
In Proceedings of International Conference on Distributed Systems (ICDCS 2006), Lisbon, Portugal, 2006.

 1

PRINS: Optimizing Performance of Reliable Internet Storages

Qing Yang, Weijun Xiao, and Jin Ren

Dept of Electrical and Computer Engineering

University of Rhode Island

Kingston, RI 02881

Tel: 401 874 5880

Fax: 401 782 6422

Email: {qyang, wjxiao,rjin}@ele.uri.edu

Abstract

Distributed storage systems employ replicas or erasure

code to ensure high reliability and availability of data. Such

replicas create great amount of network traffic that

negatively impacts storage performance, particularly for

distributed storage systems that are geographically dispersed

over a wide area network (WAN). This paper presents a

performance study of our new data replication methodology

that minimizes network traffic for data replications. The idea

is to replicate the parity of a data block upon each write

operation instead of the data block itself. The data block will

be recomputed back at the replica storage site upon receiving

the parity. We name the new methodology PRINS (Parity

Replication in IP-Network Storages). PRINS trades off high-

speed computation for communication that is costly and more

likely to be the performance bottleneck for distributed

storages. By leveraging the parity computation that exists in

common storage systems (RAID), our PRINS does not

introduce additional overhead but dramatically reduces

network traffic. We have implemented PRINS using iSCSI

protocol over a TCP/IP network interconnecting a cluster of

PCs as storage nodes. We carried out performance

measurements on Oracle database, Postgres database,

MySQL database, and Ext2 file system using TPC-C, TPC-W,

and Micro benchmarks. Performance measurements show up

to 2 orders of magnitudes bandwidth savings of PRINS

compared to traditional replicas. A queueing network model

is developed to further study network performance for large

networks. It is shown that PRINS reduces response time of the

distributed storage systems dramatically.

1. Introduction

As organizations and businesses depend more and more

on digital information and networking, high reliability and

high performance of data services over the Internet has

become increasingly important. To guard against data loss

and to provide high performance data services, data

replications are generally implemented in distributed data

storage systems. Examples of such systems include P2P data

sharing [1,2,3,4,5,6], data grid [7,8,9,10] and remote data

mirroring [11,12] that all employ replicas to ensure high data

reliability with data redundancy. While replication increases

data reliability, it creates additional network traffic.

Depending on application characteristics [1, 2, 3] in a

distributed environment, such additional network traffic can

be excessive and become the main bottleneck for data

intensive applications and services [13]. In addition, the cost

of bandwidth over a wide area network is very high [14, 15]

making replications of large amount of data over a WAN

prohibitively expensive.

In order to minimize the overhead and the cost of data

replication, researchers have proposed techniques to reduce

unnecessary network traffic for data replications [1,2]. While

these techniques can reduce unnecessary network traffic,

replicated data blocks have to be multicast to replica nodes.

The basic data unit for replication ranges from 4KB to

megabytes [4], creating a great amount of network traffic on

replica alone. Such large network traffic will result in either

poor performance of data services or excessive expenses for

higher WAN bandwidth [15]. Unfortunately, open literature

lacks quantitative study of the impacts of such data

replications on network performance of a distributed storage

systems.

This paper presents a quantitative performance

evaluation of a new data replication technique that minimizes

network traffic when data is replicated. The new replication

technique works at block level of distributed data storages

and reduces dramatically amount of data that has to be

transferred over the network. The main idea of the new

replication technique is to replicate the parity of a changing

block upon each block write instead of the data block itself,

hence referred to as PRINS (Parity Replication in IP-Network

Storages). Such parity is computed in RAID storage systems

such as RAID 3, RAID 4 or RAID5 that are the most popular

storages in use today. As a result, no additional computation

is necessary at the primary storage site to obtain the parity.

After the parity is replicated to the replica storage sites, the

data can be computed back easily using the newly received

parity, the old data and the old parity that exist at the replica

sites. Extensive experiments [16, 17, 18, 19, 20] have shown

that only 5% to 20% of a data block actually changes on a

block write. Parity resulting from a block write reflects the

exact data changes at bit level. Therefore, the information

density is smaller than corresponding data block. A simple

encoding scheme can substantially reduce the size of the

parity. PRINS is able to exploit the small bit stream changes

to minimize network traffic and trades off inexpensive

computations outside of critical data path for high cost

communication.

In Proceedings of International Conference on Distributed Systems (ICDCS 2006), Lisbon, Portugal, 2006.

 2

We have implemented a PRINS software module at block

device level on a cluster of PCs interconnected by a TCP/IP

network, referred to as PRINS-engine. The network storage

protocol that we used is the iSCSI (Internet SCSI) protocol

that was recently ratified by the Internet Engineering Task

Force [21]. Our PRINS-engine runs as a software module

inside the iSCSI target serving storage requests from

computing nodes that have an iSCSI initiator installed. Upon

each storage write request, the PRINS-engine performs parity

computation and replicates the parity to a set of replica

storages in the IP network. The replica storage nodes also run

the PRINS-engine that receives parity, computes data back,

and stores the data block in-place. The communication

between PRINS-engines also uses iSCSI protocol. We have

installed Oracle database, Postgres database, MySQL

database, and Ext2 file system on our PRINS-engine to test its

performance. TPC-C, TPC-W, and micro benchmarks are

used to drive our test bed. Measurement results show up to 2

orders of magnitudes reduction in network traffic using our

PRINS-engine compared to traditional replication techniques.

