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Abstract: 
A newly emerging protocol for storage networking, 

iSCSI [1,2], was recently ratified by the Internet 
Engineering Task Force [3]. The iSCSI protocol is 
perceived as a low cost alternative to the FC protocol for 
networked storages [5,6,7,8]. It allows block level 
storage data to be transported over the popular TCP/IP 
network that is widely understood. This paper presents a 
new storage architecture allowing parallel processing of 
iSCSI packets. By leveraging inexpensive Ethernet ports, 
we are able to greatly improve the throughput of iSCSI 
storages through parallel processing. We have carried 
out a performance analysis to evaluate the performance 
of the new architecture as compared to the existing iSCSI 
storages. Our numerical results show that the new 
architecture has good performance potential. 
 
 
1. Introduction 

 
Increasing performance of a shared storage in a SAN 

has been the design goal of storage designers for a long 
time. Because of the inherent limitations of storage 
devices such as disks or tapes that involve mechanical 
operations for each data access, storage operations have 
been the major bottleneck in an IT system compared to 
CPU, RAM, and network that have all improved by 
several orders of magnitudes over the past decade. 
Technologies to improve storage performance can 
generally be classified into two categories: caching and 
parallel processing. Our previous research [4] is an 
example of reliable and effective caching technology. 
Examples of parallel processing include RAID 
(redundant array of independent disks) and various 
parallel interconnect technologies such as InfiniBand, 
Ultra Wide SCSI, Gigabit FC, etc. These technologies 
aim at increasing the storage throughput by means of 
parallel data accesses (RAID), parallel connectivity 
(InfiniBand and Ultra Wide SCSI), and high data rate 
(FC).  

With rapid advances in network technologies, speed 
of networks such as Ethernet and FC increased 
dramatically at the same time the cost of network 
components such as NIC (network interface card) and 
switches decreases dramatically. The cost of per network 
port is very inexpensive, which makes it economically 

feasible to have multiple ports at server and multiple 
ports at a storage system. Such multiple ports provide 
parallel connections between servers and storages 
allowing parallel data/control transfers between servers 
and storages. Parallel communications between servers 
and storages can happen in two dimensions: multiple 
logical connections over one physical link and parallel 
connections across multiple physical links.  

Existing storage technologies make use of these 
parallel connections to improve storage throughput in a 
straightforward manner. For example, the iSCSI protocol 
allows parallel connections but will collect and order 
packets in a buffer queue in a session before execution. 
The protocol mandates that all packets have to be 
handled in the order in which the packets were originally 
generated from the initiator side. Such requirement limits 
the potential parallelism and performance gains since it 
essentially serializes the processing of packets coming 
from parallel ports. Analyzing such networked storage 
systems, we found a surprising similarity between 
parallel network connections in a storage system and the 
parallel processing technology in processor designs. The 
logical parallel connections over a physical channel is 
analogous to pipelining machine that issues one 
instruction per cycle with parallelism occurring at 
different processing stages, and multiple physically 
connected channels are analogous to super-scalar 
machine that issues multiple instructions per cycle. The 
fundamental technology that makes the greatest leap 
forward from the traditional computers to today’s high 
performance processors is the trick of allowing out of 
order execution and in order commit inside processor 
designs to maximize parallelism. We believe the same is 
true for parallel storage systems. However, to the best of 
our knowledge, there has been no attempt in doing this in 
the research community neither in the storage industry.  

Our objective here is to propose a new algorithm in a 
storage system to process packets as soon as they arrive 
at the storage through the parallel connections 
irrespective of their order of initiation. Data 
dependencies among the operations are resolved without 
delays. The results of these parallel executions will 
commit in the order of their initiations. Our prior 
research has shown that 30% of packets arrive at an 
iSCSI storage target out of order over 3 parallel network 
connections. We believe such a high percentage of out-
of-order arrivals present us with an opportunity to 



  

improve networked storage performance using our 
parallel packet processing algorithm. 
 
