ω)−j(α̂1(ω)+ω)

eα1(ω)+jα̂1(ω)

= e−jω−2jα̂1(ω). (1.5.8)

Thus the magnitude response of H3(z) is unity. The group delay of H3(z)

is defined as

τ3(ω) = −
d

dω
6 H3(e

jω)

= −
d

dω
(−ω − 2α̂1(ω))

= −
d

dω
(−ω − 2

∞∑

n=1

rn1 sin(nω − nθ1)

n
)

= 1 + 2
∞∑

n=1

rn1 cos(nω − nθ1)

= 1 +
∞∑

n=1

(rn1 e
j(nω−nθ1) + rn1 e

−j(nω−nθ1)).

Writing the geometric sums in closed form, we have

τ3(ω) =
1

1− a∗1e
jω
+

1

1− a1e−jω
− 1

=
1− r2

1

|1− a1e−jω|2
. (1.5.9)

Since r1 < 1, τ3(ω), which equals the negative of the slope of the phase

response, is a positive quantity for all ω. This implies that the (un-

wrapped) phase response of the allpass filter H3(z) is a monotonically

decreasing function in the interval −π < ω < π. Since a higher-order all-

pass system can be regarded as a cascade of first-order allpass systems, it

follows that the group delay of any order allpass system is positive for all

frequencies. Consequently, its phase response monotonically decreases.

1.5.4 Decomposition of Non-Minimum-phase Systems

A minimum-phase system is both causal and stable and has all its ze-

ros and poles inside the unit circle. Consider a stable and causal non-
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minimum-phase system H(z). Assume that only one of its zeros is out-

side the unit circle. We can then write H(z) as the product

H(z) = G(z)(z−1 − a∗) (1.5.10)

where 1/a∗ is the location of the zero outside the unit circle. G(z) is the

part of H(z) which contains all other zeros and poles that are assumed

to be inside the unit circle. We shall multiply and divide H(z) by a

factor (1 − az−1). By grouping the minimum-phase terms together, we

can rewrite H(z) as

H(z) = G(z)(1− az−1)
︸ ︷︷ ︸

Hmin(z)

(z−1 − a∗)

(1− az−1)
︸ ︷︷ ︸

Hap(z)

. (1.5.11)

If the non-minimum-phase system has more than one (real or complex)

zero outside the unit circle, we can repeat the above process of introduc-

ing a pole at the reciprocal complex-conjugate location and cancelling

it by a zero at the same location. Then we can separately group the

minimum-phase and allpass parts. Thus any non-minimum-phase sys-

tem may be decomposed as follows:

H(z) = Hmin(z)Hap(z). (1.5.12)

We may express the unwrapped or continuous-phase of H(z) as the sum

of the phase due to the minimum-phase system and the allpass system,

i.e.,

6 H(ejw) = 6 Hmin(e
jw) + 6 Hap(e

jw). (1.5.13)

Therefore, the group delays of the systems are similarly related as

τ(ω) = τmin(ω) + τap(ω). (1.5.14)

Since we have shown in the previous subsection that τap(ω) is positive

for all ω, it follows that the non-minimum-phase system H(z) has a

larger group delay than the corresponding minimum-phase system with

the identical magnitude response. This also implies that the phase lag
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through the non-minimum-phase system is larger than that of the cor-

responding minimum-phase system.

Increased phase lag or group delay of non-minimum-phase systems

also manifests itself in the magnitude of the impulse response samples

of these systems. Specifically, a minimum-phase system tends to have a

larger portion of its energy concentrated in its initial impulse response

samples (close to n = 0) compared to a non-minimum-phase system with

identical frequency-response magnitude. We shall demonstrate this for

a simple case in the following example.

EXAMPLE

Let H(z) be a causal non-minimum-phase system. Let Hmin(z) be a

minimum phase system with the identical magnitude response. Clearly,
∫ π

−π
|H(ejω)|2dω =

∫ π

−π
|Hmin(e

jω)|2dω. (1.5.15)

Using Parseval’s relationship it follows that

∞∑

n=0

|h(n)|2 =
∞∑

n=0

|hmin(n)|
2 (1.5.16)

where h(n) and hmin(n) are the corresponding impulse responses. That

is, the total energy in the two impulse response sequences are the same.