We have also carried out queueing analysis for large networks

to show great performance benefits of our PRINS-engine.

The paper is organized as follows. Next section gives a

detailed description of our PRINS and our implementation of

the PRINS-engine. Section 3 presents our performance

evaluation methodology and the experimental setups.

Numerical results are discussed in Section 4 followed by

related work in Section 5. We conclude our paper in Section 6.

2. A Novel Replication Methodology

Let us consider a set of computing nodes interconnected

by an IP network. Each node has a computation engine and a

locally attached storage system. The computation engine

performs distributed applications and accesses data stored in

the locally attached storage as well as storages in other nodes.

The storages of all the nodes collectively form a shared

storage pool used by the computation engines of the nodes.

To ensure high availability and reliability, shared data are

replicated in a subset of nodes, called replica nodes.

The idea of PRINS is very simple. Instead of replicating

data block itself upon a write operation, we replicate the

parity resulting from the write [19]. Consider a RAID 4 or

RAID 5 storage system. Upon a write into a data block Ai that

is in a data stripe (A1, A2 … Ai, … An), the following

computation is necessary to update the parity disk:

Pnew = Ai
new

 ⊕ Ai
old

 ⊕ Pold (1)

where Pnew is the new parity for the corresponding stripe,

Ai
new

 is the new data for data block Ai, Ai
old

 is the old data

of data block Ai, and Pold is the old parity of the stripe. PRINS

leverages this computation in storage to replicate the first part

of the above equation, i.e. P’ = Ai
new

 ⊕ Ai
old

, to the set of

replica nodes. This parity represents the exact changes of the

new write operation on the existing block. Our extensive

experiments have shown that only 5% to 20% of a data block

actually changes in real world applications. As a result, this

parity block contains mostly zeros with a very small portion

of bit stream that is nonzero. Therefore, it can be easily

encoded to a small size parity block to be transferred to the

replica nodes reducing the amount of data transferred over the

network.

Upon receiving the packet containing the parity block, P’,

the replica node unpacks the packet and performs the

following simple computation

 Ai
new

 = P’ ⊕ Ai
old

 (2)

to obtain the new replicated data. The new data is then stored

in its respective LBA (logic block address) location in its

local storage system. To be able to perform the above

computation, we assume that Ai
old

 exists at the replica node.

This is practically the case for all replication systems after the

initial sync among the replica nodes.

Figure 1. System Architecture

 We have designed and implemented the replication

methodology at the block device level referred to as PRINS-

engine. Figure 1 shows the overall structure of our design.

PRINS-engine sits below the file system or database system

as a block device. As a result, our implementation is file

system and application independent. Any file system or

database applications can readily run on top of our PRINS-

engine. The PRINS-engine takes write requests from a file

system or database system at block level. Upon receiving a

write request, PRINS-engine performs normal write into the

local block storage and at the same time performs parity

computation as described above to obtain P’. We call this

parity computation a forward parity computation. The results

of the forward parity computation are then sent together with

meta-data such as LBA to replica nodes through the TCP/IP

network. The counter part PRINS-engine at the replica node

will listen on the network to receive replicated parity. Upon

receiving such parity, the PRINS-engine at the replica node

will perform the reverse computation as described in

Equation (2), referred to as backward parity computation.

After the computation, the PRINS-engine will store the data

in its local storage using the same LBA.

Our implementation is done using the standard iSCSI

protocol. In the iSCSI protocol, there are two communication

parties, referred to as iSCSI initiator and iSCSI target [20, 21].

An iSCSI initiator runs under the file system or database

applications as a device driver. As I/O operations coming

from applications, the initiator generates I/O requests using

Application

FS/DBMS

PRINS-Engine

Application

FS/DBMS

PRINS-Engine

Application

FS/DBMS

PRINS-Engine

Application

FS/DBMS

PRINS-Engine

T
C

P
/T

P
 N

et
w

o
rk

In Proceedings of International Conference on Distributed Systems (ICDCS 2006), Lisbon, Portugal, 2006.

 3

SCSI commands wrapped inside TCP/IP packets that are sent

to the iSCSI target. Our PRINS-engine is implemented inside

the iSCSI target as an independent module. The main

functions inside the PRINS-engine include parity

computation, parity encoding, and communication module.

The parity computation part performs the forward or

backward parity computation depending on whether the SCSI

request comes from the local application or a replication from

a remote node. The parity encoding part uses the open-source

[22] library to encode the parity before sending it to the

TCP/IP network, or to decode a replication request back to

parity and data. The communication module is another iSCSI

initiator communicating with the counterpart iSCSI target at

the replica node. At each node, PRINS-engine runs as a

separate thread in parallel to normal iSCSI target thread. The

PRINS-engine thread communicates with the iSCSI target

thread using a shared queue data structure.