2. System Architecture and the Parallel 
Algorithm 
 

We consider an IT infrastructure where a number of 
application servers share a target storage. Connections 
between an application server and the target storage are 
plural both logically and physically. The storage should 
therefore be able to handle multiple connections from a 
server and multiple connections from multiple servers. 

Our iSCSI target storage consists of a packet 
processing logic that manages the parallel network ports, 

an execution engine that executes our parallel algorithm, 
a command queue that buffers received storage 
commands, a reservation station that records commands 
being executed; a commit cache that stores committed 
data, and a storage system. The basic idea of our 
algorithm is to start execution of a storage command as 
soon as it arrives at the storage. Such an execution is 
recorded in the reservation station associated with 
dependencies of the command on other commands in the 
reservation station as well as commands that have not 
arrived at the storage yet. The actual commits of such 
executions will be done in the order of commands 
sequence. To describe how the algorithm works, let us 
first consider the following example command sequence. 

______________________________________________________________________________________________ 
EXAMPLE: Suppose that the correct command sequence as generated by an initiator is  

1. write block A: WA
1 

2. read block B: RB
2 

3. read block C: RC
3 

4. write block D: WD
4 

5. read block A : RA
5 

6. write block B WB
6 

7. read block A RA
7 

The sequence of these commands is shown blow. Note that network storage protocols such as iSCSI define command sequence numbers for all 
storage commands issued from an initiator to target storage. The superscript of each command indicates this command sequence number. 
 

RA
7 WB

6 RA
5 WD

4 RC
3 RB

2 WA
1 

 
During the network transmission of these commands, the arrival sequence to the storage has been changed as follows: 
 

1. read block B: RB
2 

2. read block C: RC
3 

3. write block D: WD
4 

4. read block A : RA
5 

5. write block B WB
6 

6. write block A: WA
1 

7. read block A RA
7 

The arrived storage commands will be buffered in a command queue as shown below after all commands have arrived at the storage. 
 

RA
7 WA

1 WB
6 RA

5 WD
4 RC

3 RB
2 

 
_______________________________________________________________________________________________ 
 

We would like to start execution as soon as RB
2 

arrives even though its sequence number is not what is 
expected by the storage that is expecting for WA

1. By 
doing this, we are effectively allowing parallel and out 
of order execution of these commands in the command 
queue. However, there are data dependencies among 
these commands. For example, there is a read after 
write (RAW) dependency between RA

5 and WA
1. 

There is a write after read (WAR) data dependency 
between WB

6  and  RB
2 . And there are also possibly 

write after write data dependencies not shown here.  
To guarantee data correctness and allow parallel out of 
order execution, we start executing these arrived 
commands by putting them in a data structure called 
Reservation Station as shown in Table 1. As shown in 
this reservation station, command #5 has a RAW data 
dependency on command #1 and command #6 has a 

WAR dependency with command #2 buffered in 
reservation station entry 0, RS[0], and so forth. Note 
that, some of the data dependencies shown in the table 
may not be available while commands are arriving at 
the storage. However, the command dependencies are 
readily available whenever a command arrives after 
comparing with the expected command sequence 
number. In this case, all the 5 commands in the top 5 
rows of the table arrived earlier than command #1 and 
therefore such dependencies are marked in the CMD 
dependencies column of the reservation station.   

When a command is in the reservation station, it 
is eligible for execution. The results of such execution 
will be buffered in a data cache called commit cache. 
The commit cache has a separate read cache and a 
write cache. Each entry in the cache has an additional 
field indicating the condition for commit. For 
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example, the image of the commit cache after 
commands #2 through #6 have been executed is 
shown in Table 2. When command #1 finally arrives at 
the storage and is placed in RS[5], we will be able to 
determine all data dependency conditions and fill out 
the last column of the reservation table. After the 
completion of successful execution of command #1, 
the command dependency column of the reservation 
station will be cleared and the algorithm will commit 
all the commands in the reservation station by 
transmitting data in the commit cache to the initiator 
for read operations and committing writes to the 
storage. Whether the committed data come from the 
read cache or write cache will depend on data 
dependency conditions listed in the last column of the 
reservation station. Table 3 shows the cache image 
after all commands in the sequence have arrived at the 
storage. Data are committed as follows: 

