
1

Can We Really Recover Data If Storage Subsystem Fails?

Weijun Xiao and Qing Yang
Dept. of Electrical and Computer Engineering

University of Rhode Island, Kingston RI 02881

Tel: (401) 874-5880, Fax: (401) 782-6422

Email: {wjxiao,qyang}@ele.uri.edu

Abstract

 This paper presents a theoretical and experimental study

on the limitations of copy-on-write snapshots and incremental

backups in terms of data recoverability. We provide

mathematical proofs of our new findings as well as

implementation experiments to show how data recovery is

done in case of various failures. Based on our study, we

propose a new system architecture that will overcome the

problems of existing technologies. The new architecture can

provide two-way data recovery capability with the same

storage overheads and can be implemented fairly easily on

existing systems. We show that the new architecture has

maximum data recoverability and is practically feasible.

1. Introduction

With explosive growth of networked information services

and e-commerce, data protection and recovery have become

the top priority of business organizations and government

institutions [1,2,3,6]. Since data is the most valuable asset of

an organization, any loss or unavailability of data can cause

millions of dollars of damage [3,4,5]. Unfortunately, failures

do occur such as hardware failures, human errors, software

defects, virus attacks, power failures, site failures, and so

forth [1,2,3]. In order to protect data from possible failures

and to recover data in case of a failure, data protection

technology is necessary [6].

Traditionally, data protection has been done using

periodical backups. At the end of a business day or the end of

a week, data are backed up to tapes. Depending on the

importance of data, the frequency of backups varies. The

higher the backup frequency, the larger the backup storage is

required. In order to reduce the backup volume size,

technologies such as copy-on-write (COW) snapshots and

incremental backups have been commonly used. Instead of

making full backups every time, COW snapshots and

incremental backups that only store the changed data are done

more frequently in between full backups. For example, one

can do daily incremental backups and weekly full backups

that are stored at both the production site and the backup site.

In this way, great storage savings are possible while keeping

data protected.

The way incremental backup works is as follows. Starting

from the previous backup point, the storage keeps track of all

changed blocks. At the backup time point, a backup volume is

formed consisting of all latest changed data blocks. As a

result, the incremental backup contains the newest data that

have changed since the last backup. COW snapshots work

differently from the incremental backup. At the time when a

snapshot is created, a small volume is allocated as a snapshot

volume with respect to the source volume. Upon the first

write to a data block after the snapshot was started, the

original data of the block is copied from the source volume to

the snapshot volume. After copying, the write operation is

performed on the block in the source volume. As a result, the

data image at the time of the snapshot is preserved. Write I/Os

after the first change to a block is performed as usual, i.e.

only the first write to a block copies the original data to the

snapshot volume. There have been many variations of COW

snapshots in terms of implementation details for performance

and efficiency purposes such as pointer remapping [23] and

redirect-on-writes [16,17] etc. The main advantage of both

incremental backups and COW snapshots is storage savings

because only changed data are backed up.

Despite the importance of data protection and recovery,

recent study has shown that 67% of backup data cannot be

recovered in the real world [6]. Even if data can be recovered,

it takes hours and even days to do so [6]. While this fact is

well known, there has been no research study on why this is

the case. Therefore, it remains unclear and an open question

why such high percentage of data recovery failed.

This paper presents a theoretical study on COW snapshot

and incremental backup technologies from the point of view

of block level storages. Our investigation uncovers the

fundamental limitations of the existing data protection

technologies and provides a theoretical explanation as to why

so many data recoveries (over 67% recoveries) failed using

these existing technologies. We show mathematically the data

recovery capabilities and limitations of the existing

technologies. Based on our theoretical results, we propose a

new storage architecture that overcomes the limitations of

existing technologies. Instead of storing the original or the

new data of a block upon a write operation, we couple the two

for data protection purpose using a commutative and

invertible function. This new architecture provides more

flexible recovery capability than COW and incremental

backups with the same storage overheads. We provide

mathematical proof of the correctness of the new technology.

A prototype system has been built and standard I/O

benchmarks and real world I/O workloads are used to test our

implementation and to measure the performance of the new

architecture as compared to the existing ones. Our

2

experiments establish recoverability and performance of the

new data protection technology as well as the existing ones.

The paper is organized as follows. Next section gives the

proofs of the capabilities and limitations of the existing

technologies. We present our new storage architecture in

Section 3. Section 4 describes our experimental settings and

implementations. Experimental results and discussions are

presented in Section 5. We summarize related work in Section

6 and conclude the paper in Section 7.

2. Capabilities and limitations of current data

protection technologies

Consider the two data protection technologies: COW

snapshot and incremental backup. COW snapshot keeps the

original data upon a write operation whereas incremental

backup keeps the freshest data. In order to study the

capabilities and limitations of these existing technologies, we

formally define several mathematical terms and their

relationships with the storage technologies.

