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Abstract—Continuous Data Protection (CDP) has become increasingly important as digitization continues. This paper presents a new

architecture and an implementation of CDP in Linux kernel. The new architecture takes advantages of both traditional snapshot

technology and recent Timely Recovery to Any Point-in-time (TRAP) architecture [41]. The idea is to periodically insert snapshots

within the parity logs of changed data blocks in order to ensure fast and reliable data recovery in case of failures. A mathematical

model is developed as a guide to designers to determine when and how to insert snapshots to optimize performance in terms of space

usage and recovery time. Based on the mathematical model, we have designed and implemented a CDP module in the Linux system.

Our implementation is at block level as a device driver that is capable of recovering data to any point-in-time in case of various failures.

Extensive experiments have been carried out to show that the implementation is fairly robust and numerical results demonstrate that

the implementation is efficient.

Index Terms—Data storage, data protection and recovery, data backup, continuous data protection.
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1 INTRODUCTION

WITH the rapid advances in networked information
services, data protection and recovery have become

top priority in many businesses and government organiza-
tions [25], [33]. Traditionally, periodic snapshots and back-
ups have been used to protect data, which has been
fundamentally the same as it was 30 years ago [2], [5],
despite the rapid advances in computer technology wit-
nessed in the past decades. It is well known that backup
remains a costly and highly intrusive batch operation that is
prone to errors and consumes an exorbitant amount of time
and resources. In addition, data changed between two
consecutive backups are vulnerable to data loss giving rise
to high Recovery Point Objective (RPO) [11], the maximum
acceptable age of data at the time of outage. For example, if
daily backup were used as a data protection and recovery
plan, the worst case scenario would be that the recovered
data would be 24 hours old if an outage happened just before
the next backup.

In an ideal situation, data should be recoverable to the
most recent data image as it was right before a failure event.
This has spurred extensive research on Continuous Data
Protection (CDP) [6], [13], [16], [18], [24], [37], [39], [41], [43].
In CDP storage, an I/O write operation on a data block does
not destroy the old value of the data block. Instead, the old

value is kept in a backup storage. As a result, the backup
storage keeps a log (CDP log) of changed data together with
timestamps indicating when data were changed for each
data block. Since all data changes are kept in the CDP logs,
one can recover data to any point-in-time in case of an
outage or a failure event. A recovery program traces back
the CDP logs to find the desired time point to restore the
data image as it was at the time. In order to keep all data
changes, CDP requires a large amount of storage space,
which may be prohibitively costly and has thus far
prevented it from being widely adopted.

To reduce the amount of space required in CDP storage,
researchers have tried to find ways to store CDP logs with
minimal space possible. Morrey III and Grunwald [18]
presented an approach to avoiding duplicates by maintain-
ing 128 bit content summary hash about the contents of
individual sectors. Flouris and Bilas [6] have observed
storage space savings by binary differential compression to
store only the delta of data changes since the last version.
Timely Recovery to Any Point-in-time (TRAP) architecture
[41] keeps a log of XOR’s (Exclusive OR) of successive data
changes on a data block. Because of the strong data locality,
TRAP provides up to two orders of magnitude space savings
compared to plain CDP data logs. TRAP recovers data by
finding the desired recovery time (RTO) point in each parity
log and computing XOR from the found point to either the
beginning or the end of the parity log. Depending on the
length of each parity log, such XOR computation may take a
long time, resulting in a large RTO (Recovery Time
Objective, time it takes to recover data after a failure event).

It is clear from the above discussions that periodic
backup/snapshot provides us with limited recovery points
depending on the frequency of snapshots performed. But it
does not need to perform XOR computations on parity logs
that may potentially be very long. TRAP architecture, on the
other hand, provides CDP with unlimited recovery points
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while it requires parity log retrieval and possibly long
parity computations. We are therefore faced with two data
protection and recovery techniques with a trade-off
between RPO and RTO. Our objective here is to design an
optimal approach to data protection and recovery by taking
advantages of both techniques.

The idea is to break down the parity log into sublogs [14].
Between any two subsequent sublogs, we insert a snapshot
data image. The length of the sublog is a configurable
parameter determined by the system administrator or
storage manager. We call our design Snapshot in TRAP
CDP (ST-CDP). Adding snapshots between parity logs has
several practical advantages. First of all, it limits the
maximum recovery time. Second, the configurable sublog
sizes allow a system administrator to organize the parity
logs in different data structures and to optimize space usage
and retrieval times. Third, this organization increases
significantly the reliability and recoverability of the TRAP
architecture. This is because a parity log may become
completely useless if there is any single bit error in the log.
The longer the parity log is, the higher the probability of log
failure. Breaking up the parity logs into sublogs and adding
snapshot in between reduces the probability of such failures
and increases data recoverability.

Some of the most important design issues with ST-CDP
are how often we should insert snapshots into the parity logs
and how long each subparity log should be. In order to
provide quantitative guidance to make such design deci-
sions, we have developed a mathematical model as an
analytical tool for optimizing space usage and recovery time
for each individual block in our previous paper [14]. In this
paper, we enhance the model to optimize for the entire
volume of a storage and give a new set of equations to guide
different users who may weigh recovery time and space costs
differently. The next important design issue is how to
organize parity logs and snapshot data. Efficient data
structures are important to online performance, space usage,
and recovery speed. Based on [14], we have studied this issue
in depth and proposed a new and optimal way of organizing
the parity logs with periodic snapshots inserted in the logs.

Based on our mathematical model and considerations of
practical design issues, we have designed and implemented
a prototype ST-CDP in Linux kernel. Our implementation
is done as a block level device driver and represents
substantial improvement in terms of robustness and
functionality over our previous work [14]. Specifically, it
is implemented at the same layer as Linux software RAID,
MD [15]. Standard benchmarks such as TPC-C, IOMeter,
PostMark, and microbenchmarks are used to drive our
prototype for the purpose of testing and evaluation. The
new prototype allows us to carry out comprehensive
experiments to evaluate space efficiency, performance,
and recovery time of ST-CDP as compared to traditional
systems. Our measurement results showed that our im-
plementation provides good space efficiency, high perfor-
mance, and fast data recovery.