Now, let us consider the partial energy in the first m+1 samples of h(n)

and hmin(n). For simplicity, assume that H(z) has only one zero outside

the unit circle. If we denote the zero outside as 1/a∗, then we can write

H(z) as

H(z) = G(z)(z−1 − a∗). (1.5.17)

All other zeros and poles of H(z) are inside the unit circle and are

grouped under the system function G(z). The minimum-phase system

Hmin(z), which has the same magnitude response as H(z), is given by

Hmin(z) = G(z)(1− az−1). (1.5.18)

Now, taking the inverse z-transform of (1.5.17) and (1.5.18), we obtain

h(n) = g(n− 1)− a∗g(n) (1.5.19)
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and

hmin(n) = g(n)− ag(n− 1). (1.5.20)

Let ∆E(m) denote the difference in energy in the first m+1 samples of

the two impulse responses h(n) and hmin(n), i.e.,

∆E(m) =
m∑

n=0

(|hmin(n)|
2 − |h(n)|2). (1.5.21)

Substituting for the impulse responses from (1.5.19) and (1.5.20) and

using the fact that G(z) is a causal system and |h(n)|2 = h(n)h∗(n),

etc., we find that

∆E(m) =
m∑

n=0

(|g(n)|2(1− |a|)2 − |g(n− 1)|2(1− |a|)2)

= |g(m)|2(1− |a|2). (1.5.22)

Since |a|2 < 1, (1.5.21) then implies that

m∑

n=0

|hmin(n)|
2 ≥

m∑

n=0

|h(n)|2. (1.5.23)

That is, the energy in the firstm+1 impulse response samples ofHmin(z)

is greater than or equal to that in the first m + 1 impulse response

samples of H(z). But as m approaches infinity in Eq.(1.5.22) the en-

ergy difference ∆E(m) tends to zero because |g(m)| tends to zero. Al-

though the above expression is derived for the case of a H(z) with only

one zero outside the unit circle, the inequality in (1.5.23) holds for a

general H(z) with multiple zeros outside the unit circle and its corre-

sponding minimum-phase system Hmin(z) as well (See Problem 5.29).

The following numerical example further illustrates the properties of the

minimum/non-minimum/maximum-phase systems discussed in this sec-

tion.

EXAMPLE

Figures 1.21(a), (b), (c) and (d) show the pole-zero plots for four differ-

ent FIR filter transfer functions H1(z), H2(z), H3(z), and H4(z), respec-

tively, where
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Im(z) 

Re(z) 

Im(z) 

 Re(z)

Im(z) 

Re(z) 

Im(z) 

Re(z) 

    (a) (b) 

(c) (d) 

Figure 1.21: Pole-zero plots of the four sample FIR filters.

H1(z) = (1− 0.56ejπ/6z−1)(1− 0.56e−jπ/6z−1)×

(1− 0.77ej3π/4z−1)(1− 0.77e−j3π/4z−1)

H2(z) = (z−1 − 0.56e−jπ/6)(z−1 − 0.56ejπ/6)×

(1− 0.77ej3π/4z−1)(1− 0.77e−j3π/4z−1)

H3(z) = (1− 0.56ejπ/6z−1)(1− 0.56e−jπ/6z−1)×

(z−1 − 0.77e−j3π/4)(z−1 − 0.77ej3π/4)

H4(z) = (z−1 − 0.56e−jπ/6)(z−1 − 0.56ejπ/6)×

(z−1 − 0.77e−jπ/6)(z−1 − 0.77ejπ/6).

H1(z) is a minimum-phase filter and H4(z) is maximum-phase. The non-

minimum-phase filter H2(z) is obtained from H1(z) by flipping two of its

zeros on the right half of the z-plane to outside the unit circle. Similarly

H3(z) is obtained from H1(z) by flipping the other two zeros outside the

circle. If we flip all zeros of H1(z) outside the circle, we have H4(z).
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Figure 1.22: Impulse responses and unwrapped phase responses of the

four sample FIR filters.