Let us assume that the data storage we try to study consists

of independent and equally sized data blocks (the specific size

of a block is not significant in this discussion). Each of these

data blocks is identified by an LBA (logic block address) and

contains a specific data value. Let A be the entire set of LBAs

of the data storage considered and D represent the set of all

possible data values contained in data blocks. A binary

relation, R, between A and D defines a mapping of addresses

to their corresponding data values of the data storage. Since

there is exactly one ordered pair in R with each LBA, this

binary relation is a function. We refer to this function as

storage data and use Ft to represent this function (storage

data) from A to D at time t. And we use Ft(a) to represent the

image or data value of an LBA a. That is, Ft contains a set of

ordered pairs such as {(a1,d1), (a2,d2) …} whereas Ft(a) is an

image/data value of a such as Ft(a1)= d1. If A’ is a subset of

A, i.e. A’⊆⊆⊆⊆ A, then we use Ft /A’ to represent the restriction

of Ft to A’. That is, Ft /A’ = Ft ∩ (A’ × D) [7]. Without loss

of generality, let us consider three time points as shown in the

following diagram.

Suppose that time point i-1 represents the original time point

when data storage operation starts and time point i+1

represents the current time point. Suppose a failure occurred

at some time close to point i+1. We are interested in

recovering data to the data as it was at time point i. We use

integer numbers to represent time points since all storage

events occur at discrete time points with a clear sequential

ordering.

Definition 1. Let Ai⊆⊆⊆⊆A be a set of LBAs. We define Ai to be

a write set i if it contains all LBAs whose data value have

been overwritten between time point i-1 and time point i.

Looking at the diagram shown in Figure 1, we have Ai

containing all LBAs whose data values have been changed by

write operations between time point i-1 and time point i while

Ai+1 containing all those between time points i and i+1.

Example 1. If we have Fi = {(0,2), (1,5), (2,8)} at time point

i and Fi+1 = {(0,4), (1,5), (2,0)} at time point i+1 because of

write operations, then we have Ai+1 ={0,2}. That is, data

values at addresses 0 and 2 have been changed from 2 and 8

to 4 and 0, respectively, whereas the data value of address 1

has not been changed, since time point i.

It is possible that the overwritten value as seen at time i is

the same as the original value at time i-1 caused by one or

several write operations between time points i-1 and i. We

therefore define substantial write set that actually changed

data values as follows.

Definition 2. Let A’i ⊆⊆⊆⊆ Ai. We define A’i to be a substantial

write set i if the data value of every LBA in A’i has been

changed between time points i-1 and i.

It should be noted here that the changed data value is

generally not related to the original value because of the

nature of write operations at block level storages. That is,

Fi+1(a) is independent of Fi(a). Furthermore, Fi(a) is

independent of Fi(b) for all b∈A and b≠a as stated in the

beginning of this section: data blocks are independent. We

believe this assumption is reasonable because block level

storages regard each data block as an independent block

without any knowledge of file systems and applications above

them.

Definition 3: A COW snapshot as seen at time i+1 that was

started at time i is defined as Fi/Ai+1, where Ai+1 is write set

i+1.

As we know, COW snapshot makes a copy of the original

data upon the first write to the block. As a result, it keeps a set

of original data of all changed blocks since the snapshot

started. Consider the storage data in Example 1. Suppose the

COW snapshot was started at time point i. At time point i+1,

we have the snapshot: {(0,2), (2,8)}, which is Fi/Ai+1. That is,

Ai+1 gives all the LBAs that have been written, {0,2}, and

their respective images in the snapshot should be the same as

they were at time point i, {2,8}.

Lemma 1. If we have storage data at time i+1 and a COW

snapshot started at time i, then we can recover data as they

were at time i as follows:

Fi = (Fi+1 - Fi+1/Ai+1) ∪∪∪∪ Fi/Ai+1 , (1)

where “-” and “∪∪∪∪” are difference and union operators of sets,

respectively.

Lemma 1 gives the data recovery capability of COW

snapshot technology. It is able to recover data to a previous

time point provided that the most recent data is available.

This data recovery capability is very useful in practice in case

of data corruption, virus attack, user errors, software bugs,

Figure 1. A three-point timing diagram:i-1 starting

point, i+1 current point, and i recovery point.

Ai+1 Ai

i+1 i-1 i
Timeline

3

and so forth. If we know that data was good at a previous time

point when snapshot was started, we can go back to that point

to recover from failures caused by this type of events.

Although COW snapshot can recover data to a previous

time point as stated in Lemma 1, it has limitations. In

particular, if the current data (production data) is damaged or

lost because of hardware failures, OS failures, outages, or

disasters, we cannot recover data to a previous time point

even if we have COW snapshots and previous backup data

that may be safely stored in a remote backup site. This

limitation is formally stated in the following theorem.

Theorem 1. Suppose the storage data at time point i+1, Fi+1,

is not available and the substantial write set A’i is not empty

(A’i ≠ ϕ). COW snapshots cannot recover storage data Fi as

they were at time point i if A’i ⊆ Ai+1.

Proof:
 We prove this theorem by contradiction. Let us

assume that COW snapshots can recover storage data Fi as

they were at time point i without Fi+1. That is, for all α∈A, we

can reconstruct Fi(α) from what we have available:

a) Data backup made previously: Fi-1

b) COW snapshot as seen at time i that was started at

time i-1: Fi-1/Ai , and

c) COW snapshot as seen at time i+1 that was started

at time i: Fi/Ai+1 .