The paper is organized as follows: We discuss related
work in the next section. Section 3 presents the ST-CDP
architecture. We will give a brief overview of TRAP
architecture for the purpose of completeness followed by

our new ST-CDP design. Section 4 presents the mathema-
tical model that is used as a guide for optimal implementa-
tion of the ST-CDP architecture. The detailed design and
implementation of ST-CDP as a device driver in Linux
kernel are discussed in Section 5 followed by our experi-
mental settings in Section 6. Section 7 gives numerical
results and discussions. We conclude our paper in Section 8.

2 RELATED WORK

Depending on the different values of RPO and RTO, there
exist different storage architectures capable of recovering
data upon an outage. We summarize existing related works
in three different categories based on different RPOs.

2.1 Snapshot or Incremental Backup

Data protection and recovery have traditionally been done
using periodic backups and snapshots [2], [5], [40].
Typically, backups are done nightly when data storage is
not being used since the process is time consuming and
degrades application performance. During the backup
process, user data are transferred to a tape, a virtual tape,
or a disk for disk-to-disk backup [4], [5]. To save backup
storage, most organizations perform full backups weekly or
monthly with daily incremental backups in between. Data
compression is often used to reduce backup storage space
[2]. ST-CDP differs from existing backup and snapshot
techniques by increasing the data recovery granularity
using sublogs of parities resulting from data changes.

2.2 File Versioning

Besides periodic data backups, data can also be protected at
the file system level using file versioning that records a
history of changes to files. Versioning was implemented by
some early file systems such as Cedar File System [7], 3DFS
[12], and CVS [1] to list a few. Typically, users need to create
versions manually in these systems. There are also copy-on-
write versioning systems exemplified (COW) by Tops-20 [20]
and VMS [17] that have automatic versions for some file
operations. Elephant [31] transparently creates a new version
of a file on the first write to an open file. CVFS [34] versions
each individual write or small metadata using highly efficient
data structures. OceanStore [28] uses versioning not only for
data recovery but also for simplifying many issues with
caching and replications. The LBFS [22] file system exploits
similarities between files and versions of the same files to
save network bandwidth for a file system on low-bandwidth
networks. Peterson and Burns have implemented the
ext3cow file system that brings snapshot and file versioning
to the open-source community [26]. Muniswamy-Reddy et al.
[21] presented a lightweight user-oriented versioning file
system called Versionfs that supports various storage
policies configured by users. ST-CDP provides block level
CDP as opposed to file system level as done by file versions
that are file system dependent.

2.3 Traditional CDP

To provide timely recovery to any point-in-time at the block
device level, one can keep a log of changed data for each
data block in a time sequence [5] referred to as CDP. Laden
et al. proposed four alternative architectures for CDP in a
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storage controller, and compared them analytically with
respect to both write performance and space usage over-
head [13]. Zhu and Chiueh proposed a user-level CDP
architecture that is both efficient and portable [43]. They
implemented four variants of this CDP architecture for NFS
servers and compared their performance characteristics. Lu
et al. presented an iSCSI storage system named Mariner to
provide CDP on commodity ATA disk and Gigabit Ethernet
technologies [16]. Different from these works for CDP
architectures, our study concentrates on data recoverability
of block level storages and what kind of data needs to be
stored for recovery purpose.

The main drawback of the CDP storage is the huge amount
of storage space required, which has thus far prevented it
from being widely adopted. Flouris and Bilas [6] proposed a
storage architecture named Clotho providing transparent
data versioning at the block level. Clotho coalesces the
updates that take place within a period of time by creating
new versions for them. This versioning happens at discrete
time points that are not necessarily continuous as is done in
CDP. Morrey III and Grunwald [18], [19] observed that for
some workloads, a large fraction of disk sectors to be written
contain identical content to previously written sectors within
or across volumes. By maintaining information (128 bit
content summary hash) about the contents of individual
sectors, duplicate writes are avoided. Zhu, Li, and Patterson
[42] proposed an efficient storage architecture that identifies
previously stored data segments to conserve storage space.
These data reduction techniques generally require a search in
the storage for an identical data block before a write is
performed. ST-CDP does not need to search storage for the
purpose of deduplication. Rather, it exploits the data locality
property to insert logs of parities between snapshots.

It should be noted that keeping a log of changed data has
been studied and used in other contexts other than data
recovery. For example, log-structured file system has been
researched extensively for improving disk write perfor-
mance [29], [32]. There are variations of such log-structured
file system such the DCD [8] proposed by Hu and Yang,
and the Vagabond [23] proposed by Norvag and Bratberg-
sengen for optimizing disk write performance. Norvag and
Bratbergsengen also noticed the space savings of storing a
delta object in buffer space when an object is changed,
which suggests data locality that exists in data write
operations. The difference between ST-CDP and the existing
log structured file system is that ST-CDP aims at high-data
recoverability at a low cost as opposed to purely improving
storage performance.

3 ST-CDP ARCHITECTURE

In this section, we discuss the overall structure of ST-CDP
system. For the purpose of completeness, we first summar-
ize the original TRAP architecture followed by the complete
ST-CDP architecture.

3.1 Brief Review of TRAP Architecture

As presented in [41], TRAP keeps a log of parities as a
result of each write on a block. Fig. 1 shows the basic
design of TRAP. Suppose that at time ttk, the host writes
into a data block with logic block address AAi that belongs to

a data stripe ðAA1; AA2; . . . ; AAi; . . . ; AAnÞ. The RAID controller
performs the following operation to update its parity disk:

PPT ðkÞ ¼ AAiðkkÞ �AAiðk� 1Þ � PPT ðk�1Þ; ð1Þ

where TT ðKKÞ is the time stamp, PPT ðkÞ is the new parity for
the corresponding stripe, AAiðkkÞ is the new data for data
block AAi; AAiðkk� 1Þ is the old data of data block AAi, and
PPT ðk�1Þ is the old parity of the stripe. Leveraging this
computation, TRAP appends the first part of the above
equation, i.e., PP 0T ðkÞ ¼ AAiðkkÞ �AAiðkk� 1Þ, to the parity log
stored in the TRAP disk after a simple encoding box, as
shown in Fig. 1.

