
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

S2-RAID: Parallel RAID Architecture for Fast
Data Recovery

Jiguang Wan, Jibin Wang, Changsheng Xie, and Qing Yang, Fellow, IEEE

Abstract—As disk volume grows rapidly with terabyte disk becoming a norm, RAID reconstruction process in case of a failure takes
prohibitively long time. This paper presents a new RAID architecture, S2-RAID, allowing the disk array to reconstruct very quickly in case
of a disk failure. The idea is to form skewed sub-arrays in the RAID structure so that reconstruction can be done in parallel dramatically
speeding up data reconstruction process and hence minimizing the chance of data loss. We analyse the data recovery ability of
this architecture and show its good scalability. A prototype S2-RAID system has been built and implemented in the Linux operating
system for the purpose of evaluating its performance potential. Real world I/O traces including SPC, Microsoft, and a collection of a
production environment have been used to measure the performance of S2-RAID as compared to existing baseline software RAID5,
Parity Declustering, and RAID50. Experimental results show that our new S2-RAID speeds up data reconstruction time by a factor 2
to 4 compared to the traditional RAID. Meanwhile, S2-RAID keeps comparable production performance to that of the baseline RAID
layouts while online RAID reconstruction is in progress.

Index Terms—Data storage, parallel reconstruction, RAID reconstruction, S2-RAID.

F

1 INTRODUCTION

RAID is the de facto storage architecture [16] that
has been widely used to store petabyte scale data as

information keeps growing exponentially. In such large
scale storage systems, disk failures will become daily
events if not more frequent [6]. Therefore, being able to
quickly rebuild disk array in case of a failure event has
become critical to today’s information services that cover
every corner of our society nowadays. There are two
key issues that make fast reconstruction of RAID upon
failure essential. 1) Any additional failure during the
reconstruction process may result in data loss especially
for the RAID levels with single fault-tolerant layouts.
Hence this reconstruction time is often referred to as
“window of vulnerability” [28] that should be as small
as possible. 2) Data services are either stopped com-
pletely for offline RAID reconstruction or productivity
is negatively impacted for online RAID reconstruction
that interferes with production I/Os.

While fast RAID rebuilding is important to minimize
the “window of vulnerability”, current technology trend
adversely affects such reconstruction time. Disk volume
continues to grow rapidly with terabytes disks becoming

• Jiguang Wan and ∗Changsheng Xie are with Wuhan National Laboratory
For Optoelectronics, Huazhong University of Science and Technology,
430074, Wuhan, Hubei, P.R. China.
E-mail: jgwan@mail.hust.edu.cn, ∗corresponding author:
cs xie@mail.hust.edu.cn.

• Jibin Wang is with the school of computer of science and technology,
Huazhong University of Science and Technology,430074, Wuhan, Hubei,
P.R. China.
E-mail: wangjibin@gmail.com.

• Qing Yang is with the Department of Electrical and Computer Engineer-
ing, University of Rhode Island, Kingston, RI, 02881, USA.
E-mail: qyang@ele.uri.edu.

a norm whereas disk bandwidth and access time includ-
ing seek time and rotation latency improve little. As a
result, recovering terabytes of data on a failed disk of the
traditional RAID architecture will take prohibitively long
time increasing the chance of data loss. Such technology
trend is likely to continue in the foreseeable future.

The requirement of fast RAID reconstruction coupled
with the technology trend motivates us to seek for a new
RAID architecture that allows high speed online RAID
reconstruction but has as little negative performance im-
pact on production I/Os as possible. This paper presents
a new Skewed Sub-array RAID structure, S2-RAID for
short. The idea is to divide each large disk in the RAID
into small partitions. Partitions on these disks form sub-
arrays. The sub-arrays are skewed among the disks in
the RAID in such a way that conflict-free parallelism is
achieved during a RAID reconstruction when any disk
fails. Recovered data that was on the failed disk is stored
in parallel on multiple disks consisting of spare disks
and available space of good disks. The parallel reading
and writing of S2-RAID can substantially speed up the
RAID rebuilding process and reduce negative perfor-
mance impact on service time while RAID reconstruction
is going on in background.