Since different data blocks are independent in our storage

system, for every LBA α∈∈∈∈A, the only way to reconstruct its

data value, Fi(α), is to reconstruct it from Fi-1(α), Fi-1/Ai(α),

and/or Fi/Ai+1(α).

Because A’i ⊆⊆⊆⊆ Ai+1 and A’i ≠ ϕ , there is an LBA that is in A’i

but not in Ai+1. Let β be such an LBA such that β ∈ A’i but β ∉

Ai+1. Now consider the three cases:

a) Since β ∈ A’i, we have Fi(β) ≠ Fi-1(β) by Definition

2.

b) Because Fi-1/Ai ⊆ Fi-1 and A’i ⊆Ai, we have
Fi-1/Ai(β) = Fi-1(β) ≠ Fi (β)

c) The fact that β ∉ Ai+1 implies that Fi/Ai+1 (β) is

undefined because β is not in the domain of Fi/Ai+1.
Furthermore, Fi(β) is not related in any way to Fi-1(β)

because of the nature of write operations at block level

storages. As a result, it is impossible to rebuild Fi(β) from

Fi-1(β), Fi-1/Ai(β), and/or Fi/Ai+1(β), a contradiction to our

assumption. Therefore, COW snapshots cannot recover

storage data Fi . □

Example 2. Consider one example with 6 blocks in a storage

volume. At time point i-1, we have {(0, a0), (1, b0), (2, c0), (3,

d0), (4, e0), (5, f0)}. From time point i-1 to time point i, three

blocks have been changed to: {(0, a1), (1, b1), (3, d1)}, with

the substantial write set being {0, 1, 3}. From time point i to

time point i+1, two blocks have been changed to: {(3, d2), (4,

e2)} with the substantial write set being {3, 4}. By Definition

3, we have snapshot Fi-1/Ai as {(0, a0), (1, b0), (3, d0)} and

snapshot Fi/Ai+1 as {(3, d1), (4, e0)}. When original data Fi-1 is

unavailable, storage data Fi can be reconstructed from COW

snapshot Fi/Ai+1 and Fi+1 by replacing the changed blocks (3,

d2) and (4, e2) in Fi+1 with original data blocks (3, d1) and (4,

e0) in Fi/Ai+1, respectively. If fresh data Fi+1 is damaged,

however, Fi cannot be recovered from Fi-1 and snapshots

because substantial write set A’i is not a subset of write set

Ai+1 as stated in Theorem 1. In this particular case, data

blocks (0, a1) and (1, b1) cannot be rebuilt from original data

Fi-1 and snapshots in any way.

Definition 4: The incremental backup as seen at time i that

was started at time i-1 is defined as Fi/Ai , where Ai is write

set i.

Incremental backups keep the latest changes in a data

storage. Consider Example 1 again, the incremental backup as

seen at time point i that was started at time point i-1 is {(0, 4),

(2, 0)}. In Example 2, the incremental backup as seen at time

point i that was started at time point i-1 is

{(0,a1),(1,b1),(3,d1)}.

Lemma 2. If we have storage data at time point i-1 and an

incremental backup as seen at time i that was started at time

point i-1, then we can recover data as they were at time i as

follows:

Fi = (Fi-1 - Fi-1/Ai) ∪∪∪∪ Fi/Ai , (2)

where “-” and “∪∪∪∪” are difference and union operators of sets,

respectively.

Lemma 2 gives the redo recovery capability of incremental

backup technology. It is able to recover data to a recent time

point when the original storage data is available. This redo

recovery can be used in practice in case of disk failures,

volume crash, OS failures, outages, disasters, and so on. If we

created a full data backup prior to the incremental backup was

started, we can reconstruct the storage data to the latest time

point in case of this type of failures.

While incremental backup can recover data as stated in

Lemma 2, it also has limitations. Particularly, if the current

data gets corrupted because of virus or user errors and it

happens that we do not have a prior full backup, we cannot

recover data to a good time point using incremental backups

and current data that are available. This limitation is formally

stated in Theorem 2.

Theorem 2. Suppose the storage data at time point i-1, Fi-1, is

not available and substantial write set A’i+1 is not empty (A’i+1

≠ ϕ). Incremental backups cannot recover storage data Fi as

they were at time point i if A’i+1 ⊆ ⊆ ⊆ ⊆ Ai.

The proof of this theorem is similar to the proof of Theorem 1

and omitted here because of page limitation.

Example 3. Using the same storage scenario as Example 2,

we give an example of incremental backups. From Example

2, we have incremental backup Fi/Ai as {(0, a1), (1, b1), (3,

d1)} and incremental backup Fi+1/Ai+1 as {(3, d2), (4, e2)}.

When fresh data Fi+1 is damaged, storage data Fi can be

recovered from Fi-1 and incremental backup Fi/Ai by

overwriting all data blocks in Fi/Ai at the positions of storage

data Fi-1. However, if original data Fi-1 is unavailable, storage

4

data Fi cannot be rebuilt from Fi+1 and incremental backups

because A’i+1 is not a subset of Ai as stated in Theorem 2.

Particularly, data block (4, e0) in Fi cannot be generated by

fresh data Fi+1 and incremental backups in any way.

