

On Performance of Parallel iSCSI Protocol for Networked Storage Systems

Qing (Ken) Yang
Dept. of Electrical and Computer Engineering

University of Rhode Island
Kingston, RI 02881
qyang@ele.uri.edu

Abstract:
A newly emerging protocol for storage networking,

iSCSI [1,2], was recently ratified by the Internet
Engineering Task Force [3]. The iSCSI protocol is
perceived as a low cost alternative to the FC protocol for
networked storages [5,6,7,8]. It allows block level
storage data to be transported over the popular TCP/IP
network that is widely understood. This paper presents a
new storage architecture allowing parallel processing of
iSCSI packets. By leveraging inexpensive Ethernet ports,
we are able to greatly improve the throughput of iSCSI
storages through parallel processing. We have carried
out a performance analysis to evaluate the performance
of the new architecture as compared to the existing iSCSI
storages. Our numerical results show that the new
architecture has good performance potential.

1. Introduction

Increasing performance of a shared storage in a SAN

has been the design goal of storage designers for a long
time. Because of the inherent limitations of storage
devices such as disks or tapes that involve mechanical
operations for each data access, storage operations have
been the major bottleneck in an IT system compared to
CPU, RAM, and network that have all improved by
several orders of magnitudes over the past decade.
Technologies to improve storage performance can
generally be classified into two categories: caching and
parallel processing. Our previous research [4] is an
example of reliable and effective caching technology.
Examples of parallel processing include RAID
(redundant array of independent disks) and various
parallel interconnect technologies such as InfiniBand,
Ultra Wide SCSI, Gigabit FC, etc. These technologies
aim at increasing the storage throughput by means of
parallel data accesses (RAID), parallel connectivity
(InfiniBand and Ultra Wide SCSI), and high data rate
(FC).

With rapid advances in network technologies, speed
of networks such as Ethernet and FC increased
dramatically at the same time the cost of network
components such as NIC (network interface card) and
switches decreases dramatically. The cost of per network
port is very inexpensive, which makes it economically

feasible to have multiple ports at server and multiple
ports at a storage system. Such multiple ports provide
parallel connections between servers and storages
allowing parallel data/control transfers between servers
and storages. Parallel communications between servers
and storages can happen in two dimensions: multiple
logical connections over one physical link and parallel
connections across multiple physical links.

Existing storage technologies make use of these
parallel connections to improve storage throughput in a
straightforward manner. For example, the iSCSI protocol
allows parallel connections but will collect and order
packets in a buffer queue in a session before execution.
The protocol mandates that all packets have to be
handled in the order in which the packets were originally
generated from the initiator side. Such requirement limits
the potential parallelism and performance gains since it
essentially serializes the processing of packets coming
from parallel ports. Analyzing such networked storage
systems, we found a surprising similarity between
parallel network connections in a storage system and the
parallel processing technology in processor designs. The
logical parallel connections over a physical channel is
analogous to pipelining machine that issues one
instruction per cycle with parallelism occurring at
different processing stages, and multiple physically
connected channels are analogous to super-scalar
machine that issues multiple instructions per cycle. The
fundamental technology that makes the greatest leap
forward from the traditional computers to today’s high
performance processors is the trick of allowing out of
order execution and in order commit inside processor
designs to maximize parallelism. We believe the same is
true for parallel storage systems. However, to the best of
our knowledge, there has been no attempt in doing this in
the research community neither in the storage industry.

Our objective here is to propose a new algorithm in a
storage system to process packets as soon as they arrive
at the storage through the parallel connections
irrespective of their order of initiation. Data
dependencies among the operations are resolved without
delays. The results of these parallel executions will
commit in the order of their initiations. Our prior
research has shown that 30% of packets arrive at an
iSCSI storage target out of order over 3 parallel network
connections. We believe such a high percentage of out-
of-order arrivals present us with an opportunity to

improve networked storage performance using our
parallel packet processing algorithm.