3. Evaluation Methodologies

This section presents two performance evaluation

methodologies that we use to quantitatively study the

performance of PRINS as compared to traditional replication

techniques. First methodology is to measure the actual

performance while running, in a network of storage nodes, the

PRINS and the traditional replication technology that

replicates every changed data block. Measurements are

carried out using real world databases and benchmarks. The

second method is to use a queueing network model to

quantify the performance of PRINS on different WAN

environments.

3.1 Experimental Setup

PC 1, 2, &3 P4 2.8GHz/256M RAM/80G+10G Hard Disks

PC 4 P4 2.4GHz/2GB RAM/200G+10G Hard Disks

Windows XP Professional SP2 OS

 Fedora 2 (Linux Kernel 2.4.20)

Oracle 10g for Microsoft Windows (32-bit)

Postgres 7.1.3 for Linux

Database

 MySQL 5.0 for Microsoft Windows

UNH iSCSI Initiator/Target 1.6 iSCSI
 Micrsoft iSCSI Initiator 2.0

TPC-C for Oracle (Hammerora)

TPC-C for Postgres(TPCC-UVA)

TPC-W Java Implementation

Benchmark

File system micro-benchmarks

Intel NetStructure 470T Switch Network

 Intel PRO/1000 XT Server Adpater (NIC)

Figure 2. Hardware and Software environments

Using our implementation described in the last section,

we installed our PRINS-engine on four standard PCs that are

available in our laboratory. The four PCs are interconnected

using the Intel’s NetStructure 10/100/1000Mbps 470T switch.

The hardware characteristics of the four PCs are shown in

Figure 2. Each PC has sufficient DRAM and disk space for

our experiments. Since our primary objective is to measure

quantitatively amount of replicated data over a network, the

specific hardware speed such as CPU speed and memory

performance are not significant for this study. What is

important is the amount of disk storage being sufficient to

store data generated by our databases and file system

benchmarks. A positive side effect of using such low-end PCs

is the implication of how lightweight our PRINS-engine is. It

can run on any PC rather quickly with very small overhead.

In order to show the broad applicability of our PRINS

and test our PRINS-engine under different applications and

different software environments, we setup both Linux and

Windows operating systems in our experiments. The software

environments on these PCs are listed in Figure 2. We installed

Fedora 2 (Linux Kernel 2.4.20) on one of the PCs and

Microsoft Windows XP Professional on other PCs. On the

Linux machine, the UNH iSCSI implementation [23] is

installed. On the Windows machines the Microsoft iSCSI

initiator [24] is installed. Since there is no iSCSI target on

Windows available to us, we have developed our own iSCSI

target for Windows. After installing all the OS and iSCSI

software, we install our PRINS-engine on these PCs inside

the iSCSI targets.

On top of the PRINS-engine and the operating systems,

we set up three different types of databases and a file system.

Oracle Database 10g is installed on Windows XP

Professional. Postgres Database 7.1.3 is installed on Fedora 2.

MySQL 5.0 database is setup on Windows. To be able to run

real world web applications, we installed Tomcat 4.1

application server to process web application requests.

3.2 Workload Characteristics

Right workloads are important for performance studies.

In order to accurately evaluate the performance of PRINS as

compared to existing replication techniques, we decided to

use standard benchmarks. Because the exact performance

characteristics of PRINS depend highly on the actual contents

of data to be replicated, I/O traces are not useful for this case

since they do not provide actual data contents but only the

addresses, timestamps, operations, and sizes of I/O operations.

Without being able to use general I/O traces that are largely

available in the research community, we have to employ the

limited number of industry standard benchmarks that

represent both the I/O generation process and the actual

contents that these I/Os deal with.

The first benchmark, TPC-C, is a well-known benchmark

used to model the operational end of businesses where real-

time transactions are processed [25]. TPC-C simulates the

execution of a set of distributed and on-line transactions

(OLTP) for a period between two and eight hours. It is set in

the context of a wholesale supplier operating on a number of

warehouses and their associated sales districts. TPC-C

incorporates five types of transactions with different

complexity for on-line and deferred execution on a database

system. These transactions perform the basic operations on

databases such as inserts, deletes, updates and so on. From

data storage point of view, these transactions will generate

reads and writes that will change data blocks on disks. For

Oracle Database, we use one of the TPC-C implementations

written by Hammerora Project [26]. For Postgres Database,

we use the implementation from TPCC-UVA [27]. We built

data tables for 5 warehouses with 25 users issuing

transactional workloads to the Oracle database following the

TPC-C specification. 10 warehouses with 50 users are built

In Proceedings of International Conference on Distributed Systems (ICDCS 2006), Lisbon, Portugal, 2006.

 4

on Postgres database. Details regarding TPC-C workloads

specification can be found in [25].