Now consider the parity log corresponding to a data
block, AAi, after a series of write operations. The log
contains ðPP 0T ðkÞ; PP 0T ðk�1Þ... ...;PP

0
T ð2Þ; PP

0
T ð1ÞÞ with time stamps

TT ðkkÞ; TT ðkk� 1Þ; . . . . . . ; TT ð2Þ, and TT ð1Þ associated with the
parities. Suppose that an outage occurred at time tt1, and
we would like to recover data to the image as it was at time
tt0ðtt0 � tt1Þ. To do such a recovery, for each data block AAi,
we first find the largest TT ðrrÞ in the corresponding parity
log such that TT ðrrÞ � tt0. We then perform the following
computation:

AAiiððrÞ ¼ PP 0TT ðrÞ � PP 0TT ðr�1Þ � � � � � PP 0TT ð1Þ �AAið0Þ; ð2Þ

where AAiðrÞ denotes the data image of AAi at time TT ðrÞ and
AAið0Þ denotes the data image of AAi at time TT ð0Þ. Note

PP 0TT ðlÞ �AAiiðll� 1Þ ¼ AiiððlÞ �AAiiðll� 1Þ �AAiiðll� 1Þ ¼ AiiðllÞ

for all l ¼ 1; 2; . . . ; r. Therefore, (2) gives AAiðrÞ correctly
assuming that the original data image, AAið0Þ, exists in a full
backup storage.

The above process represents a typical redo recovery
process upon an outage that results in data loss or data
damage while earlier data are available in a full backup or a
mirror storage. An undo process is also possible with the
parity log if the newest data is available by doing the
following computation instead of (2):

AAiðrrÞ ¼ AAiðkkÞ � PP 0T ðkÞ � PP 0T ðk�1Þ � � � � � PP 0T ðrþ1Þ;

where AAiðkÞ represents the latest or newest data of block AAi.

3.2 Inserting Snapshots in Parity Logs

The TRAP architecture discussed above provides a CDP
function by means of parity logs resulting from block write
operations. Since every change is kept in the log, one can go
back to any point-in-time. The traditional snapshot/backup,
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on the other hand, provides periodic data images of block
level storage. When data recovery is necessary, these two
data protection techniques work quite differently. TRAP
needs to retrieve the parity log for each data block and
perform the parity computation to recover the data block
corresponding to the recovery time point. As the parity log
gets longer, so does the recovery time because of longer
parity computations. Snapshot, on the other hand, just
needs to restore the corresponding data blocks correspond-
ing to the recovery time point, though the number of
possible recovery points is limited by the frequency of
snapshots performed.

ST-CDP takes a hybrid approach by inserting snapshots
periodically into the parity logs. Snapshot is a common
technique used in data storages for data protection and
recovery. There are two types of snapshots: clone/full copy
snapshot and copy-on-write differential snapshot. A clone
is a full copy of the original data on a volume at a point-in-
time that can be created through either software or
hardware mirroring. Copy-On-Write differential snapshot
makes a copy of the original data before it is overwritten
when a change to the original volume occurs. The block
about to be modified is read and then written to a
“differences area,” which preserves a copy of the data
block before it is overwritten with the change. Using the
blocks in the differences area and unchanged blocks in the
original volume, a volume can be logically constructed that
represents the snapshot copy at the point-in-time in which it
was created. Fig. 2 shows the new parity logging structure.
As we insert snapshots in the parity logs, sublogs are
formed that are separated by periodic snapshots. At
recovery time, only one sublog that contains the recovery
time point is needed. The recovery time for each data block
is limited by the half of the sublog length because parity
computation can be done both ways, redo and undo, as
shown in [41]. To minimize log retrieval time, one can also
organize all sublogs in an efficient data structure as will be
discussed shortly.

There are two important design issues that need to be
considered carefully to implement the ST-CDP architecture.
These issues have to do with whether we keep CDP data
and insert snapshots in parity logs based on LBA address of
data blocks (Space) or based on time of updates (Time).
Each has its pros and cons.

Let us first consider that we keep our CDP data and
insert snapshots based on space. That is, we keep a parity
log for each distinct LBA and insert a snapshot data block
after a certain number of write operations has been done on

the block. In this way, we can ensure that all parity sublogs
are limited to a predetermined length and hence control
the recovery time. In addition, the recovery algorithm is
relatively simple since each block has its corresponding
CDP data. There are several disadvantages of space-based
design. The first is its performance impact on applications.
We need to keep track of CDP data corresponding to each
data block, which takes not only more I/O operations on
each write but also more metadata to keep track of CDP
data of each block. For example, to determine when to insert
snapshots, a counter is needed to keep track of the number
of writes for each block. Furthermore, if write operations are
not uniformly distributed across data blocks, we may end
up with long parity logs and more snapshots for some
blocks and short parity logs and fewer snapshots for others.

Now consider the time option, which keeps CDP data
purely based on time of updates. That is, we do not
distinguish different blocks but insert snapshots based on
time when the total amount of write I/Os reaches a
predetermined value. In this way, we do not need to keep
track of write counts on each data block but only the
aggregated total write I/Os. All CDP logs are contained in
only one file, which makes management easier. Snapshots
are done on the entire volume as opposed to individual data
blocks. At recovery time, there is no need to go through every
LBA to retrieve history data but only the aggregated CDP log.
Furthermore, implementation is relatively simple since
TRAP and snapshot can be done separately. The shortcoming
of this approach is uncontrollable length of parity logs when
write I/Os are unevenly distributed among data blocks.
Some parity logs may be much longer than other parity logs
depending on the write frequency to individual LBAs.

Clearly, both approaches discussed above have advan-
tages and disadvantages. To make a wise design decision, a
quantitative evaluation is necessary. In the next section, we
will develop an optimization model to guide our design.

4 AN ANALYTICAL MODEL

In this section, we will give a simple analytical model to
optimize our ST-CDP design. Our objective is to determine
when and how to insert snapshots in parity logs so that the
design is space and recovery time optimal.

Let dd be the length of each sublog in terms of the number
of parity blocks enclosed by two subsequent snapshots. We
would like to determine what dd value one should choose
for optimal implantation of ST-CDP on Linux operating
system. In order to provide a quantitative guidance on how
to choose dd, let us define a set of symbols as shown in
Table 1.