2. System Architecture and the Parallel
Algorithm

We consider an IT infrastructure where a number of
application servers share a target storage. Connections
between an application server and the target storage are
plural both logically and physically. The storage should
therefore be able to handle multiple connections from a
server and multiple connections from multiple servers.

Our iSCSI target storage consists of a packet
processing logic that manages the parallel network ports,

an execution engine that executes our parallel algorithm,
a command queue that buffers received storage
commands, a reservation station that records commands
being executed; a commit cache that stores committed
data, and a storage system. The basic idea of our
algorithm is to start execution of a storage command as
soon as it arrives at the storage. Such an execution is
recorded in the reservation station associated with
dependencies of the command on other commands in the
reservation station as well as commands that have not
arrived at the storage yet. The actual commits of such
executions will be done in the order of commands
sequence. To describe how the algorithm works, let us
first consider the following example command sequence.

__
EXAMPLE: Suppose that the correct command sequence as generated by an initiator is

1. write block A: WA
1

2. read block B: RB
2

3. read block C: RC
3

4. write block D: WD
4

5. read block A : RA
5

6. write block B WB
6

7. read block A RA
7

The sequence of these commands is shown blow. Note that network storage protocols such as iSCSI define command sequence numbers for all
storage commands issued from an initiator to target storage. The superscript of each command indicates this command sequence number.

RA
7 WB

6 RA
5 WD

4 RC
3 RB

2 WA
1

During the network transmission of these commands, the arrival sequence to the storage has been changed as follows:

1. read block B: RB
2

2. read block C: RC
3

3. write block D: WD
4

4. read block A : RA
5

5. write block B WB
6

6. write block A: WA
1

7. read block A RA
7

The arrived storage commands will be buffered in a command queue as shown below after all commands have arrived at the storage.

RA
7 WA

1 WB
6 RA

5 WD
4 RC

3 RB
2

We would like to start execution as soon as RB
2

arrives even though its sequence number is not what is
expected by the storage that is expecting for WA

1. By
doing this, we are effectively allowing parallel and out
of order execution of these commands in the command
queue. However, there are data dependencies among
these commands. For example, there is a read after
write (RAW) dependency between RA

5 and WA
1.

There is a write after read (WAR) data dependency
between WB

6 and RB
2 . And there are also possibly

write after write data dependencies not shown here.
To guarantee data correctness and allow parallel out of
order execution, we start executing these arrived
commands by putting them in a data structure called
Reservation Station as shown in Table 1. As shown in
this reservation station, command #5 has a RAW data
dependency on command #1 and command #6 has a

WAR dependency with command #2 buffered in
reservation station entry 0, RS[0], and so forth. Note
that, some of the data dependencies shown in the table
may not be available while commands are arriving at
the storage. However, the command dependencies are
readily available whenever a command arrives after
comparing with the expected command sequence
number. In this case, all the 5 commands in the top 5
rows of the table arrived earlier than command #1 and
therefore such dependencies are marked in the CMD
dependencies column of the reservation station.

When a command is in the reservation station, it
is eligible for execution. The results of such execution
will be buffered in a data cache called commit cache.
The commit cache has a separate read cache and a
write cache. Each entry in the cache has an additional
field indicating the condition for commit. For

 3

example, the image of the commit cache after
commands #2 through #6 have been executed is
shown in Table 2. When command #1 finally arrives at
the storage and is placed in RS[5], we will be able to
determine all data dependency conditions and fill out
the last column of the reservation table. After the
completion of successful execution of command #1,
the command dependency column of the reservation
station will be cleared and the algorithm will commit
all the commands in the reservation station by
transmitting data in the commit cache to the initiator
for read operations and committing writes to the
storage. Whether the committed data come from the
read cache or write cache will depend on data
dependency conditions listed in the last column of the
reservation station. Table 3 shows the cache image
after all commands in the sequence have arrived at the
storage. Data are committed as follows:

1. block B in CRi will be sent for command:
RB

2
2. block C in CRj will be sent for command:

RC
3

3. block D in CWj will be written to storage for
command: WD

4
4. block A in CWk will be sent for command:

RA
5

5. block B in CWi will be written to storage for
command WB

6
6. block A in CWk will be written to storage for

command: WA
1

7. block A in CWk will be sent for command:
RA

7
 As shown in this example, data dependencies

such as WAR and WAW are eliminated by renaming
of the destination addresses (separate cache entries for
them). True data dependencies such as RAW are short
circuited because they are resolved and data are
forwarded between the two caches. This example
shows clearly the benefit of parallel out of order
execution as compared to sequential in-order
execution. By the time when command #1 arrives at
the storage, the data for read and write operations of
the 5 commands that have arrived ahead of command
#1 have been in the commit cache or on the way to the
commit cache. Substantial time savings can be
obtained as result of this because accessing storage
such as disk and disk arrays is usually time
consuming. Another way to look at this is that such
out-of-order execution and in order commit provides
the best and optimal pre-fetching for storage caches.
The general algorithm is shown in Figure 1.

Table 1. Reservation Station
RS Entry

CMD Seq # Storage CMD LBA Data

Size
CMD dependencies Data Pointer To

Cache
Data

Dependencies
0 2 R B 4K 1 CRi
1 3 R C 4K 1 CRj
2 4 W D 4k 1 CWj
3 5 R A 4k 1 CRk RAW, RS[5]
4 6 W B 4K 1 CWi WAR, RS[0]
5 1 W A 4K CWk RAW, RS[3]
6 7 R A 4K 1 RAW, RS[5]

Table 2. Commit Cache image 1

Read Cache
indx Data Dependency indx Data Dependency

CRi B 1 CWi B 1

CRj C 1 CWj D 1
CRk A 1

Write Cache
Table 3. Commit Cache image 2.

Read Cache

CRi B 1

CRj C 1
CRk A 1

CWi B 1

CWj D 1
CWk A

Write Cache

 4

Figure 1. The general algorithm for parallel packet processing.
A storage command arrives at the storage called Current_CMD;
/**Reserved Execution stage**/
Compare Sequence_No(Current_CMD) with Sequence_No_Expected
If Not Match Then
{
Find an entry in RS, called RS[free];
RS[free].S# Sequence_No[Current_CMD];
RS[free].CMD CMD[Current_CMD);
RS[free].LBA LBA[Current_CMD);
RS[free].size Size[Current_CMD);
RS[free].CMD_dependency Sequence_No_Expected, Sequence_No_Expected+1, …
 Sequence_Number[Current_CMD)-1
Examine all entries in RS to find any data dependency;
If data dependency is found with RS[i] then

 {RS[free].Data_Dep (the data dependency, RS[i]);
 RS[i].Data_Dep (reverse of the data dependency, RS[free])};

If CMD[Current_CM]==Read
then {Allocate an entry in read cache called CR[i];

 RS[free].DataPtr CR[i];
 CR[i].Dependency RS[free].CMD_dependency;

CR[i].Data read data at LBA[Current_CMD] from storage}
 Else {Allocate an entry in write cache called CW[i];

RS[free].DataPtr CW[i];
CW[i].Dependency RS[free].CMD_dependency
CW[i] Data[Current_CMD]};

}
Else /** The command sequence number matches the expected sequence number**/
{For all i, Look up RS[i].CMD_dependency to find a match for Sequence_No[Current_CMD]
 If there is no match then issue Current_CMD for normal execution
 Else
 {Find an entry in RS, called RS[free];
 RS[free].S# Sequence_No[Current_CMD];
 RS[free].CMD CMD[Current_CMD);
 RS[free].LBA LBA[Current_CMD);

RS[free].size Size[Current_CMD);

 Examine all entries in RS to find any data dependency;
 If data dependency is found with RS[i] then

 {RS[free].Data_Dep (the data dependency, RS[i]);
 RS[i].Data_Dep (reverse of the data dependency, RS[free])};

 If CMD[Current_CM]==Read
then {Lookup RS and Commit cache if there is a hit;

If hit in read cache, called CR[i]
Else { Allocate an entry in read cache called CR[i];
 CR[i].Data read data at LBA[Current_CMD] from storage or CW}