Our second benchmark, TPC-W, is a transactional web

benchmark developed by Transaction Processing

Performance Council that models an on-line bookstore [28].

The benchmark comprises a set of operations on a web server

and a backend database system. It simulates a typical on-

line/E-commerce application environment. Typical operations

include web browsing, shopping, and order processing. We

downloaded a Java TPC-W implementation from University

of Wisconsin-Madison and built an experimental environment.

This implementation uses Tomcat 4.1 as application server

and MySQL 5.0 as backend database. The configured

workload includes 30 emulated browsers and 10,000 items in

the ITEM TABLE.

Besides benchmarks operating on databases, we have

also formulated a simple file system micro-benchmark on

Ext2. The micro-benchmark chooses five directories

randomly on Ext2 file system and creates an archive file

using tar command. We ran the tar command five times.

Each time before the tar command is run, files in the

directories are randomly selected and randomly changed. The

actions in the tar command and the file changes generate

block level write requests.

3.3 A Queueing Network Model

We model our PRINS using a network of queues in a

WAN environment. Our primary focus in this model is

network traffic. Therefore, we use FIFO queues to model

network routers and delay centers to model computing nodes.

Each computing node generates a write request to a data

block after a random thinking time. The write request is then

replicated to a set of replica nodes. We assume that a

computing node will not generate another write request until

the previous write is successfully replicated. This assumption

represents a conservative evaluation of PRINS since the total

network traffic is bounded. Based on this assumption, the

queue network is a closed queue network [29,30], as shown in

Figure 3, with a fixed population size being the product of

total number of nodes and number of replicas. Note that our

model is a simplified model without consideration of

topology details of the network. We believe that such a

simplified model is sufficient to demonstrate the relative

performance of PRINS compared to traditional replication

techniques in terms of network traffic. More accurate and

detailed modeling is left as our future research.

To solve the queue network model of Figure 3, we need

to derive the think time of each computing nodes and the

service time at each router besides total population. Based on

our experiments of TPC-C benchmarks, we observed that

while doing transactions each computing node generated on

average 10.22 write requests per second. We therefore use

think time of 0.1 second meaning that each node generates a

write request after 0.1 second of thinking period. The service

time of each router is the total nodal delay of a router as

replicated data goes through the router. This nodal delay is

the sum of queueing delay, transmission delay, nodal

processing delay and propagation delay. It can be expressed

as [31]:

Dnodal = Dqueue + Dtrans + Dproc + Dprop (3)

The transmission delay, Dtrans, depends on network

bandwidth and size of replicated data to be transmitted. In this

study, we consider two typical WAN bandwidths (Net_BW):

T1 and T3 lines. For data size, it depends on the block size of

each write operation and replication methodology used. Let

Sd denote the data size of a replicated data upon a write

operation. When the data is sent to the TCP/IP stack, it will

be encapsulated into network packets. For simplicity purpose,

we consider only one packet size with 1.5Kbytes payload that

is the size of Ethernet packets and 0.112KB protocol

(Ethernet, IP, and TCP) headers. If the replicated data block is

larger than 1.5Kbytes, it is fragmented into multiple packets.

The transmission delay is therefore given by

 Dtrans = (Sd + Sd /1.5 *0.112)/Net_BW;

 Dtrans = (Sd + Sd /1.5 *0.112)/154.4 s, For T1;

 Dtrans = (Sd + Sd /1.5 *0.112)/4473.6 s, For T3.

Note that a T1 line has the bandwidth of 1.544 Mbps giving

approximately 154.4 KBps assuming 10 bits for a byte

considering parity bit etc.. Similarly, a T3 line has the

bandwidth of 44.736 Mbps giving approximately 4473.6

KBps. The nodal processing delay, Dproc, is usually in the

range of a few microseconds. We will assume 5 microseconds

per packet in our analysis. The propagation delay, Dprop,

depends on the distance of a network. Assuming about 200

Kilometers between routers across nearby cities, the

propagation delay is approximately 200Km/(2*10
8
m)=1 ms

which will be used in our analysis. The queue service time of

each router is therefore given by

Srouter = Dtrans + Dproc + Dprop (4)

The queueing time, Dqueue , is derived by solving the queueing

network model of Figure 3. We use the Mean Value Analysis

(MVA) algorithm [29, 30] with population, think time and

service time described above.

4. Numerical Results and Discussions

Our first experiment is to measure the amount of data

that have to be transferred over the network for replication

while running TPC-C benchmark on Oracle database. We run

the TPC-C on Oracle for approximately one hour for each

data block size. While running the TPC-C transactions, we

replicate write operations from the database server node to a

replica node over the network. Figure 4 shows the measured

results in terms of Kbytes of data transferred for replicating

data from the server node to the replica node. There are five

sets of bars corresponding to five different data block sizes.

In Proceedings of International Conference on Distributed Systems (ICDCS 2006), Lisbon, Portugal, 2006.

 5

Each set of bars consists of three bars corresponding to the

amount of data transferred using traditional replication

technology (red bar), traditional replication with data

compression (blue bar), and PRINS (golden bar), respectively.