The corresponding impulse responses and unwrapped phase responses

for the four filters are shown in figure 1.22. Note that, as expected, all

four filters have identical magnitude responses (not shown). Also notice

that the minimum-phase filter H1(z) has the smallest phase lag (figure

1.22 (b)) whereas the maximum-phase filter has the largest (figure 1.22

(h)). Note that the non-minimum phase filter H2(z), for example, may

be decomposed into minimum-phase and allpass factors as follows:
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H2(z) = H1(z)

{

(z−1 − 0.56e−j(π/6))(z−1 − 0.56ej(π/6))

(1− 0.56e−j(π/6)z−1)(1− 0.56ej(π/6)z−1)

}

.

Observe (see figures 1.22 (a), (c), (e), and (g)) that for the minimum-

phase system H1(z), a significant portion of the total energy in the im-

pulse response samples is concentrated in the first few samples close to

the origin n = 0. On the other hand, for the maximum-phase system

H2(z) the energy is concentrated at the tail end. The same point is

made in figure 1.23 where the partial energy E(m) in the first m + 1

samples of the impulse response is plotted as a function of m for each

system. Also note that for these FIR filters, h4(n) = h1(M − n) and

h3(n) = h2(M − n), where the order M equals 4.

m

P
ar

tia
l E

ne
rg

y 
 E

(m
)

Minimum Phase 

Maximum Phase 

1.4 

6 0 

H
1
(z) 

H
3
(z) 

H
2
(z) 

H
4
(z) 

Figure 1.23: Partial energies of the four sample FIR filters.
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Problems

5.1 Derive equation (1.1.3) for the system function H(z) of a feedback

network by relating X(z), Y (z), and W (z) in figure 1.1.

5.2 a. Find H(z) for the network in the figure below. (Hint: Identify

the feedback network G(z).)

x(n) y(n)

z
-1

K1 K3

K4K2

z
-1

b. What conditions on the parameters Ki ensure stability?

c. Draw the transpose network.

d. Give the state matrices A, b, ct, d.

e. Find H(z) from (d) and check it with (a).

f. If the fractional parts of all multiplier coefficients are quantized

to the same number of bits, is there any advantage to this config-

uration over the second-order direct-form structure with regard to

the accuracy with which H(z) can be realized? Why?

5.3 As a result of a particular design algorithm, the following causal

second-order filter was produced:

H(z) =
1 + 2z−1 + z−2

1− 2z−1 + 1.33z−2
.
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z
−1

x(n) y(n)

 α1

α2

+ −

−

−1
z

+

a. Is this filter stable?

b. If not, give a causal and stable H(z) having the same magnitude

response |H ′(ω)|. (Hint: Consider the cascade of the unstable

system function with an appropriate allpass function.)

c. Sketch |H ′(ω)|.

5.4 Show that equation (1.3.7) is required, along with (1.3.6), for the

stability of a second-order section.

5.5 Show that for type-II and -III FIR filters with real coefficients bm,

one zero must lie at z = −1. (Hint: Look at figure 1.11.)

5.6 Show that this network has unity gain at dc, i.e., H(l) = 1. (Hint:

Manipulate either the flow graph below or the corresponding dif-

ference equations.)

5.7 Sketch the pole/zero diagram and the magnitude response for the

comb filter

H(z) = K
1 + z−4

1− az−4
.

Find K such that the peak gain is unity, and design a structure

that incorporates the scaling constant K without an additional
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multiplier.

5.8 Find H(z) and h(n) for the network in the figure below.

z
−1

a

x(n) y(n)

5.9 Sketch the pole/zero diagram and magnitude response for the net-

work in the figure below.

x(n) y(n)

z
-1

-0.64

z
-1

5.10 Draw direct-form-I and direct-form-II networks for the notch fil-

ter in problem 4.10 with r = 0.95 and θ = 60◦. Which network

has potential overflow problems because of large gains to internal

nodes?

5.11 Draw a recursive implementation of the simple- averaging filter

incorporating a comb filter. (Hint: Implement H(z) directly as in

(??).) Draw the transpose network. What problems of dc offset or

dc accumulation do you see in these networks?
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5.12 Find the system function H11(z) from input x1(n) of figure ?? to

the output s1(n) by feedback analysis. Repeat for H21(z) from the

same input to output s2(n). You may wish to check your answers

with those from problem 4.11(c).

5.13 A first-order allpass filter has the system function

H(z) =
z−1 − a

1− az−1
.

a. Draw form-I and form-II networks for this filter.

b. Sketch the phase response 6 H ′(ω) of this filter.

c. When the coefficient a is quantized to a finite number of bits, its

value will be perturbed. Will this perturb the magnitude and/or

the phase responses of the filter?