3. A new architecture for data protection

As we described in Section 2, snapshots cannot redo

storage data to a recent time point while incremental backups

cannot undo storage data to a previous good point. The reason

is that snapshots do not keep the fresh data and incremental

backups do not store the original data. To overcome the

limitations, we propose a new architecture for data protection.

The idea is simple. Instead of storing the original or the new

data of a block upon a write operation, we couple the two

using a commutative and invertible function. The result of the

coupling is stored for data protection purpose. The function

should be computationally efficient and should result in the

same size data block for the function value. With wide

availability of high speed and low cost embedded processors,

this can be done easily and efficiently [8]. For example,

addition and Exclusive-OR are such functions.

In general, Let us define Gi to be a function at time point i

on Ai, the same domain as snapshot Fi-1/Ai and incremental

backup Fi/Ai. Similarly, we can have Gi+1 defined on Ai+1 at

time point i+1. If snapshot Fi/Ai+1 can be obtained from Gi+1

and Fi+1, or incremental backup Fi/Ai can be obtained from Gi

and Fi-1, we can still apply Equation (1) in Lemma 1 for undo

recovery, or Equation (2) in Lemma 2 for redo recovery. In

other words, Gi can provide two-way data recovery. On the

other hand, Gi has the same number of ordered pairs as

snapshot Fi-1/Ai or incremental backup Fi/Ai because they

have the same function domain Ai. That is, Gi needs the same

size storage space as Fi-1/Ai or Fi/Ai if we assume data values

of each LBA in Fi-1/Ai , Fi/Ai, and Gi occupy same storage

space. Therefore, Gi is our objective function that needs to be

designed.

Theorem 3. Let “+” be a commutative binary operator on D

and Gi(α)= Fi-1/Ai(α) + Fi/Ai(α) for all α∈Ai. If there exists

an invertible operator “-” on D, such that for any d1,d2∈D∈D∈D∈D, , , ,

dddd1111+dddd2222-dddd2222=dddd1111, then the storage data at time i, Fi, can be

recovered from Fi+1 and Gi+1 by an undo process when Fi-1 is

unavailable, or from Fi-1 and Gi by a redo process when fresh

data Fi+1 is damaged or lost.

Proof: We prove this theorem in two steps corresponding to

two cases.

a) Original data Fi-1 is unavailable.

First, let us consider function Gi+1 at time point i+1:

Gi+1(β) = Fi/Ai+1(β) + Fi+1/Ai+1(β) for all β∈∈∈∈Ai+1. From this

equation, we know Fi/Ai+1(β) = Gi+1(β) - Fi+1/Ai+1(β) by

applying invertible operator “-” to Fi+1/Ai+1(β) on both sides

of the equation. Furthermore, Fi+1/Ai+1⊆⊆⊆⊆Fi+1 implies

Fi+1/Ai+1(β)=)=)=)=Fi+1(β). Replacing Fi+1/Ai+1(β) with Fi+1(β) in

above equation, we have Fi/Ai+1(β)=Gi+1(β) - Fi+1 (β). In other

words, snapshot Fi/Ai+1 started at time point i can be obtained

from fresh data Fi+1 and Gi+1. By applying Equation (1) in

Lemma 1, storage data Fi can be recovered from Fi+1 and

Gi+1.

b) Fresh data is damaged or lost.
Consider function Gi at time point i: Gi(α)= Fi-1/Ai(α) +

Fi/Ai(α) for all α∈∈∈∈Ai. Since operator “+” is commutative, we

have Gi(α)= Fi/Ai(α) + Fi-1/Ai(α). Applying the inverse

operation to above equation, we obtain Fi/Ai(α)=Gi(α) -

Fi-1/Ai(α). Because Fi-1/Ai⊆Fi-1, we have Fi-1/Ai(α)=Fi-1(α).

Replacing Fi-1/Ai(α) with Fi-1(α) in above equation, we have

Fi/Ai(α)=Gi(α) - Fi-1(α). This equation indicates that

incremental backup Fi/Ai can be obtained from original data

Fi-1 and Gi. By applying Equation (2) in Lemma 2, storage

data Fi can be reconstructed from Fi-1 and Gi. □

Theorem 3 indicates that Gi can provide two-way data

recovery with the same amount of storage space overhead as

COW snapshot and incremental backups. As shown in

Theorem 3, any commutative binary operator with an

invertible operator can be used to define function Gi. For

example, simple addition, Exclusive-OR, or inverse

Exclusive-OR can be chosen for Gi. Gi trades off high-speed

computation for storage space over the approach of keeping

both versions of data. We can leverage powerful computation

capability of modern computer systems to save storage space.

Large storage space not only is costly but also takes more

time to recover data, which is undesirable.

Example 4. We give an example of function Gi by using

Exclusive-OR operation. Suppose Gi = Fi-1/Ai ⊕ Fi/Ai,

where ⊕ is logical Exclusive-OR operator. By computing

parities between the original data and the fresh data, we store

parities at time i and i+1 for recovery. We therefore call this

method CUP: Coupling Updates by Parties. Obviously, CUP

can recover storage data in two ways from parities. Figure 2

shows the overall structure of CUP design. Instead of storing

either the newly updated data block or the old data block

upon an update from the host computer, we couple both using

an Exclusive-OR function.