1. block B in CRi will be sent  for command: 
RB

2  
2. block C in CRj will be sent for command: 

RC
3   

3. block D in CWj will be written to storage for 
command: WD

4 
4. block A in CWk will be sent for command: 

RA
5 

5. block B in CWi will be written to storage for 
command WB

6 
6. block A in CWk will be written to storage for 

command: WA
1 

7. block A in CWk will be sent for command: 
RA

7 
 As shown in this example, data dependencies 

such as WAR and WAW are eliminated by renaming 
of the destination addresses (separate cache entries for 
them). True data dependencies such as RAW are short 
circuited because they are resolved and data are 
forwarded between the two caches. This example 
shows clearly the benefit of parallel out of order 
execution as compared to sequential in-order 
execution. By the time when command #1 arrives at 
the storage, the data for read and write operations of 
the 5 commands that have arrived ahead of command 
#1 have been in the commit cache or on the way to the 
commit cache. Substantial time savings can be 
obtained as result of this because accessing storage 
such as disk and disk arrays is usually time 
consuming. Another way to look at this is that such 
out-of-order execution and in order commit provides 
the best and optimal pre-fetching for storage caches. 
The general algorithm is shown in Figure 1. 

 
Table 1. Reservation Station  
RS Entry 

# 
CMD Seq # Storage CMD LBA Data 

Size 
CMD dependencies Data Pointer To 

Cache 
Data 

Dependencies 
0 2 R B 4K 1 CRi  
1 3 R C 4K 1 CRj  
2 4 W D 4k 1 CWj  
3 5 R A 4k 1 CRk RAW, RS[5] 
4 6 W B 4K 1 CWi WAR, RS[0] 
5 1 W A 4K  CWk RAW, RS[3] 
6 7 R A 4K 1  RAW, RS[5] 

 
Table 2. Commit Cache image 1 
 
Read Cache 
indx Data Dependency  indx Data Dependency 
       
CRi B 1  CWi B 1 
       
CRj C 1  CWj D 1 
CRk A 1     

Write Cache 
Table 3. Commit Cache image 2.  
 

Read Cache 
   
   
CRi B 1 
   
CRj C 1 
CRk A 1 
   

   
   
CWi B 1 
   
CWj D 1 
CWk A  
   

Write Cache 
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Figure 1. The general algorithm for parallel packet processing. 
A storage command arrives at the storage called Current_CMD; 
/**Reserved Execution stage**/ 
Compare Sequence_No(Current_CMD) with Sequence_No_Expected 
If Not Match Then 
{ 
Find an entry in RS, called RS[free]; 
RS[free].S#  Sequence_No[Current_CMD]; 
RS[free].CMD  CMD[Current_CMD); 
RS[free].LBA  LBA[Current_CMD); 
RS[free].size  Size[Current_CMD); 
RS[free].CMD_dependency  Sequence_No_Expected, Sequence_No_Expected+1, …   
     Sequence_Number[Current_CMD)-1 
Examine all entries in RS to find any data dependency;  
If data dependency is found with RS[i] then 

 {RS[free].Data_Dep  ( the data dependency, RS[i]); 
 RS[i].Data_Dep  (reverse of the data dependency, RS[free])}; 

If CMD[Current_CM]==Read 
then {Allocate an entry in read cache called CR[i]; 

   RS[free].DataPtr   CR[i]; 
   CR[i].Dependency  RS[free].CMD_dependency; 

CR[i].Data   read data at LBA[Current_CMD] from storage} 
  Else {Allocate an entry in write cache called CW[i]; 

RS[free].DataPtr   CW[i]; 
CW[i].Dependency  RS[free].CMD_dependency 
CW[i]  Data[Current_CMD]}; 