If we do not break up parity logs, the recovery time of
each data block is given by

ðTTdec þ TTxor þ SSlog=IIOrateÞ �WWavg � TTspan: ð3Þ

Now consider our ST-CDP design with sublogs of dd
parity blocks. As mentioned previously, the recovery time
for each data block is limited by the half of the sublog
length, dd, because parity computation can be done both
ways, redo and undo. If we assume that the recovery time
point is uniformly distributed among dd points within a
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sublog if the RPO falls into that log, the expected parity

blocks needed to do XOR computations for the data

recovery is given by

EðdÞ ¼ 1

2

Xd2d e
k¼0

k �P ðx ¼ kÞ þ 1

2

Xd
k¼1þ d

2d e
ðd� kÞ � P ðx ¼ kÞ

�
Xd2d e
k¼0

2k

d
� dþ 1

4

� �
:

ð4Þ

The recovery time of each data block in the case of ST-CDP

is given by

TT ðddÞ ¼ ðTTdec þ TTxor þ SSlog=IIOrateÞ � EEðdÞ þ SSblk=IIOrate: ð5Þ

The first half of the above equation gives the parity

computation time and the second half gives the data copy

time. It is interesting to note that this recovery time is

independent of RPO but dependent on dd value. The

recovery time increases as dd increases.
Let us now consider the additional storage space needed

to store the parity logs and snapshot data while running

ST-CDP. We would like to examine the average storage

increase per time unit while running the ST-CDP, which is

given by

SSðddÞ ¼ SSlog �WWavg þ SSblk �WWavg=dd; ð6Þ

where the first term gives the space for parity log and the

second term gives the snapshot space. Since the number of

snapshots inserted is inversely proportional to dd, the space

usage of snapshots is also inversely proportional to dd.

Ideally, we would like to use as little storage space as
possible and recover data as quickly as possible to reduce
the overall cost. We will use these two factors to determine
how good a data protection technology is. We therefore
use the product of these two cost factors as the compound
cost of ST-CDP. Let

FF ðddÞ ¼ TT ðddÞ � SSðddÞ
¼ ½ðTTdec þ TTxor þ SSlog=IIOrateÞ � EEðddÞ þ SSblk=IIOrate� �
ððSlog �WWavg þ SSblk �WWavg=ddÞ

¼ ððc1 � EEðdÞ þ cc2Þ � ðcc3 þ cc4=ddÞ
¼ ððc1 � dd=4þ cc1=4þ cc2Þðcc3 þ cc4=dÞ;

ð7Þ

where cc1 ¼ ðTTdec þ TTxor þ SSlog=IIOrateÞ; cc2 ¼ SSblk=IIOrate; cc3 ¼
SSlog �WWavg, and cc4 ¼ SSblk �WWavg. These are constants in-
dependent of dd.

Now, let us consider the derivative of FF ðdÞ and set it to 0.
We have

FF 0ðddÞ ¼ 0! dd0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððc1 þ 4c2Þc4

c1c3

s
: ð8Þ

Since the second derivative

FF 00ðddÞ ¼ ðcc1 þ 4cc2ÞCC4 � dd�3=22; F 00ðdd ¼ dd0Þ ¼ cc1cc3=2dd0 > 00;

the minimum value of FF ðdÞ exists when dd ¼ dd0. We will
choose dd to be the integer closest to dd0 as our optimal
sublog size.

While (8) gives the optimal dd value, there are two
important considerations in practical system designs as
discussed below.

First of all, (8) gives the optimal subparity log sizes for
each individual block. In a large storage system with
millions of data blocks, keeping track of dd0 for each data
block may be excessively costly that may adversely impact
application performance. In order to simplify system
design, we introduce two additional parameters, MM and
mm. MM is a counter that keeps track of total number of write
operations performed in the storage while mm keeps track of
the number of distinct data blocks that have been written so
far. MM differs from mm in the sense that when a specific data
block is written nn times, MM is increased by nn while mm is
incremented by one. We would like to consider the entire
storage system and determine what would be the optimal
value of MM to make snapshot.

The second consideration is that (8) assumes that both
recovery time and space costs are equally important. In
practice, different organizations have different priorities and
may weigh recovery time and space cost differently. For
example, the New York Stock Exchange would be willing to
sacrifice a lot of space to improve recovery time while small
businesses might prefer a lower cost solution that would
take some extra time to recover lost data. To guide different
users in choosing optimal dd, let us define the perceived
importance factors of recovery time and storage space to be
�� and ��, respectively. These importance factors can be
considered as the cost per second of RTO and the cost per
Gbyte of extra storage needed to implement ST-CDP. We
would like to take into account these two importance factors
in our optimization process.
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Suppose that there are WWtotal write IOs during a day of
operations. Taking into account all blocks in the storage
system and the two importance factors, the total cost of the
ST-CDP can be approximately expressed as

FcostðMÞ ¼ �� Tdec þTxor þ
Slog

IOrate

� �
� EðMÞ

�

þ
Sblk �E

�
Wtotal

M

�
�N

IOrate

!

þ �� Slog �Wtotal þ Sblk �
Wtotal

M
�N

� �
;

ð9Þ

where EðMÞ ¼ Mþ1
4 (see (4)) , EðWtotal

M Þ ¼ 1
2 �

Wtotal

M . Let

e1 ¼ Tdec þTxor þ Slog

IOrate
; e2 ¼ Sblk�N

IOrate
; e3 ¼ Slog 2 �Wtotal,

and e4 ¼ Sblk �Wtotal � N, we have

FcostðMÞ ¼ �� e1 �
Mþ 1

4
þ e2 �

Wtotal

2M

� �
þ �� e3 þ

e4

M

	 

:

ð10Þ

Deriving the derivative of FcostðMÞ and set it to 0, we have

F0costðMÞ ¼ ��
e1

4
� e2 �Wtotal

2
M�2

� �
� ��e4M

�2; ð11Þ

F0costðMÞ ¼ 0!M0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��e2Wtotal þ 4��e4

��e1

s
: ð12Þ

Because

F00costðMÞ ¼ �� � e2 �Wtotal �M�3 þ 2��e4M�3 > 0; ð13Þ

optimal value of MM;MM0, exists and is given by (12).
Equation (12) will be used in ST-CDP system to determine
when to make a system wide snapshot. After each snapshot
operation, both MM and mm are reset to zero and start
counting over again.