4. Experimental settings and implementations

To verify the data recoverability and enable quantitative

performance evaluation for the three data protection

HOST

Production
Storage

Data Update

Old Data

Parities

α: Gi(α)

β: Gi(β)

γ: Gi(γ)

 Bit-Wise EX-OR
Append to

Corresp LBA

Figure 2. Overview of CUP design

5

technologies: COW snapshot, incremental backup, and CUP,

we have designed and implemented these three data

protection technologies embedded in an iSCSI target. Using

our experimental system, we install our prototype software on

a PC serving as a storage server, as shown in Figure 3. Two

PCs are interconnected using Intel’s NetStructure 10/100

/1000Mbps 470T switch. One of the PCs acts as a client

running benchmarks with iSCSI initiator installed and the

other acts as the storage server with our iSCSI target installed.

On top of the iSCSI target and the data protection module, we

set up Postgres Database 8.1.4. We chose a database

benchmark TPC-C [9,9] and two File system benchmarks,

PostMark [10] on Linux Ext3 and IoMeter [11] on Windows

NTFS. For TPC-C benchmark, we used the implementation

from TPCC-UVA [12]. Five warehouses with 50 users were

built on a Postgres database taking 2GB storage space. For

PostMark, we chose a workload that performs 200,000

transactions on 200,000 files. Read and Write buffer sizes

were set to 4KB. We ran the IoMeter on NTFS with 4KB

block size for the workload of 67% random writes and 33%

random reads.

5. Experimental results and discussions

5.1. Recoverability

Based on our design and implementation of the three data

protection technologies, we carried out a recovery experiment

to verify the capability and limitation of COW snapshots.

This experiment simulated an editing process of our paper

using Microsoft Word 2007. We picked up three time points

as i-1, i, and i+1 with 2 minutes interval between two adjacent

time points and enabled COW snapshot for data protection.

At the beginning of time point i-1, we had a word document

file that had only a title and an abstract for the paper. The

size of the file was 12KB. From time points i-1 to i, we

added new text to the paper. The size of the file became

16KB. Later on we accidentally deleted some text and only

left the title. The size of the file shrank to 11KB. The accident

time was between time points i and i+1. At the storage server

side, we collected all LBA traces for verification analysis. In

this experiment, two COW snapshots were made one started

at time point i-1 and the other started at time point i. Our first

recovery attempt was to do an undo recovery by writing the

snapshot started at time point i to the fresh data at time point

i+1. As a result of this attempt, we were able to undo storage

data to time point i and opened the word file. This confirms

the recoverability of COW snapshots using the undo process.

Our second recovery attempt was to do a redo recovery

assuming that the fresh data is lost. After we destroyed the

fresh data at time point i+1, we tried to recover data to time

point i in three possible cases using only the original data at

time point i-1 and two snapshots started at time points i-1 and

i, respectively. First, we overwrote the snapshot started at

time point i-1 to storage data at time point i-1. The word file

was opened but with the contents same as the one at time

point i-1 because snapshot started at time point i-1 had the

same data values as original storage data for changed blocks

between time points i-1 and i. The newly typed text from time

i -1 to i was lost and the size of the file was still 12KB.

Secondly, we overwrote the snapshot started at time point i to

storage data at time point i-1. The file size became 16KB, but

the word file could not be opened because data was corrupted.

We observed the same results for the third case where we

overwrote two snapshots to storage data at time point i-1.

Therefore, we failed to recover data to time point i for all

three cases. By analyzing LBA traces, we found that both

substantial write set A’i and write set Ai+1 contained 35 LBAs

with 5 LBAs being different. That is, A’i ⊆ Ai+1. As stated in

theorem 1, data cannot be recovered to time point i by COW

snapshots. This conclusion is consistent with our recovery

experiment.

Having tested the capability and limitation of COW

snapshots, we carried out a similar recovery experiment to

verify two-way recovery capability of CUP. By using the

same storage operations as our first recovery experiment

discussed above, we stored parities at time points i and i+1

instead of COW snapshots. When original data Fi-1 was

deleted, we took parities at time point i+1 and fresh data Fi+1

to compute snapshot Fi/Ai+1 back. We then used the snapshot

together with the fresh data to recover storage data Fi using

the undo process. This recovery process was done

successfully and the word file contains the data at time point

i. On the other hand, when we destroyed the fresh data with

only the original data at time point i-1 and parities being

available, we used parities at time point i and original data

Fi-1 to generate incremental backup Fi/Ai. We then tried to

recover storage data Fi using the redo process. We were able

to recover data and the word file was recovered correctly as at

time point i. Therefore, CUP can recover data in two

directions. This fact is consistent with our theoretical proof of

Theorem 3.

5.2. Performance evaluation

CUP architecture provides additional recovery capability

over COW snapshots and incremental backups. Specifically,

it is capable of recovering data in two directions, redo and

undo. One immediate question is whether such additional

capability comes at high cost. In order to quantitatively

evaluate how CUP performs in comparison with COW

snapshots and incremental backups, we carried out two

TCP/IP

Network

Figure 3. Software stack of the experimental system

File system

iSCSI Initiator

TCP/IP

S

Client

Benchmarks

 Backup Volume

Production Volume

Storage Server

Data Protection

Module

iSCSI Target

TCP/IP Stack

6

experiments to measure and compare the performances of the

three data protection technologies.