 RS[free].DataPtr CR[i];
Clear Sequence_No[Current_CMD] in all RS[i], CR[i], CW[i]}

 Else {Allocate an entry in write cache called CW[i];
RS[free].DataPtr CW[i];
CW[i] Data[Current_CMD];
Clear Sequence_No[Current_CMD] in all RS[i], CR[i] CW[i]}

 };
/**Commit Stage**/
Loop
For i do
 {
 If RS[i].CMD_dependency = null then
 {

If RS[i].Data_Dep = null then
 Commit data pointed by RS[i].Data_Ptr
 Else
 Commit data based on dependency and CMD sequence;
 }
}

 5

3. Performance Analysis
 In order to understand the performance potential

of the parallel algorithm, we present here a simple and
approximate analysis of the possible performance
gains resulting from this new algorithm. We intend to
compare the possible performance gains of our
algorithm with a baseline storage system that orders
arrived commands before execution. To make our
analysis tractable, we make the following
assumptions:

• We call a packet an out-of-order packet if it

is expected by the storage at a point of time
and has not arrived at the storage until this
time point, while other packets with greater
(latter) command sequence numbers have
arrived. Let Ω be the number of unexpected
packets with greater command sequence
numbers arrived before the out-of-order
packet arrives.

• Let δ be the time delay from the time the first
unexpected packet arrives until the out-of-
order packet arrives at the storage. Clearly,
with the baseline storage system, this
unexpected packet that has arrived will be
delayed for δ seconds before it can be
processed.

• In a baseline storage system, each of the Ω
unexpected packets will be delayed for
certain amount of time. We assume that the
delays experienced by these Ω packets are
uniformly distributed between δ and
δ/ Ω, implying that arrival times of these
packets are evenly scattered across δ. That is,
the first of the Ω packets will be delayed for δ
seconds, the second for δ(Ω−1) / Ω, the third
one for δ(Ω−2) / Ω …. and the last one of the
Ω packets will be delayed for δ / Ω. The
purpose of this simplifying assumption is to
evenly distribute the delays among the
unexpected packets to adjust the average
service time of each packet. Clearly, this
assumption is not realistic because the Ω
packets may experience delays that are
impossible to estimate depending on the exact
arrival times. Such an unrealistic assumption
can greatly simplify our analysis.

• It is assumed that the aggregated packet
arrival process to the storage follows the
Poisson distribution with arrival rate λ. The
storage service time is assumed to be a
random variable with mean S. The adjusted
service times taking into account of possible
delays caused by waiting for command

ordering are assumed to be exponentially
distributed with mean SB, SP, for baseline
storage and our parallel storage, respectively.
This assumption is also an approximation.

With these assumptions, the average additional delay
that each of the Ω packets experiences in a baseline
storage system is given by

∆δ = δ(Ω+1) / (2Ω).

The adjusted storage service time for the baseline
storage system is given by

SB = S + δ(Ω+1) / (2Ω).

With the new parallel algorithm, a storage request can
start as soon as it arrives. The request would not
experience any additional delay if the out-of-order
packet arrives any time before the storage operation
complete, i.e. S >= δ. The adjusted storage service
time in this case is given by

SP = S, if S >= δ.

If the out-of-order packet has not arrived when the
storage operation of the request is done, additional
delay is needed to wait for the commit time. That is,
when S < δ, the command in the reservation station
may finish its execution before the out-of-order packet
finally arrives. In this situation, the commands would
need to wait for the out-of-order packet to arrive
before commit. This post-execution waiting time is on
average (δ− S)/2, and the probability that a packet in
the reservation station needs to wait for it is (δ− S)/δ.
Therefore, the adjusted service time in this case is

SP = S + (δ− S)2/(2δ), if S < δ.

Using M/M/1 queue system to approximate the
average I/O response time, we have

RB = SB / (1 – λ SB),
RP = SP / (1 – λ SP)

for the I/O response times of baseline storage (RB) and
the parallel algorithm (RP), respectively.