5.14 Find the state matricesA, b, ct, d for a fourth-order filter in parallel

form II. Repeat for cascade form II. (Be careful to include all paths

to and from the states.)

5.15 A discrete-time oscillator has the impulse response h1(n) = cosnω0

u(n). Draw a network with this impulse response. Repeat for

h2(n) = sinnω0 u(n). Incorporate both outputs into a single net-

work to produce a quadrature oscillator.

5.16 Draw cascade- and parallel-form-I networks for the following filter

using first-order sections:

H(z) =
0.7(1− z−2)

1− 0.3z−1 − 0.4z−2
.

Compare the number of multipliers in the two networks.

5.17 Sketch the magnitude responses of the four FIR filters in figure

1.12 assuming that each reciprocal pair of zeros implies a dip in

the response. Assume also that the filters are equiripple, i.e., that

the passband ripples are of equal amplitude, and likewise for the

stopband, if applicable.
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5.18 a. Find H(z) for the network shown.

z
−1

z
−1

x(n) y(n)
−1/2

−1/2

b. Sketch the pole/zero diagram.

c. Sketch the magnitude response |H ′(ω)|.

d. Draw the equivalent direct-form-II network.

e. Find the state matrices A, b, ct, d.

f. Draw the network in state-space form (see figure 4.11).

5.19 Find the overall system function H(z) for the interconnection of

subsystems shown.
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x(n) y(n)

H3(z)

H2(z) H4(z)

H1(z)

H5(z)

5.20 A North American and international standard has been estab-

lished by ANSI and CCITT for digital telephone transmission at

32 kilobits/sec using adaptive differential pulse-code modulation

(ADPCM). The ADPCM encoder at the transmitter can be di-

agrammed as shown below. The adaptive predictor generates a

prediction x̂(n) of the input signal x(n), and the difference sig-

nal d(n) is quantized by an adaptive quantizer Q to produce the

encoder output y(n). The decoder at the receiver corresponds to

the inverse of the encoder and produces the recovered signal r(n),

which, in the absence of the quantization and transmission errors,

would equal the original signal x(n). Neglecting the time- varying

nature of the adaptive filters A(z) and B(z), their system functions

are given by

A(z) = a1z
−1 + a2z

−2

and

B(z) = b1z
−1 + b2z

−2 + · · ·+ b6z
−6

We will also neglect the quantizer Q in the following analysis.

a. Find the encoder system function He(z) from x(n) to y(n).

b. Show that the signal r(n) in the encoder equals x(n), i.e., that
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+

−

x(n) y(n)

 B(z)

Q

 A(z)
r(n)

d(n)

x(n)^

Adaptive Predictor

the system function Hr(z) from x(n) to r(n) is unity.

c. Diagram a decoder network Hd(z) with input y(n) and output

r(n), such that He(z)Hd(z) = 1.

d. How many (nonzero) poles and zeros does the encoder have?

The decoder?

e. Why is it necessary for the encoder to be minimum-phase?

5.21 Consider the FIR technique of averaging by 4’s and 6’s (see problem

4.3).

a. Draw the corresponding pole/zero diagram.

b. Is the overall filter type I or type II?

c. Sketch |H ′(ω)|. (Optional: Plot in dB using MATLAB.)

d. Draw the direct-form (transversal) network.

e. Draw the cascade-form network with second-order sections. How

many multipliers are required?
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5.22 For each of the following second-order systems:

a. Find H(z), and state the constraints on the coefficient values

for stability.

b. Draw the transpose network.

c. Find the corresponding state matrices A, b, ct, d.

z
−1

a

x(n) y(n)w(n)

b

z
−1

x(n) y(n)

K1

z
-1

z
-1

K2



56 Chapter 1 Discrete-Time Networks

x(n) y(n)

K1

K3

z
-1

z
-1

K2

K1

y(n)

z
-1

-K1

z
-1

x(n)

-K2

5.23 For the fourth-order comb filter

H(z) =
1

1− 1
4z

−4
,

a. Sketch H ′(ω)|.

b. Draw direct, cascade, and parallel forms with real coefficients.

5.24 For the fourth-order comb filter

H(z) =
1− z−4

1− 1
4z

−4
,

a. Sketch |H ′(ω)|.

b. Draw the cascade-form-II network with real coefficients.