Using the performance of incremental backup technology

as a baseline reference, we define performance penalty of

CUP as:

 (3),

and performance penalty of COW snapshots as:

 (4).

 Our first experiment is to compare the performances of

the three data protection technologies assuming the data

protection interval to be 5 minutes. That is, the storage system

will take incremental backup, COW snapshot, or CUP at

every 5 minutes so that in case of failures one can recover

data to 5 minutes ago. We ran the three benchmarks

described in the previous section on our experimental system.

TPC-C benchmark was run on Postgres database with each of

the three different data protection technologies enabled. We

measured tpmC, the number of transactions finished per

minute, as performance results. For the two file system

benchmarks, we measured IOps (I/O operations per second)

for IoMeter and transaction rate (files per second) for

PostMark as performance results, respectively. After

measuring all performance results directly from the

experiment, we calculated the performance penalties as

defined in Equations (3) and (4) above.

Figure 4. Performance penalty comparison (data
protection interval=5 minutes)

Figure 4 shows the results in terms of performance penalty

of CUP and COW snapshots for the three benchmarks when

data protection interval is five minutes. As shown in Figure 4,

both CUP and COW snapshots have lower performance than

incremental backups. The penalty ranges from a fraction of

percentage up to 4.32%. The reason is that incremental

backups do not need to read the original data from the

production storage upon the first write to a block while COW

snapshots copy it to the snapshot volume and CUP needs it

for parity computation. Furthermore, it is also shown in

Figure 4 that CUP has slightly lower performance than COW

snapshots. The difference of the two goes up to 1.16%

because CUP needs additional Exclusive-OR computations.

Figure 5. Performance penalty comparison (data

protection interval=2 minute)

In the second experiment, we changed data protection

interval from five minutes to two minutes. Again, we ran the

three benchmarks with the same parameter settings as the first

experiment to measure the performance results of the three

data protection technologies. Figure 5 shows the results for

the three benchmarks when data protection interval is two

minutes. As shown in Figure 5, both CUP and COW

snapshots have lower performance than incremental backups

with maximal penalty of 5.26%. CUP has slightly lower

performance than COW snapshots. The performance penalty

of CUP goes as high as 2.51% compared to COW snapshots.

One exception is that COW snapshots have the same

performance as incremental backups for TPC-C benchmark.

One possible reason for the exception is that the frequency of

write requests when running TPC-C benchmark is so low that

the additional read overhead of COW snapshots is

unnoticeable.

Our experiments clearly demonstrated that CUP has

comparable production performance as COW snapshots and

incremental backups. The maximum performance penalty is

less than 6% in all cases considered. This performance

penalty comes from the additional computation overhead and

data copying when Exclusive-OR function is performed to

obtain parities. It is important to note that our evaluation here

is very conservative with very high backup frequencies: 2 and

5 minutes data protection intervals as opposed to hourly or

daily backups commonly done in practice. There are many

possible ways to minimize the performance penalty with

design optimizations. For example, effective caching

techniques can be used to hide the latency of data copying.

Furthermore, embedded systems or FPGA hardware can be

used to carry out the Exclusive-OR computations that are

done in parallel to production storage operations [13]. These

design optimizations are possible topics of our future

research.

7

6. Related work

Backup and snapshot technologies have been widely used

in storage industry for data protection and recovery. A good

summary of various backup techniques can be found in [14]

and a survey for snapshot can be found in [15]. Basically,

there are two types of snapshot technologies: copy-on-write

and redirect-on-write [16,17]. In the literature, there are many

systems that use copy-on-write to create snapshot for data

backup. Plan 9 makes daily online backups by creating

snapshots of the file system [18]. Petal creates a virtual disk

backup using tar command through snapshots [19].

Frangipani [20] is a distributed file system built on top of

Petal virtual disks that use the Petal snapshot facility to

perform file system backups. VSS provides a mechanism to

create consistent point-in-time copies for Windows Systems

[21]. Spiralog provides online backup of a log-structured file

system (LFS) [22]. All these systems can effectively recover

files or volumes to an earlier version with the fresh data and

snapshots.

NetApp’s WAFL (Write Anywhere File Layout) generates

snapshots by using redirect-on-write and pointer mapping

techniques [16,23]. Both the original data and the latest data

are kept in the system and all data including the original data

and the latest data that are managed at the same storage space.

Recent work in Thresher [24] provides a new storage

management system based on copy-on-write technique to

discriminate among snapshots effectively, thereby making

valuable snapshots accessible online and less valuable

snapshots discarded or moved offline.

Besides data backups, data can also be protected using file

versioning that keeps a history of updates to files. For

example, Peterson and Burns [25] designed a versioning file

system named Ext3cow that uses snapshot functionality.

There are many versioning file systems such as Tops-20 [26],

VMS [27], Elephant [28], and CVFS [29] that also make use

of copy-on-write snapshot.