} 
Else /** The command sequence number matches the expected sequence number**/ 
{For all i, Look up RS[i].CMD_dependency to find a match for Sequence_No[Current_CMD] 
 If there is no match then issue Current_CMD for normal execution 
  Else 
   {Find an entry in RS, called RS[free]; 
    RS[free].S#  Sequence_No[Current_CMD]; 
    RS[free].CMD  CMD[Current_CMD); 
    RS[free].LBA  LBA[Current_CMD); 

RS[free].size  Size[Current_CMD); 
 

   
    Examine all entries in RS to find any data dependency;  
    If data dependency is found with RS[i] then 

 {RS[free].Data_Dep  ( the data dependency, RS[i]); 
 RS[i].Data_Dep  (reverse of the data dependency, RS[free])}; 

    If CMD[Current_CM]==Read 
then {Lookup RS and Commit cache if there is a hit; 

If hit in read cache, called CR[i] 
Else { Allocate an entry in read cache called CR[i]; 
   CR[i].Data   read data at LBA[Current_CMD] from storage or CW} 

   RS[free].DataPtr   CR[i]; 
Clear Sequence_No[Current_CMD] in all RS[i], CR[i], CW[i]} 

  Else {Allocate an entry in write cache called CW[i]; 
RS[free].DataPtr   CW[i]; 
CW[i]  Data[Current_CMD]; 
Clear Sequence_No[Current_CMD] in all RS[i], CR[i] CW[i]} 

  }; 
/**Commit Stage**/ 
Loop 
For i do  
  { 
 If RS[i].CMD_dependency = null then 
 { 

If  RS[i].Data_Dep = null then  
     Commit data pointed by RS[i].Data_Ptr 
  Else  
     Commit data based on dependency and CMD sequence; 
 } 
} 
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3. Performance Analysis 
 In order to understand the performance potential 

of the parallel algorithm, we present here a simple and 
approximate analysis of the possible performance 
gains resulting from this new algorithm. We intend to 
compare the possible performance gains of our 
algorithm with a baseline storage system that orders 
arrived commands before execution. To make our 
analysis tractable, we make the following 
assumptions: 

 
• We call a packet an out-of-order packet if it 

is expected by the storage at a point of time 
and has not arrived at the storage until this 
time point, while other packets with greater  
(latter) command sequence numbers have 
arrived. Let Ω be the number of unexpected 
packets with greater command sequence 
numbers arrived before the out-of-order 
packet arrives. 

• Let δ be the time delay from the time the first 
unexpected packet arrives until the out-of-
order packet arrives at the storage. Clearly, 
with the baseline storage system, this 
unexpected packet that has arrived will be 
delayed for δ seconds before it can be 
processed. 

• In a baseline storage system, each of the Ω 
unexpected packets will be delayed for 
certain amount of time. We assume that the 
delays experienced by these Ω packets are 
uniformly distributed between δ and 
δ/ Ω, implying that arrival times of these 
packets are evenly scattered across δ. That is, 
the first of the Ω packets will be delayed for δ 
seconds, the second for  δ(Ω−1) / Ω, the third 
one for δ(Ω−2) / Ω  …. and the last one of the  
Ω packets will be delayed  for δ / Ω. The 
purpose of this simplifying assumption is to 
evenly distribute the delays among the 
unexpected packets to adjust the average 
service time of each packet. Clearly, this 
assumption is not realistic because the Ω 
packets may experience delays that are 
impossible to estimate depending on the exact 
arrival times. Such an unrealistic assumption 
can greatly simplify our analysis. 

• It is assumed that the aggregated packet 
arrival process to the storage follows the 
Poisson distribution with arrival rate λ. The 
storage service time is assumed to be a 
random variable with mean S. The adjusted 
service times taking into account of possible 
delays caused by waiting for command 

ordering are assumed to be exponentially 
distributed with mean SB, SP, for baseline 
storage and our parallel storage, respectively. 
This assumption is also an approximation. 