The traditional replication technology replicates every data

block being changed. The compression algorithm used to

compress data blocks for the traditional replication with

compression is based on the open source library [22]. It is

shown in this figure that PRINS presents dramatic savings in

network traffic compared to traditional replications. For the

block size of 8KB that is a typical data block size in

commercial applications, PRINS reduces amount of data to be

transferred over the network for replicating data to one replica

node by an order of magnitude compared to traditional

replication technologies. For the block size of 64KB, the

saving is over 2 orders of magnitudes. Even with data

compression being used for traditional replication, PRINS

reduces network traffic by a factor of 5 for the block size of

8KB and a factor of 23 for the block size of 64KB, as shown

in the figure.

Our second experiment is to run the TPC-C benchmark

on Postgres database and measure the amount of data

transferred over the network for replicating data from one

node to another. Again, we run the TPC-C on Postgres

database for approximately one hour for each data block size.

Figure 5 shows the measured results. For the block size of

8KB, the traditional replication would send about 3.5GB of

data to the network for the purpose of replication when

running such TPC-C applications for approximately one hour.

Our PRINS, on the other hand, transmits only 0.33GB, an

order of magnitude savings in network traffic. If data

compression is used in traditional replication, 1.6GB of data

is sent to the network, 5 times more than PRINS. The network

savings are even larger for larger data block sizes. For

example, for 64KB bock size, the network traffic savings of

PRINS are 64 and 32 times compared to traditional

replication and traditional replication with data compression,

respectively. Notice that larger block sizes reduces index and

meta data sizes for the same amount of data, implying another

important advantage of PRINS since the data traffic of PRINS

is independent of block size as shown in the figure.

 Figure 6 shows the measured results for TPC-W

benchmark running on MySQL database using Tomcat as the

application server. We observed 2-order-of-magnitude saving

in network traffic by using PRINS as compared to traditional

replication techniques. For example, for the block size of

8KB, PRINS sends about 6MB of data over the network

during our experiment period whereas traditional replication

sends 55MB of data for the same time period. If block size is

increased to 64KB, the amounts of data transferred are about

6MB and 183MB for PRINS and traditional replication,

respectively.

 Our next experiment is to measure the network traffic of

the three replication techniques under file system benchmarks.

We run a set of micro-benchmarks described in the previous

section on Ext2 file system. Figure 7 shows the measured

results. Compared to the previous experiments on databases,

greater magnitudes of data reduction are observed. For

example, for 8KB block size, PRINS transmits 51.5 times less

data than traditional replication and 10.4 times less data than

traditional replication with data compressions. For 64KB

block size, the savings are even greater with 166 times and 33

In Proceedings of International Conference on Distributed Systems (ICDCS 2006), Lisbon, Portugal, 2006.

 6

times compared to traditional replication and traditional

replication with data compression, respectively. Note that the

micro-benchmarks mainly deal with text files that are more

compressible than database files.

All our experiments clearly demonstrate the superb

advantages of our PRINS architecture. It presents orders of

magnitudes savings in terms of network traffic for data

replications. It is interesting to note that the amount of data

transferred using PRINS is related to applications

independent of data block size used. It transmits exactly the

changed bits stream resulting from an application. To extract

such exact bit changes, it may incur additional overhead. One

question to be asked is how much overhead is caused by the

PRINS. In our experiment, we measured such overhead

caused by additional computation of parity and I/O operations.

For all the experiments performed, the overhead is less than

10% of traditional replications. This 10% overhead was

measured assuming that RAID architecture is not used. As

mentioned previously in this paper, PRINS can leverage the

parity computation of RAID. In this case, the overhead is

completely negligible.

Figure 8. Response Time Comparison for Replicating Data

over T1 Lines and Going through 2 Routers. Block size=8KB

0

1

2

3

4

5

6

7

1 10 20 30 40 50 60 70 80 100

Population size:

 i.e. Number of Total Replications

R
e
s
p

o
n

s
e
 t

im
e
 i

n
 s

e
c
o

n
d

s

RespT of Traditional

RespT of PRINS

RespT of Compressed

Since it is very time consuming to carry out an

exhaustive experiment for all different cases and

configurations (it takes days to run one set of experiments),

we performed analytical evaluations using the simple

queueing model presented in the previous section. The

parameters used in our queueing analysis are based on our

experiment presented above. We consider two typical WAN

connections: T1 and T3 lines and assume that all replications

go through two network routers. Figure 8 shows the response

time curves as a function of queue populations for the block

size of 8KB. The queue population here is the product of

number of nodes and number of replica nodes. For example,

if we have 10 nodes in the networked storage systems and

each write is replicated to 4 replica nodes, then the population

is 40 which represent total network traffic in this case. As

mentioned in the last section, each node generates a write

request after every 0.1 second which is the measured average

of TPC-C benchmark. It can be seen in Figure 8 that the

response time of traditional replication increases rapidly as

population size increases. Even with data compressed, the

response time also increases very quickly. The response time

of PRINS stays relatively flat indicating a good scalability of

the technique.