Recently, continuous data protection has emerged to

continually capture all changes, thus storage data can be

potentially recovered to any point in time for minimizing data

loss in case of errors or outages [30,31,32]. Laden et al

proposed four alternative architectures for CDP in a storage

controller, and compared them analytically with respect to

both write performance and space usage overhead [31]. Zhu

and Chiueh proposed a user-level CDP architecture that is

both efficient and portable [32]. They implemented four

variants of this CDP architecture for NFS servers and

compared their performance characteristics. Lu et al presented

an iSCSI storage system named Mariner to provide

comprehensive and continuous data protection on commodity

ATA disk and Gigabit Ethernet technologies [33]. Flouris and

Bilas presented Clotho, a versioning system at the block level

that supports creating an unlimited amount of snapshots [34].

Different from these works for CDP architectures, our study

concentrates on data recoverability of block level storages and

what kind of data needs to be stored for recovery purpose.

Although extensive research has been reported in the

literature and various data protection products have been

released in the industry, few provides formal model of storage

technologies and recovery capability except for the work in

[35]. Sivanthanu et al presented a logical framework for

modeling the interaction of a file system with the storage

system [35]. This logical framework can substantially

simplify and systematize the process of verifying file system

correctness such as journaling, consistent undelete, and so on.

Our study focuses on providing a theoretic foundation for

data protection technologies at the block level. We formally

modeled existing data protection technologies and proposed a

new data protection method to overcome current limitations.

Based on our theoretical and experimental work, one can re-

evaluate current data protection technologies and develop

new data protection technologies.

It should be mentioned that we assume data blocks are

independent and the changed data value is not related to the

original value in our study. There are research works in the

literature trying to discover block correlations or block value

similarities for storage system optimization [36,37,38].

However, these block correlations and value dependencies are

probabilistic. Our interest here is guaranteed data

recoverability in case of various failures.

7. Conclusions

In this paper, we have presented a theoretical study on

COW snapshots and incremental backups. Our theoretical

work has uncovered the fundamental limitations of existing

data protection technologies and explained why in some

situations storage data cannot be recovered by using these

existing technologies. We have provided mathematical proofs

for the data recovery capabilities and limitations of the

existing technologies. Based on our theoretical results, we

have proposed a new architecture for data protection to

overcome the limitations and given a practical example

named CUP for the new technology. Instead of storing either

the old data or the newly updated data, CUP couples the two

for recovery purpose with the same amount of storage space

as COW snapshots and incremental backups. In order to show

the data recoverability and evaluate the performance of the

new technology, we have implemented the three data

protection technologies: COW snapshots, incremental

backups, and CUP. Experimental results show that CUP can

recover data either from an old backup or from fresh

production data and has comparable production performance

as COW snapshots and incremental backups.

Acknowledgments

This research is sponsored in part by National Science

Foundation under grant CCR-0312613 and SGER Grant 0610538.

8

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation. We

thank Jin Ren for his participation and discussions in the design and

implementation of experimental system. This work is also supported

in part by National Science Foundation of China under grant number

NSFC-60736013.

References

[1] D. A. Patterson et al, "Recovery-Oriented Computing (ROC):

Motivation, Definition, Techniques, and Case Studies," UC
Berkeley Computer Science Technical Report UCB//CSD-02-
1175, March 15, 2002.

[2] M. Ji, A. Veitch, and J. Wilkes, “Seneca: remote mirroring
done write,” In Proceedings of the 2003 USENIX Annual
Technical Conference, San Antonio, TX, 2003, pp. 253-268.

[3] D. M. Smith, “The cost of lost data,” Journal of Contemporary
Business Practice, Vol. 6, No. 3, 2003.

[4] K. Keeton, C. Santos, D. Beyer, J. Chase, J. Wilkes,
“Designing for disasters,” In Proc. of 3rd Conference on File
and Storage Technologies, San Francisco, CA, 2004.

[5] D. A. Patterson, "A New Focus for a New Century:
Availability and Maintainability >> Performance," In FAST
Keynote, January 2002,
http://www.cs.berkeley.edu/~patterson/talks/keynote.html.

[6] The 451 Group, ”Total Recall: Challenges and Opportunities
for the Data Protection Industry,” May 2006,
http://www.the451
group.com/reports/executive_summary.php?id=218.

[7] J. P. Tremblay and R. Manohar, “Discrete mathematical
structures with applications to computer science,” New York :
McGraw-Hill,1975

[8] L. Gwennap and J. Byrne, “A Guide to High-Speed Embedded
Processors,” the third edition, The Linley Group, 2006.

[9] Transaction Processing Performance Council, "TPC
Benchmark TM C Standard Specification," 2005,
http://www.tpc.org/tpcc.

[10] J. Katcher, "PostMark: A new file system benchmark,"
Network Appliance, Tech. Rep. 3022, 1997.

[11] Intel Corp.,"IoMeter: Performance Analysis Tool," 2003,
http://www.iometer.org/.

[12] J. Piernas, T. Cortes and J. M. García, "TPCC- UVA: A free,
open-source implementation of the TPC-C Benchmark," 2005,
http://www.infor.uva.es /~diego/tpcc-uva.html.

[13] S. Fuller and J. Fakiris, “How AMCC's PowerPC440SP is
addressing today's storage solutions,” 2004,
http://www.embedded-computing
.com/articles/fuller_and_fakiris/, 2004.

[14] A.L. Chervenak, V. Vellanki, and Z. Kurmas, "Protecting file
systems: A survey of backup techniques," In Proc. of Joint
NASA and IEEE Mass Storage Conference, College Park, MD,
March 1998.