 
With these assumptions, the average additional delay 
that each of the Ω packets experiences in a baseline 
storage system is given by 
 

∆δ = δ(Ω+1) / (2Ω). 
 
The adjusted storage service time for the baseline 
storage system is given by 
 

SB = S + δ(Ω+1) / (2Ω). 
 
With the new parallel algorithm, a storage request can 
start as soon as it arrives. The request would not 
experience any additional delay if the out-of-order 
packet arrives any time before the storage operation 
complete, i.e. S >= δ. The adjusted storage service 
time in this case is given by  
 

SP = S,                             if  S >= δ. 
 

If the out-of-order packet has not arrived when the 
storage operation of the request is done, additional 
delay is needed to wait for the commit time. That is, 
when S < δ, the command in the reservation station 
may finish its execution before the out-of-order packet 
finally arrives. In this situation, the commands would 
need to wait for the out-of-order packet to arrive 
before commit. This post-execution waiting time is on 
average (δ− S)/2,  and the probability that a packet in 
the reservation station needs to wait for it is (δ− S)/δ.  
Therefore, the adjusted service time in this case is  
 

SP = S + (δ− S)2/(2δ),         if  S < δ. 
 
Using M/M/1 queue system to approximate the 
average I/O response time, we have 
 

RB = SB / (1 – λ SB), 
RP = SP / (1 – λ SP) 

 
for the I/O response times of baseline storage (RB) and 
the parallel algorithm (RP), respectively.  

Figure 2 shows the numerical results calculated 
using the above approximate formulae. In this figure, 
we vary the delay time of the out-of-order packet from 
10 microseconds to 1 millisecond and fix the storage 
service time to 10 milliseconds. We choose these 
numbers based on our prior experiments with LAN 
switches and disk storage access times. For example, 
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our measured packet delay over a 1 Gbps switch is 
about 100 microseconds and disk operations took 
about 10 milliseconds (6 milliseconds seek time and 4 
millisecond rotation latency). Modern hardware may 
have much faster speed than what we measured 
before. But what is more important here is the relative 
value rather than absolute numbers. We plotted the I/O 
response times as a function of the packet delay time 
assuming that the packet arrival rate is 45 per second 
and there are 10 packets arrived before the out-of-
order packet. As shown in the figure, performance 
improvement of our algorithm (RespT_P3 for parallel 
packet processing) is noticeable for this workload. The 
performance difference between the two storage 
systems increases rapidly as the packet delay 
increases. 

Figure 3 shows the performance results by 
varying the packet arrival rate while fixing the packet 
delay at 5 milliseconds. Again, there is a significant 
performance improvement of our algorithm over the 
baseline storage systems. While the I/O response times 
of both storage systems increases as the arrival rate 
increases, the P3 algorithm shows consistently lower 
I/O response times as compared to the baseline storage 
systems.  
 
4. Conclusions 
 

We have described a new parallel packet-
processing algorithm for networked data storage 
systems. The main objective of this algorithm is to 
maximize parallelism among multiple and inexpensive 
network ports in a storage target to improve storage 
performance. Multiple network port is clearly a cost-
effective approach to achieving high storage 
throughputs because of the wide availability of high 
speed and low cost network ports. Our algorithm is 
shown to be advantageous over existing storage 
systems. An approximate queuing model is used to 
estimate the potential gains of the algorithm with 
promising results.  
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Figure 2. Performance comparison between baseline storage and P3 
storage in terms of I/O response time as a function of packet delay 
(δ). (packet arrival rate, λ = 45 pkts/s, storage service time, S = 
0.01s, No. of packets prior to the our-of-order packet, Ω = 10). 
 
 
 
 

 
 
Figure 3. Performance comparison between baseline storage and P3 
storage in terms of I/O response time as a function of packet arrival 
rate (λ). (packet delay, δ: 0.005s, storage service time, S: 0.01s, No. 
of packets prior to the out-of-order packet, Ω = 10). 
  