Given the limited system resources available, we also
introduce a maximal allowable number of write operations
before making a snapshot,MMmax, to limit the usage of system
RAM for SP-CDP. This maximum allowable writes can be
determined based on the system resources available. For
example, at recovery time, we need a large amount of system
RAM to uncompress parity logs and compute XORs.
Suppose the system RAM is 1 GB and the compression ratio
is 5. If 60 percent of the RAM were allocated for recovery
process, we could set MMmax to be 100,000 if each uncom-
pressed data block is 5 KB. A storage administrator can
determine the best value of MMmax based on the hardware

resources available, work load characteristics, and RTO
requirement. When MM reaches either MMmax or MM0, a
snapshot operation is initiated followed by parity logging
operations.

5 PROTOTYPE IMPLEMENTATION

5.1 Basic Architecture of ST-CDP

Based on the design and analysis presented in the previous
sections, we implemented our ST-CDP as an added kernel
module on RAID-5 in Linux kernel. As the block level is
typically the greatest common denominator of heteroge-
neous enterprise applications, our ST-CDP is developed as a
stand-alone block device driver independent of higher level
systems and applications. Fig. 3 shows the location where
our ST-CDP is implemented in the Linux kernel. It is
implemented at the same level as the Linux software RAID,
MD (Multiple Device). Two separate volumes, snapshot
volume and CDP volume, are under the direct control of
snapshot module and TRAP module, respectively, as
shown in Fig. 3.

Fig. 4 shows a more detailed layout of the design of our
ST-CDP. It has two major functional modules, ST-CDP
logging module and recovery module.

The ST-CDP logging module keeps periodic COW-snap-
shots (copy-on-write differential copy) as well as a journal of
parities between two consecutive snapshots. It bypasses all
read requests and intercepts all write requests. The normal
IO write operations and the operation of ST-CDP are done in
parallel. There are two major parts in the ST-CDP logging
module. The first part carries out COW snapshot operations
when triggered, referred to as ST module. The other part,
referred to as the TRAP module, does the parity computa-
tions and logging, as shown in Fig. 4.

The recovery module of the ST-CDP is a program that
runs only after normal write I/Os stop. When data recovery
needs to be done, the recovery module starts by retrieving
snapshot data and parity logs. The recovery process is
shown in Fig. 5.

At first, the recovery module will search the metadata of
snapshots and recover to the nearest version of the snapshot.
And then the recovery module continues to recover to the
right point as designated by a user. Based on the designated
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Fig. 3. The block diagram of the ST-CDP implementation in the
Linux kernel.

Fig. 4. Block diagram of the detailed implementation of ST-CDP with
respect to existing kernel modules.



RPO, it searches the parity logs for each data block to find
the sublog that contains the desired RPO. Once such a
sublog is found, the recovery program searches for a parity
block that has the timestamp matching or being the closest to
the RPO. Exclusive-OR operations are then performed to
recover the right data block. After all changed data blocks
are recovered, the data will be written to the source volume
and the recovery process is done. It is also possible that the
RPO matches one of the snapshots in the CDP volume. In
this case, no parity computation is necessary. The recovery
program just copies the snapshot data to the source volume.

5.2 Implementation Details and Data Structures

5.2.1 ST-CDP Logging Module

As mentioned previously, the first part of ST-CDP logging
module is the snapshot, ST module. There are two types of
snapshots for block level data storages. One is a full
snapshot (cloning) and the other is copy-on-write (COW
differential copy) [30]. Our prototype ST module uses the
second type of snapshot, COW snapshot, which makes a
copy of the original block upon a write operation and the
copy is stored in the snapshot volume. Together with the
original data, the COW differential copy in the snapshot
volume forms the point-in-time snapshot of the entire
volume. The exact point-in-time is determined dynamically
at runtime based on the chosen value of MM discussed in the
last section as well as predefined time limit.

When MD is started in the Linux kernel, ST-CDP will
start a ST-CDP Kernel daemon thread that intercepts all
write requests except for resync and recovery. It does this in
the core function of RAID-5-handle_stripe5(). After it
catches a write request (write bio), two actions will be
performed. The first action is to mark a time stamp on the
bio and the second action is to generate a read bio on the
same block address and send it to disk before write. Since
the write requests which have been sent to disk cannot

return in the same order, the 4-tuple information entry,

(sector, disk number, time stamp, data to be written), on the

bio will be stored in a data structure named mdtrap_bios_

need_save in the kernel list named list_will_save. After the

read bio returns to its callback function (interrupt context),

it will be removed from the list_will_save and stored in a

buffer. When the buffer space reaches a threshold, the

Kernel daemon thread will be woken up to start a new

Kernel thread which takes the buffer to ST-TRAP record

module (process context).
In the ST-TRAP record module, the nodes in the buffer

will be sent to mdtrap_save() function one by one. The

mdtrap_save() function copies the information and read

data (from read bio) of each node to a hash table node called

st_hlist_node. When inserting st_hlist_node to the hash

table, the counter MM mentioned above will add 1. If there is

no collision in the hash table (which means a new block

access), mm is incremented. When MM reaches MMmax or MM0,

the snapshot module of ST-CDP starts to store COW

snapshot to the snapshot volume with exactly one value

for each LBA representing the COW differential snapshot.

At the same time the information of the snapshot version is

stored in the Snapshot Metadata.
After the snapshot process, XOR will be performed

between the data of write bio and read bio that was read

before write. The XOR results are stored in a new data

structure called bio_parity. It also contains the necessary

information of bio. It will be inserted in a kernel list buffer

in time order as shown in Fig. 6. The data structure of

bio_parity is shown in Table 2. When the buffer above

reaches a certain value, TRAP module will store it to the

CDP Volume. It is done by starting a new kernel thread.

Similar to the snapshot module, metadata of the CDP buffer

is stored in the CDP metadata.
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Fig. 5. Timing diagram showing recovery process.

Fig. 6. The kernel list buffer structure.

TABLE 2
Data Structure of Bio Parity



5.2.2 ST-CDP Recovery Module

In order to ensure consistency of data, the normal write
process of RAID-5 must be stopped and all the buffer data
must be flushed to disk. To start a recovery process, the user
inputs a recovery time point, RPO. The metadata of snapshots
and TRAP will be processed according to the time point to
determine the total amount of snapshots and parity log data
that will be processed for recovery. Then, all the necessary
information will be sent to ST-CDP in the Linux kernel.