[15] G. Duzy, "Match snaps to apps," Storage, Special Issue on
Managing the information that drives the enterprise, pp. 46-52,
Sept. 2005.

[16] H. Simitci, “Storage Network Performance Analysis,” Wiley
Publishing, Inc., 2003.

[17] W. Xiao, Y. Liu, Q. Yang, J. Ren, and C Xie, “Implementation
and Performance Evaluation of Two Snapshot Methods on
iSCSI Target Storages,” In Proc. Of NASA/IEEE Conference
on Mass Storage Systems and Technologies, May, 2006.

[18] R. Green, A. Baird, and C. Davies, "Designing a Fast, On-line
Backup System for a Log-structured File System," Digital
Technical Journal, Oct. 1996.

[19] E. K. Lee and C. A. Thekkath, "Petal: Distributed virtual
disks," In Proc. of the 7th International Conference on
Architecture Support for Programming Languages an
Operating Systems (ASPLOS-7), Cambridge, MA, 1996.

[20] C. A. Thekkath, T. Mann, and E. K. Lee, “Frangipani: A
Scalable Distributed File System,” In ACM SOSP-16, 1997.

[21] A. Sankaran, K. Guinn, and D. Nguyen, "Volume Shadow

Copy Service," March 2004, http://www. microsoft.com.
[22] M. Rosenblum and J. Ousterhout, "Log-Structured File

System," In Proceedings of the 13th ACM Symposium on
Operating Systems Principles, June 1991, pp. 1-15.

[23] D. Hitz, J. Lau, and M. Malcolm, “File system design for an
NFS file server appliance,” In Proc. of the USENIX Winter
Technical Conference, San Francisco, CA, 1994, pp. 235-245.

[24] L. Shrira and H. Xu, “Thresher: An Efficient Storage Manager
for Copy-on-write Snapshots,” In Proceedings of 2006
USENIX Annual Technical Conference, Boston, MA, 2006

[25] Z. Peterson and R. C. Burns, “Ext3cow: A Time-Shifting File
System for Regulatory Compliance”, ACM Transactions on
Storage, Vol.1, No.2, pp. 190-212, 2005.

[26] L. Moses, “An introductory guide to TOPS-20,” Tech. Report
TM-82-22, USC/Information Sciences Institutes, 1982.

[27] K. McCoy, “VMS File System Internals,” Digital Press, 1990.
[28] D. S. Santry, M.J. Feeley, N.C. Hutchinson, A.C. Veitch, R.W.

Carton, and J. Ofir, “Deciding when to forget in the Elephant
file system,” In Proc. of 17th ACM Symposium on Operating
System Principles, Charleston, SC, Dec. 1999, pp. 110-123.

[29] C.A.N. Soules, G. R. Goodson, J. D. Strunk, and G.R. Ganger,
“Metadata efficieny in versioning file systems,” In Proc. of the
2nd USENIX Conference on File and Storage Technologies,
San Francisco, CA, March 2003, pp. 43-58.

[30] Qing Yang, Weijun Xiao, and Jin Ren，"TRAP-Array: A Disk
Array Architecture Providing Timely Recovery to Any Point-
in -time" in Proc. Of The 33rd Annual International
Symposium on Computer Architecture, (ISCA'06), pp.289-300,
June 2006.

[31] G. Laden, P. Ta-shma, E. Yaffe, and M. Factor, “Architectures
for Controller Based CDP”, In Proc. of the 5th USENIX
Conference on File and Storage Technologies, San Jose, CA,
Feb. 2007.

[32] N. Zhu and T. Chiueh, "Portable and Efficient Continuous
Data Protection for Network File Servers," In Proc. of the
37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 07), Edinburgh, UK,
June 2007.

[33] M. Lu, S. Lin, and T. Chiueh, " Efficient Logging and
Replication Techniques for Comprehensive Data Protection, ”
In Proceedings of the 24th IEEE Conference on Mass Storage
Systems and Technologies (MSST 2007), San Diego,
California, Sept. 2007.

[34] M. D. Flouris and A. Bilas, "Clotho: Transparent Data
Versioning at the Block I/O Level," In Proceedings of the 12th
NASA Goddard, 21st IEEE Conference on Mass Storage
Systems and Technologies (MSST 2004),College Park, Md.
315--328.

[35] M. Sivathanu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
and S. Jha, “A logic of file systems,” In Proceedings of the 4rd
USENIX Conference on File and Storage Technologies, San
Francisco, CA, Dec. 2005.

[36] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou, “C-Miner: Mining
Block Correlations in Storage,” In Proceedings of the 3rd
USENIX Conference on File and Storage Technologies, San
Francisco, CA, March 2004

[37] C. B. Morrey III and D. Grunwald, ”Peabody: The Time
Travelling Disk,” In Proceedings of the 20th IEEE/11th NASA
Goddard Conference on Mass Storage Systems and
Technologies(MSST2003), San Diego, CA, Apr. 2003.

[38] A. C. Arpaci-Dusseau et al, "Semantically-Smart Disk
Systems: Past, Present, and Future," Sigmetrics Performance
Evaluation Review, Vol.33, No.4, 2006.