Figure 9 shows the response time comparisons of the

three replication techniques over faster and more expensive

WAN connections, T3 lines. Although the response times are

smaller because of faster Internet links, the two traditional

replication techniques suffer from high response time as

population size increases. Our PRINS shows constant lower

response time than the other two replication techniques. It

scales up very well with increased number of nodes and

replica nodes.

Figure 9. Response Time Comparison for Replicating Data

over T3 lines and Going through 2 Routers.

Block size=8KB

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 20 30 40 50 60 70 80 90 100

Populatin size:

i.e. Total number of replications

R
e
s
p

o
n

s
e
 T

im
e

(s
e
c
o

n
d

)

RespT Traditional

RespT of PRINS

RespT of Compressed

Figure 10. Router Queueing Time vs Write Rate with T1,

block size=8KB

-0.5

0

0.5

1

1.5

2

2.5

3

1 6 11 16 21 26 31 36 41 46 51 56

Write Request Rate,

requests/sec.

Q
u

e
u

e
in

g
 T

im
e
,

(s
e
c
o

n
d

)
RespT_Traditional

RespT_PRINS

RespT_Compressed

In order to see how the three replication techniques

impact the router traffic, we use a simple M/M/1 queueing

model to analyze the traffic behavior on one router. We keep

increasing the write request rate of computing nodes until the

router is saturated. The service time for the three replication

techniques is derived using Equation (4) and measured values

in our experiments. Figure 10 shows the response time curves

as functions of write request rates assuming T1 line. It is

shown in the figure that PRINS can sustain much greater

write request rates than the two traditional replication

techniques. The traditional replications saturate the router

very quickly as the write request rate increases.

5. Related Work

Realizing the importance of reducing network traffic,

researchers in the distributed system community have

proposed numerous techniques to optimize WAN

communications. These techniques can be broadly classified

into four categories: network file systems for low bandwidth

networks, replicating differentials of files, data compressions,

and relaxed consistency for replicas. Our PRINS

complements most previous work and can be combined with

existing techniques to obtain additional savings in network

bandwidth.

In Proceedings of International Conference on Distributed Systems (ICDCS 2006), Lisbon, Portugal, 2006.

 7

LBFS [32] file system proposed by Muthitacharoen,

Chen and Mazières was designed for low-bandwidth

networks. It avoids sending same data over the network by

exploiting similarities between files and versions of the same

files. Spring and Wetherall’s technique eliminates redundant

network traffic by detecting repetitions in two cooperating

caches at two ends of a slow network link [33]. The two ends

index cache data by 64-byte anchors [34] to identify

redundant traffic. There are also many network file systems

designed for low-bandwidth networks that are out of scope of

this paper. A good summary of such file systems can be

found in [32].

Rsync [35] reduces network traffic by transmitting only

the differences between two files located at two ends of the

network. By comparing the hash values of chunks of the files,

the sender only sends the chunks that do not match and tells

the receiver where to find the chunks that match. There are

also UNIX utilities such as diff and patch etc. that use similar

techniques to reduce network traffic. A typical example is

CVS [36] that transmits patches over the network to bring a

user’s working copy of a directory up to date for program

version management.

All the above research looks at network traffic reduction

at file system level. PRINS works at block device level in data

storages. It is independent of any file system and below a file

system. The difference between PRINS and the prior work

discussed above is similar to the difference between NAS

(network attached storage) and SAN (storage area network).

PRINS can also be applied to these file systems to reduce

network traffic further.

Data compression has been widely used in storage

industry for WAN optimizations [37], particularly for data

replications. There are many successful compression

algorithms including both lossy and lossless compressions.

Compression ratio varies depending on the patterns of data to

be compressed. While compression can reduce network

traffic to a large extent, the actual compression ratio depends

greatly on the specific application and the specific file types.

PRINS makes compression trivial since parity can be

compressed easily and quickly because all unchanged bits in a

parity block are zeros.

Replicating mutable data in a P2P environment poses

unique challenge to keep data coherence. Susarla and Carter

[1] surveyed a variety of WAN data sharing applications and

identified three broad classes of applications: (1) file access,

(2) database and directory services, and (3) real-time

collaborative groupware. Based on their survey, they came up

with a new consistency model to boost the performance of

P2P data sharing. There is an extensive research in the

literature that relaxes consistency for performance gains such

as Ivy [38], Bayou [39], Fluid replication [40], and TACT [41]

to list a few. All these research works consider the impacts of

keeping data coherence on the performance of data sharing.

PRINS aims at reducing network traffic by reducing the

amount of data that have to be transferred over a limited-

bandwidth network for data replications at block level. It is

complementary to and can be directly plugged into the

existing technologies described above for network

performance optimizations.

6. Conclusions

In this paper, we have presented a new replication

methodology that can be applied to remote data mirroring.