The recovery module will first recover to the nearest
snapshot version from the data in the snapshot volume.
Next, the recovery module will recover to the exact RPO
point by tracing the parity logs in the CDP volume.

During this recovery process, a hash table is used to
reduce disk I/O operations. When recovering to the
nearest snapshot version, the same bio (at the same sector
in the same disk) data will be replaced. When recovering to
the exact RPO point through the nearest snapshot version,
the same bio (at the same sector in the same disk) data will
be replaced after XOR computations. The data structures
are shown in Fig. 7 and Table 2. During the recovery
process, if any of the two hash tables reaches the upper
limit of memory usage, it will be flushed to the RAID-5.
After that, it continues the recovery process until it has
recovered to the right RPO point.

6 EXPERIMENTAL SETTINGS

For the purpose of testing our ST-CDP implementation and
performance evaluation, we have carried out extensive
experiments. Fig. 8 shows the high-level block diagram of
our experimental settings. To allow multiple clients and
multiple storage servers in a networked environment, we
implemented the lower level storage device using iSCSI
protocol as shown in Fig. 8. Our ST-CDP module runs on
the storage server at the block device level of the Linux
operating system. The client machine has file system,
database, and application benchmarks installed. The details
of the hardware and software environment in our experi-
ments are shown in Table 3.

Right workloads are important for performance studies
[8]. In order to have an accurate evaluation, we use real
world I/O workloads and standard benchmarks. The first
benchmark, TPC-C, is a well-known benchmark used to
model the operational end of businesses where real-time
transactions are processed [3]. TPC-C simulates the execu-
tion of a set of distributed and online transactions (OLTP)

for a period of two to eight hours. It is set in the context of a
wholesale supplier operating on a number of warehouses
and their associated sales districts. TPC-C incorporates
fivetypes of transactions with different complexities for
online and deferred execution on a database systems. These
transactions perform the basic operations on databases such
as inserts, deletes, and updates. From a data storage point
of view, these transactions will generate reads and writes
that will change data blocks on disks. For Postgres
Database, we use the implementation from TPCC-UVA
[27]. Eight warehouses with 25 users are built on Postgres
database. Details regarding TPC-C workloads specification
can be found in [3].

Besides benchmarks running on databases, we have also
run two file system benchmarks IoMeter and PostMark.
IoMeter is a flexible and configurable benchmark tool that is
also widely used in industries and the research commu-
nity[9]. It can be used to measure the performance of a
mounted file system or a block device. We run the IoMeter
on NTFS with 4 KB block size for two types of workloads:
100 percent random writes, and 30 percent writes and
70 percent reads. PostMark is another widely used file
system benchmark tool written by Network Appliance, Inc.
[10]. It measures performance in terms of transaction rates
in an ephemeral small-file environment by creating a large
pool of continually changing files. Once the pool has been
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Fig. 7. Structure of hash tables.

Fig. 8. Experimental setup.

TABLE 3
Hardware and Software Configurations

in the Experiments



created, a specified number of transactions occur. Each
transaction consists of a pair of smaller transactions, i.e.,
Create file/Delete file and Read file/Append file. Each
transaction’s type and files it affects are chosen randomly.
The read and write block size can be tuned. In our
experiments, we set PostMark workload to include 10,000
files and to perform 20,000 transactions. Read and Write
block sizes are set to 4 KB.

SPC-1 [35] is a synthetic storage subsystem performance
benchmark of Storage Performance Council. It works by
setting the storage subsystem to an I/O workload designed
to mimic realistic workloads that are collected in typical
business critical applications such as OLTP systems and
mail server applications. SPC-1 has gained some industry
acceptance and storage vendors such as Sun, IBM, HP, Dell,
LSI-Logic, Fujitsu, StorageTek, and 3PARData among others
have submitted results for their storage controllers [36]. SPC
Financial is a well-known block level disk I/O trace taken
from online transaction processing applications running at
large financial institutions. We use the first 1 million lines of
SPC Financial1 [38] for our performance evaluation and
comparison. It has very high-write ratio (above 70 percent).
We chose different numbers of concurrent processes and
different block sizes in our experimental evaluations.

We have also used some microbenchmarks reflecting
users’ experiences. All the microbenchmarks are the shell
commands that are often used by users such as gcc, tar, cp,
mv, and so on as shown in Table 4.

7 NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present our measurement results in terms
of space usage, recovery time, and runtime performance
impact of ST-CDP. We compare the performance results of

three data protection techniques: namely native TRAP with
no snapshots, ST-CDP, and pure CDP that keeps all changes
of a data block. The CDP we evaluate here is copy-on-write
CDP, COW for short, as opposed to redirect-on-write [40].

Before starting our experiments, we first use our

analytical model presented in Section 4 to select appro-
priate values of dd for optimal performance. For this
purpose, we calculate the compound function of storage

space, SSðdÞ, and recovery time, TT ðdÞ, for three different
block sizes as shown in Fig. 9, Fig. 10, and Fig. 11. It can be
seen from these figures that optimal dd values do exist. The
optimal value for block size of 4 KB happens at dd ¼ 77. And

similarly, the optimal values of block sizes of 16 and 64 KB
happen at dd ¼ 86 and dd ¼ 94, respectively. It is interesting
to note that as block size increases, the dd value increases.
This phenomenon can be attributed to the fact that large

block sizes result in more storage space requirement for
storing snapshots. Bigger snapshots need more space to
store and more time to retrieve during data recovery time.
The parity logs between two snapshots do not increase

space requirement as fast because of content locality [41].
As far as recovery time is concerned, one may argue that
larger block size and dd value will increase the parity
computation time during the recovery process. However,

such additional computation time is comparable to or less
than IO time of retrieving large blocks from snapshots.
Based on the analysis, we set the values of dd in our
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TABLE 4
Benchmarks Used in Performance Evaluations

Fig. 9. ST-CDP cost versus sublog size, dd, for block size of 4 KB. The
optimal value of dd is 77.

Fig. 10. ST-CDP cost versus sublog size, dd, for block size of 16 KB. The
optimal value of dd is 86.