5.25 For the FIR filter H(z) = 1 + 1.5z−1 − 1.5z−2 − z−3,

a. Draw the pole/zero plot. (Hint: What type FIR filter is this?)

b. Draw an implementation having the minimum number of mul-

tipliers.
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c. Sketch the magnitude and phase responses. (You should be able

to do this without MATLAB, but you may wish to check yourself

using MATLAB.)

Repeat the problem for H(z) = 1 + 1.5z−1 + 1.5z−2 + z−3.

5.26 Utilizing equation (1.4.5) and MATLAB (conv, roots, etc.), find

power-complementary highpass filters for the following FIR low-

pass filters, and plot the associated pole/zero diagrams and magnitude-

squared responses |H ′
1(ω)|

2 and |H ′
2(ω)|

2:

a. H1(z) =
1
2(1 + z−1). (You don’t need MATLAB for this one.)

b. H1(z) =
1
3(1 + z−1 + z−2).

c. H1(z) =
1
6(1 + z−1)(1 + z−1 + z−2).

5.27 Consider a first order allpass system

Hap(z) =
z−1 − a∗1
1− a1z−1

where a1 = r1e
jθ, r1 < 1.

a. Show that the phase function of Hap(z) may be expressed as

follows (See also the equivalent expression in (1.5.8)):

6 Hap(e
jω) = −ω + 2tan−1

{
r1sin(θ − ω)

1− r1cos(θ − ω)

}

.

Obtain the expression for the filter’s group delay using the above

expression and show that it is always positive. Therefore, as ω

is changed monotonically from −π to π, 6 Hap(e
jω) changes from

π+ φ1 to −π+ φ1 where φ1 is equal to the 2 tan
−1{..} term above

evaluated at ω = ±π. Thus, the allpass filter’s frequency response

maps the unit circle onto itself.

b. Show that if Hap(z) has real coefficients (i.e., a1 is real-valued),

then

∫ π

0
τap(ω)dω = π,
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where τap(ω) is the group delay function of the filter.

c. More generally, show that for an M -th order allpass filter

∫ π

−π
τap(ω)dω = 2Mπ.

5.28 Let A(z) denote an Mth-order minimum-phase filter with real co-

efficients :

A(z) = a0 + a1z
−1 + a2z

−2 + · · ·+ aMz−M .

Let A(1/z) denote the reciprocal polynomial (with roots in recip-

rocal conjugate locations, i.e., outside the unit circle):

A(1/z) = a0 + a1z + a2z
2 + · · ·+ aMzM .

Define two other polynomials

P (z) = [A(z) + z−MA(1/z)]

Q(z) = [A(z)− z−MA(1/z)].

Note that the coefficients of P (z) and Q(z) have even and odd

symmetry, respectively.

a. Show that P (z) and Q(z) have all their zeros on the unit circle.

(Hint: Divide P (z) by A(z) and use the montonic phase property

of allpass filters.)

b. Show that the zero locations of P (z) and Q(z) are interlaced.

In the speech signal analysis literature, the angles corresponding to

the 2M roots of the two M -th degree polynomials P (z) and Q(z)

are called line-spectral-frequencies (LSFs).

5.29 Show that of all the causal systems having the same frequency

response magnitude |H(ejω)|, the energy

E(m) =
m∑

n=0

|h(n)|2
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is maximum for all m ≥ 0 when h(n) is the impulse response of a

minimum-phase system,i.e.,

m∑

n=0

|hmin(n)|
2 ≥

m∑

n=0

|h(n)|2.

5.30 Let H(z) be a minimum-phase FIR filter.

H(z) = h0 + h1z
−1 + h2z

−2 + · · ·+ hMz−M .

a. Show that

∫ π

−π
ln |H(ejω)|dω = 2π ln(|h0|).

b. Show that the group delay τ(ω) of H(z) with real coefficients

must be negative for some values of ω, 0 < ω < π. (Hint: Show

that
∫ π
0 τ(ω)dω = 0.)

5.31 Find the minimum-phase filter that has the same magnitude re-

sponse as the linear-phase filter

H(z) = −1 + 4.25z−2 − z−4.

Check your answer by comparing the gains of both filters at ω =

0, π/2, and π.