The new replication methodology is referred to as PRINS for

Parity Replication in IP-Network Storages. PRINS replicates

data parity resulting from a disk write instead of replicating

data block itself. As a result, network traffic for replication is

minimized achieving optimal replication performance. We

have designed and implemented our PRINS as a software

module at block device level. Extensive testing and

experiments have been carried out to show that our

implementation is fairly robust. Commercial databases such

as Oracle, MySQL, and Postgres have been setup on our

implementation. Performance measurements using real world

benchmarks such as TPC-C, TPC-W, and file system micro-

benchmark have shown up to 2 orders of magnitudes network

traffic reductions. The executable code of our implementation

is available online at www.ele.uri.edu/hpcl with additional

functionalities such as continuous data protection (CDP) and

timely recovery to any point-in-time (TRAP) [42].

Furthermore, queueing network models have been used to

analyze network performance for larger systems to show

dramatic reduction in storage response time and good

scalability of PRINS.

Acknowledgments
This research is sponsored in part by National Science

Foundation under grants CCR-0073377, CCR-0312613, and

SGER 0610538. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the

National Science Foundation. The authors would like to thank

John DiPippo for his supports and technical discussions. We

also thank Slater Interactive Office of Rhode Island

Economic Council for the generous financial support on part

of this research work. The authors appreciate gratefully the

anonymous referees for their detailed comments that helped

in improving the paper.

References

[1] S. Susarla and J. Carter, “Flexible Consistency for Wide Area Peer

Replication,” In Proc. of 25th IEEE International Conference on

Distributed Computing Systems (ICDCS 2005) , Columbus, OH, June

2005, pp. 199-208.

[2] A. Datta, M. Hauswirth, and K. Aberer, “Updates in Highly Unreliable,

Replicated Peer-to-Peer Systems,” In Proc. of the 23rd IEEE

International Conference on Distributed Computing Systems (ICDCS

2003), Providence, RI, May 2002.

[3] G. Antoniu, L. Boug´e, and M. Jan, “JuxMem: Weaving together the P2P

and DSM paradigms to enable a Grid Datasharing Service,” Kluwer

Journal of Supercomputing, 2004, available as INRIA Research Report

RR-5082.

[4] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J.

Kubiatowicz, “Pond: The OceanStore prototype,” In Proc. of the 2nd

USENIX Conference on File and Storage Technologies (FAST), San

Francisco, CA, Apr. 2003.

[5] Q. Lian, W. Chen, Z. Zhang, “On the Impact of Replica Placement to the

Reliability of Distributed Brick Storage Systems,” Proc. of

International Conference on Distributed Computing Systems ICDCS

2005, pp. 187-196.

[6] J. Carter, A. Ranganathan, and S. Susarla, “Khazana: An infrastructure

for building distributed services,” In Proc. of 18th International

In Proceedings of International Conference on Distributed Systems (ICDCS 2006), Lisbon, Portugal, 2006.

 8

Conference on Distributed Computing Systems, Amsterdam,

Netherlands, May 1998, pp. 562-71.

[7] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C.

Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, “Data

management and transfer in high-performance computational grid

environments,” Parallel Computing, May 2002, vol. 28, no. 5, pp. 749-

771

[8] K. Aberer, “P-grid: A self-organizing access structure for p2p information

systems,” In Proc. of 9th Cooperative Information Systems (CoopIS

2001), Trento, Italy, 2001.

[9] Gabriel Antoniu, Jean-François Deverge, and Sébastien Monnet,

“Building Fault-Tolerant Consistency Protocols for an Adaptive Grid

Data-Sharing Service,” In Proc. ACM Workshop on Adaptive Grid

Middleware (AGridM 2004), Antibes Juan-les-Pins, France, September

2004.

[10] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury and S. Tuecke,

“The Data Grid:Towards an Architecture for the Distributed

Management and Analysis of Large Scientific Datasets,” Journal of

Network and Computer Applications, July 2000, vol. 23, no. 3, pp. 187-

200.

[11] M. Ji, A. Veitch, and J. Wilkes, “Seneca: Remote mirroring done write,”

USENIX Technical Conference (USENIX'03), San Antonio, TX, June

2003, pp. 253–268.

[12] M. Zhang, Y. Liu and Q. Yang, “Cost-Effective Remote Mirroring

Using the iSCSI Protocol,” 21st IEEE Conference on Mass Storage

Systems and Technologies, Adelphi, MD, April, 2004, pp. 385-398.

[13] T. Kosar and M. Livny, “Stork: Making Data Placement a First Class

Citizen in the Grid,” In Proceedings of 24th IEEE International

Conference on Distributed Computing Systems (ICDCS2004), Tokyo,

Japan, March 2004.

[14] William Fellows, “Moving beyond the Compute Grid,” available at

http://www.the451group.com /intake/gridtoday-17oct05, 2005.

[15] Sprint Communications, “Internet Services Cost,” available at

http://www.state.sc.us/oir/rates/docs/ sprint-internet-rates.htm,2005.

[16] T. Nightingale, Y. Hu, and Q. Yang, “Design and Implementation of a

DCD Device Driver for Unix,” In Proceedings of the 1999 USENIX

Annual Technical Conference, Monterey, CA, June 1999.