Fig. 11. ST-CDP cost versus sublog size, dd, for block size of 64 KB. The
optimal value of dd is 94.



experiments to be 71, 79, 85, 91, and 94 corresponding to
block sizes of 4, 8, 16, 32, and 64 KB, respectively.

As discussed in the previous section, different organiza-
tions may choose snapshot frequencies differently depend-
ing on their priority and relative importance of recovery
time and space cost. Furthermore, it may be practically
convenient to use the optimal MM value (12) to determine
snapshot times. Using (10), we plotted ST-CDP cost as a
function of MM considering different cost factors as shown in
Fig. 12 and Fig. 13. Fig. 12 assumes a lower down time cost
appropriate for small to medium size businesses and Fig. 13
assumes a higher downtime cost appropriate for high-end
systems. From these two figures, we can see that if an
organization can afford to spend some time to do data
recovery in case of a failure, one can do snapshot less
frequently with large MM value (Fig. 12). On the other hand,
if downtime cannot be tolerated meaning short RTO is
essential to the business, one can choose relatively small
MM value implying that more and frequent snapshots should
be done to speedup recovery time. This is consistent with
our early analysis and expectations.

Based on the dd values discussed above, our first
experiment is to measure the additional space usage of the
three data protection techniques. Fig. 14 shows the mea-
sured results when we ran TPC-C benchmark on Postgress
database. We plotted the space usage of the three data
protection technologies for different block sizes ranging
from 4 KB through 64 KB. For COW CDP, we measured the

space usage of both uncompressed and compressed CDP
logs. It can be seen from this figure that COW CDP takes
most space because it keeps the original data blocks of all
changed data. Even data compression is applied to the CDP
logs, the space usage is still fairly large. Native TRAP takes
the least amount of space because of locality property of
write operations as evidenced in [41]. The space usage of
ST-CDP is somewhere in between native TRAP and
compressed COW CDP because it stores both parity logs
and small amount of snapshots between sublogs. We choose
the optimal value of d for each block size, resulting in 4, 5, 6,
9, and 10 snapshots for block sizes of 4, 8, 16, 32, and 64 KB,
respectively, for each benchmark run. Subparity logs are
kept between these snapshots. The space overhead of
ST-CDP is closer to that of TRAP than that of COW CDP.
Our observation is that ST-CDP provides CDP with
substantially less storage overhead than continuous real-
time snapshots.

The space overheads of the CDP solutions for IOMeter,
Postmark, and microbenchmarks are shown in Figs. 15 and
16 for block size of 8 KB. Because the micro benchmarks (tar,
gcc, and zip) took between 25 seconds and 2.2 minutes to
run, only one snapshot was taken for each benchmark run.
For cp&rm&mv, PostMark, and IoMeter benchmarks, three,
two, and six snapshots were taken, respectively, during the
benchmark runs. It is observed that ST-CDP uses the amount
of space for storing CDP data very close to the amount of
space that TRAP uses for all the benchmarks shown in these
two figures. This observation is further validated by
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Fig. 12. Total cost versus sublog size, MM, for block size being 4 KB and
it is assumed that the time cost is $1K per hour and space cost is
$10 per gigabyte. The optimal value of MM is 227,629.

Fig. 13. Total cost versus sublog size, MM, for block size being 4 KB and
it is assumed that the time cost is $10 million per hour and space cost is
$10 per gigabyte. The optimal value of MM is 225,471.

Fig. 14. CDP space overhead comparison while running TPC-C
benchmark on Postgres database.

Fig. 15. CDP space overhead comparison while running micro-
benchmarks for block size 8 KB.



changing the block size as shown in Figs. 17 and 18 that show
the similar results for block size of 64 KB. Note that while
one snapshot was taken for each of tar, gcc, and zip, five,
four, and eight snapshots were taken for cp&rm&mv,
PostMark, and IoMeter, respectively. We therefore can
conclude that ST-CDP has the space overhead similar to
TRAP but at the same time provides higher reliability and
faster recovery as will be evidenced next.

Having observed the space efficiency of the new ST-
CDP, our next experiment is to measure and compare the
recovery times of the CDP solutions. In the storage
industry, the recovery time is often referred to as RTO,
recovery time objective. Businesses demand quick recovery
or fast RTO because smaller RTO means shorter down time
of business operations. Therefore, RTO is a very important
performance parameter for data protection technologies. In
our experiments, we used the storage server with RAID-5
consisting of four disks with capacity of 300 GB as shown in
Fig. 8. The storage server is shared by a dozen clients in an
office environment that run typical office applications such
as coding, word processing, simple databases, mails, and
web. After running for an entire business day, we observed

about 5 GB changed data. We then try to recover data to
different RPOs of the day. We measured the recovery times
of native TRAP, COW CDP, and ST-CDP and compared
their respective recovery times.

Fig. 19 shows the measured recovery time as a function
of RPO for a block size of 64 KB. As can be seen from this
figure, TRAP’s recovery time increases as RPO increases
because of XOR computation of long parity logs. On the
other hand, the recovery time of ST-CDP keeps flat while
RPO changes. For example, to recover data to a half hour
ago, the native TRAP recovery program takes about
850 seconds. To recover data to 8 hours ago, it takes about
2,315 seconds, about 3 times longer. With ST-CDP, on the
other hand, it takes about 278 seconds to recover data to a
half hour ago and it takes about 345 seconds to recover
data to 8 hours ago, only about a 30 percent increase in
RTO. This linear increase in recovery time is due to the fact
that ST-CDP needs to walk back all incremental snapshots
until the most recent full-clone snapshot although parity
computation needs to be done on only one subparity log.
However, the recovery time increase of ST-CDP is
substantially smaller than the native TRAP mechanism.
During the 8 hours experiments, ST-CDP took 22 snapshots
with subparity logs inserted in between. We noticed that
the COW CDP has a similar recovery time performance as
that of ST-CDP. However, COW CDP takes much larger
storage space than S-CDP, as demonstrated previously.