Figure 2 shows the numerical results calculated
using the above approximate formulae. In this figure,
we vary the delay time of the out-of-order packet from
10 microseconds to 1 millisecond and fix the storage
service time to 10 milliseconds. We choose these
numbers based on our prior experiments with LAN
switches and disk storage access times. For example,

 6

our measured packet delay over a 1 Gbps switch is
about 100 microseconds and disk operations took
about 10 milliseconds (6 milliseconds seek time and 4
millisecond rotation latency). Modern hardware may
have much faster speed than what we measured
before. But what is more important here is the relative
value rather than absolute numbers. We plotted the I/O
response times as a function of the packet delay time
assuming that the packet arrival rate is 45 per second
and there are 10 packets arrived before the out-of-
order packet. As shown in the figure, performance
improvement of our algorithm (RespT_P3 for parallel
packet processing) is noticeable for this workload. The
performance difference between the two storage
systems increases rapidly as the packet delay
increases.

Figure 3 shows the performance results by
varying the packet arrival rate while fixing the packet
delay at 5 milliseconds. Again, there is a significant
performance improvement of our algorithm over the
baseline storage systems. While the I/O response times
of both storage systems increases as the arrival rate
increases, the P3 algorithm shows consistently lower
I/O response times as compared to the baseline storage
systems.

4. Conclusions

We have described a new parallel packet-
processing algorithm for networked data storage
systems. The main objective of this algorithm is to
maximize parallelism among multiple and inexpensive
network ports in a storage target to improve storage
performance. Multiple network port is clearly a cost-
effective approach to achieving high storage
throughputs because of the wide availability of high
speed and low cost network ports. Our algorithm is
shown to be advantageous over existing storage
systems. An approximate queuing model is used to
estimate the potential gains of the algorithm with
promising results.

Acknowledgements:
This research is supported by Gemini Storage Corporation
and partly by National Science Foundation under grants
CCR-0073377 and CCR0312613. Any opinion, findings and
conclusions are those of authors and do not necessarily
reflect the views of NSF.

[1] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E.

Zeidner. iSCSI draft standard. http://www.ietf.org/
internetdrafts/draft-ietf-ips-iscsi-20.txt.

[2] UNH. iSCSI reference implementation.
http://www.iol.unh.edu/consortiums/iscsi/.

[3] C. Boulton. iSCSI becomes official storage standard.
http://www.internetnews.com/storage/article.php/1583331.

[4] X. He, Q. Yang, and M. Zhang, “Introducing SCSI-To-IP
Cache for Storage Area Networks,” in Proceedings of the 2002

International Conference on Parallel Processing, Vancouver,
Canada, Aug. 2002, pp. 203-210.

[5] W. T. Ng, B. Hillyer, E. Shriver, E. Gabber, and B. Ozden,
“Obtaining high performance for storage outsourcing,” in
Proceedings of the Conference on File and Storage
Technologies (FAST), Monterey, CA, Jan. 2002, pp. 145-158.

[6] S. Aiken, D. Grunwald, A. R. Pleszkun, and J. Willeke, “A
performance analysis of the iSCSI protocol,” in IEEE
Symposium on Mass Storage Systems, San Diego, CA, Apr.
2003, pp. 123-134.

[7] Y. Lu and D. H. C. Du, “Performance study of iSCSI-based
storage subsystems,” IEEE Communication Magazine, vol. 41,
no. 8, Aug. 2003.

[8] P. Radkov et al. “A performance comparison of NFS and
iSCSI for IP-Networked storage,” Proc. of the 3rd USENIX
Conf. On File and Storage Technologies, CA, 2004.

Figure 2. Performance comparison between baseline storage and P3
storage in terms of I/O response time as a function of packet delay
(δ). (packet arrival rate, λ = 45 pkts/s, storage service time, S =
0.01s, No. of packets prior to the our-of-order packet, Ω = 10).

Figure 3. Performance comparison between baseline storage and P3
storage in terms of I/O response time as a function of packet arrival
rate (λ). (packet delay, δ: 0.005s, storage service time, S: 0.01s, No.
of packets prior to the out-of-order packet, Ω = 10).