[17] Y. Hu, Q. Yang, and T. Nightingale, “RAPID-Cache --- A Reliable and

Inexpensive Write Cache for Disk I/O Systems,” In the 5th

International Symposium on High Performance Computer Architecture

(HPCA-5), Orlando, Florida, Jan. 1999.

[18] Y. Hu and Q. Yang, “DCD---Disk Caching Disk: A New Approach for

Boosting I/O Performance,” In 23rd Annual International Symposium

on Computer Architecture (ISCA), Philadelphia, PA, May 1996.

[19] Q. Yang “Data replication method over a limited bandwidth network by

mirroring parities,” Patent pending, US Patent and Trademark office,

62278-PCT, August, 2004.

[20] X. He, Q. Yang, and M. Zhang, "A Caching Strategy to Improve iSCSI

Performance," In Proc. of IEEE Annual Conference on Local Computer

Networks, Tampa, Florida, Nov. 2002.

[21] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner,

“iSCSI draft standard,” available at http://www.ietf.org/internet-

drafts/draftietf-ips-iscsi-20.txt, Jan. 2003.

[22] G. Roelofs and J.L. Gailly, “zlib library,” Available at

http://www.zlib.net, 2005.

[23] UNH, “iSCSI reference implementation,” Available at http://unh-

iscsi.sourceforge.net/,2005

[24] Microsoft Corp., “Microsoft iSCSI Software Initiator Version 2.0,”

Available at http://www.microsoft.com/

windowsserversystem/storage/default.mspx, 2005.

[25] Transaction Processing Performance Council, “TPC BenchmarkTM C

Standard Specification,” Available at http://tpc.org/tpcc, 2005.

[26] S. Shaw, “Hammerora: Load Testing Oracle Databases with Open

Source Tools,” Available at http://hammerora.sourceforge.net, 2004.

[27] J. Piernas, T. Cortes and J. M. García, “tpcc-uva: A free, open-source

implementation of the TPC-C Benchmark,” Available at

http://www.infor.uva.es/~diego/tpcc-uva.html,2005.

[28] H.W. Cain, R. Rajwar, M. Marden and M.H. Lipasti, “An Architectural

Evaluation of Java TPC-W,” HPCA 2001, Nuevo Leone, Mexico, Jan.

2001.

[29] E. D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik,

“Quantitative System Performance, Computer System Analysis Using

Queueing Network Models,” Prentice-Hall, 1984.

[30] Q. Yang, L. N. Bhuyan and B. Liu, “Analysis and Comparison of Cache

Coherence Protocols for a Packet-Switched Multiprocessor,” IEEE

Transactions on Computers, Special Issue on Distributed Computer

Systems, Aug. 1989, pp 1143-1153.

[31] J.F. Kurose and K.W. Ross, “Computer Networking: A top-down

approach featuring the Internet,” 3rd Edition, Addison Wesley, 2004.

[32] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-bandwidth

network file system,” In Proc. of the eighteenth ACM symposium on

Operating systems principles, Banff, Alberta, Canada, October 2001.

[33] N. T. Spring and D. Wetherall, “A protocol-independent technique for

eliminating redundant network traffic” In ACM Sigcomm 2000,

Aug.2000.

[34] U. Manber, “Finding similar files in a large file system,” In Proc of the

Winter 1994 USENIX Technical Conference, San Francisco, CA, Jan.

1994.

[35] A. Tridgell, “Efficient Algorithms for Sorting and Synchronization,”

PhD thesis, Australian National University, April 2000.

[36] B. Berliner, “CVS II: parallizing software development,” In Proc. of the

Winter 1990 USENIX Technical Conference, Washington, D.C.,

Jan.1990.

[37] TRENDS, “WAN Boosters bring remote storage home,” Storage

Magazine, vol. 3, no. 7, Sept. 2004.

[38] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A

Read/Write Peer-to-Peer File System” In Proc. of 5th Symposium on

Operating Systems Design and Implementation (OSDI 2002), Boston,

MA, Dec. 2002.

[39] K. Petersen, M.J. Spreitzer, and D.B. Terry, “Flexible update

propagation for weakly consistent replication,” In Proc. of the 16th

ACM Symposium on Operating Systems Principles, Saint-Malo, France,

1997, pp. 288–301.

[40] L. Cox and B. Noble, “Fast reconciliations in Fluid Replication,” In

Proceedings of the 21st International Conference on Distributed

Computing Systems, Phoenix, Arizona, April 2001.

[41] H. Yu and A. Vahdat, “Design and evaluation of a continuous

consistency model for replicated services,” In Proc. of the 4th

Symposium on Operating Systems Design and Implementation, San

Diego, CA, 2000.

[42] Qing Yang, Weijun Xiao, and Jin Ren, “TRAP-Array: A Disk Array

Architecture Providing Timely Recovery to Any Point-in-time,” In

Proc. Of the 33rd Int’l Symposium on Computer Architecture (ISCA06),

Boston, USA, 2006.