The disparity of recovery time between the native TRAP
and ST-CDP is larger for smaller block sizes. Fig. 20 shows
the recovery time comparison for a block size of 8 KB. It can
be seen from this figure that it takes about 1,515 seconds to
recover data to half an hour ago for native TRAP. To recover
data to eight hours ago, it will take more than 4,320 seconds.
Again, the recovery time of ST-CDP stays relative flat. As
shown in Fig. 20, the recovery time varies from 296 seconds
to 397 seconds. Note that ST-CDP took 16 snapshots during
the eight hours experiments for this configuration. Smaller
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Fig. 16. CDP space overhead comparison while running microbe-
nchmark, PostMark, and IOMeter for block size 8 KB.

Fig. 17. CDP space overhead comparison while running microbe-
nchmarks for block size 64 KB.

Fig. 18. CDP space overhead comparison while running microbe-
nchmark, PostMark, and IOMeter for block size 64 KB.

Fig. 19. Recovery time as a function of recovery point for block size
64 KB.

Fig. 20. Recovery time as a function of recovery point for block size 8 KB.



block sizes have space advantages but take longer time to
perform the XOR function both at runtime and recovery
time because of longer CDP logs for the same operation
period.

In addition to the experiments in the real application
environment, we have also measured RTO of SPC-1 traces
using a full snapshot with incremental CDP in between (F&I)
and compared it to our ST-CDP. Fig. 21 shows the measured
RTO as a function of RPO for two experiments. The first
experiment starts with a full snapshot followed by incre-
mental CDP for F&I, and followed by normal ST-CDP
operations with an incremental snapshot inserted at every
10-minute interval for ST-CDP (shown by X’s in Fig. 21). The
second experiment inserts an additional full snapshot at
hour three of benchmark run. Both experiments ran for total
five hours. As shown in Fig. 21, RTOs of both data protection
schemes are very close immediately after the full snapshots
were taken and linearly increase as RPO increase. As shown
in Fig. 21, ST-CDP shows slightly better RTO than F&I. We
believe this difference mainly results from the fact that
ST-CDP implemented write coalescing during recovery
process, as evidenced by additional experiments of imple-
menting write coalescing in F&I as shown in blue line in
Fig. 21.

In general, the recovery time of ST-CDP increases linearly
with RPO after a full snapshot is made as shown in Fig. 21.
In practical storage systems, a full snapshot is made daily or
weekly depending on the data protection and recovery
requirement. The objective of ST-CDP is to provide finer
recovery granularity between these full snapshots at the cost
of linearly increased RTO. We expect the length of ST-CDP
chains to be less than a day of storage operations in a typical
storage environment. As a result, the additional RTO of ST-
CDP is expected to be manageable. For example, during two
hours of operations shown in Fig. 21, the RTO of ST-CDP
increases from 9,460 to 10,115 s compared to the RTO of F&I
from 9,406 to 11,083 s. After F&I made a full snapshot at
hour three, the RTO of F&I becomes 8,576 s at RPO of three
and is increased to 10,129 s at RPO of five. The RTO of ST-
CDP with no full snapshot at hour three, on the other hand,
becomes 11,168 at RPO of five. The RTO difference of the
two data recovery schemes at RPO of 5 is within 11 percent.

Now, let us consider the possible impact of the CDP
solutions on the runtime application performance. Since
ST-CDP carries out XOR computations and snapshot
operations at runtime, an immediate question is how it
impacts application performance. Our next experiment is to
evaluate the performance impact of ST-CDP on applica-
tions. For this purpose, we run IOMeter to measure the IO
performance while enabling the ST-CDP module. Fig. 22
shows our measured IOMeter results in terms of average
I/O response time as functions of block sizes for 70 percent
reads, 30 percent writes, 100 percent random I/Os. We
plotted four performance bars corresponding to COW
CDP, ST-CDP, TRAP, and RAID-5 alone with no data
protection program running. Performance of RAID-5 is
used as a reference for us to observe the negative impacts
of the three data protection technologies. It is observed that
all three data protection solutions have some degree of
negative performance impacts. We noticed that snapshot
COW CDP has the least performance impact and ST-CDP
has the most. TRAP is in between but close to that of COW-
CDP. However, the performance difference among the
three techniques is very small and well under 10 percent.

Fig. 23 shows the performance impact of the three data
protection techniques when we run SPC-1 traces. We varied
the number of processes from 5 to 20 as shown in the figure.
The performance impacts are much larger than what we have
seen for IOMeter. But the three CDP solutions show similar
performance behaviors. Similar observations are shown in
Fig. 24 for Postmark performance. Postmark performance of
ST-CDP is similar to that of TRAP but much slower than
COW. It is clear from Fig. 24 that all the three data protection
schemes have significant impact on IO performance. We
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Fig. 22. IOMeter performance in terms of average I/O response time
as a function of block sizes. 70 percent reads, 30 percent write, and
100 percent random accesses.

Fig. 21. Recovery time comparison among Full Snapshot+incremental,
Full Snapshot+incremental+write-coalescing, and ST-CDP.

Fig. 23. SPC-1 performance in terms of average I/O response time as a
function of number of processes.



noticed that PostMark is a write intensive and mostly
random workload that requires a lot of additional operations
for the purpose of CDP. Similarly, we also observed negative
performance impacts of all data protection techniques on I/O
performance when running the microbenchmarks as shown
in Fig. 25.

In summary, all the CDP solutions evaluated in our
experiments have negative performance impact to some
extent. However, the performance difference among the
three is not very significant. Therefore, space overheads
and recovery times are the parameters one should consider
with more weight in choosing a solution. The negative
performance impact can be minimized by offloading the
data protection functions to lower level storage systems.
Our ST-CDP can be easily implemented at storage device
with embedded processors. This is one of our future
research works.

8 CONCLUSIONS

In this paper, we have presented a new storage architecture
capable of providing CDP, referred to as ST-CDP. It is based
on the TRAP [41] technology that keeps logs of parities of
changed data blocks and interspersed with snapshot data.
A mathematical model has been developed to guide the
optimization of the design. Based on the analytical model,
we have designed and implemented ST-CDP in the Linux
kernel. The implementation is done at the block device level
as an independent device driver that can be added to MD
software RAID device. Extensive experiments have been
carried out to show that the implementation is fairly robust.
Standard benchmarks are used to evaluate the performance
and cost of the implementation. Numerical results have
shown that the overhead is manageable. The major
advantage of ST-CDP is low RTO that is RPO independent.

As a future work, we are fine tuning ST-CDP and studying
various trade-offs between space costs and recovery times
for different applications.
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