In order to validate our design concept, we have
designed and implemented a prototype software S2-
RAID on Linux OS at block device level based on the
widely used software RAID, MD (multiple device). The
prototype is installed inside an iSCSI target to provide
data storage services to iSCSI initiators. Using the S2-
RAID prototype, we have carried out extensive experi-
ments using real world I/O traces such as SPC [4], [17],
Microsoft Research [15], and a collection of traces from
production environment. We measure I/O performance,
reconstruction time, and performance impact of online

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

reconstruction on production I/O performance. Experi-
mental results show that S2-RAID improves RAID recon-
struction speed of the baseline RAID by a factor of 2 to 4.
The frontend application performance while rebuilding
RAID online using S2-RAID keeps comparable to that of
the baseline software RAID for most I/O workloads.

This paper is a substantial extension and provides
comprehensive treatment of our preliminary study pre-
sented at [23]. It covers a wide variety of conditions and
gives its performance evaluations. Secondly, we consider
other two baselines as the comparisons with S2-RAID.
Furthermore, our performance measurements include
many real world I/O traces in the evaluation section to
show the performance of all aspects.

The paper is organized as follows. Section 2 presents
the design and data layout of S2-RAID. Section 3 discuss-
es S2-RAID’s expandability and scalability. Experimental
settings and workload characteristics are presented in
Section 4. In Section 5, we discuss numerical results on
performance, followed by the related work in Section 6.
Section 7 concludes the paper.

2 S2-RAID DESIGN AND DATA LAYOUT

2.1 Sub-array Formation

Consider a traditional RAID5 storage system. When a
disk had failed, data in the failed disk would have been
rebuilt by reading a data stripe remained in good disks,
performing an Exclusive-OR computation, and writing
rebuilt data in a spare disk. This process continues until
all data chunks in the failed disk are reconstructed. The
reconstruction bandwidth is ultimately limited by the
single data stream being rebuilt, one data chunk at a
time. To rebuild over terabyte of data on a failed disk, it
is clearly going to take a very long time.

TABLE 1
List of Notations and Symbols Used in This Paper.

Symbol Description
Di the (i+ 1)th data disk label
Si the (i+ 1)th spare disk label
mi subRAID data layout mapping table after shift

operations based on the mapping table mi−1

M data layout mapping table for S2-RAID
R total number of disks in RAID array
G number of disks in a group
K total number of involved partitions for each disk
N total number of groups in S2-RAID array
β parallel ratio of S2-RAID
Pi,j elements vector which denotes subRAID numbers

of the (j + 1)th partition on disks of (i+ 1)th

group in S2-RAID
SH(Pi,j) function that returns a vector for each Pi,j

through shift operations
S.L disk partition label of the logic disk number L in

the subRAID numbered S

Our objective is to speed up this rebuilding process
by reading multiple data stripes, performing multiple
Exclusive-OR computations, and writing rebuilt data

chunks to multiple spare disks all in parallel. The mul-
tiple spare disks can be either physical spare disks or
spare logic partitions available on good data disks. To
facilitate our discussion, we summarize notations and
symbols used in Table 1.

In order to achieve our objective of parallel data
reconstruction, we would like to be able to read, in
parallel and conflict-free, all multiple data stripes that
are in remaining good disks and are needed to rebuild
multiple data chunks in the failed disk. For this purpose,
we divide each one of total R (not including hot spare
disks) disks in the RAID into K partitions. As a result
of this partitioning, we have K×R logic disk partitions.
We then divide R physical disks into groups of size
G resulting in N=⌈R/G⌉ physical disk groups, where
G is a prime number. subRAIDs are then formed by
picking up one disk partition from each one of N groups
giving rise to subRAIDs of size G. Note that 1 < K, N
≤ G. For the sake of easy understanding, let us start
our discussion on the case where N equals G. Let β
be defined as degree of parallelism that is related to
K. The key to S2-RAID is how to form subRAIDs and
position these subRAIDs among the R physical disks
in the way that rebuilding data of any failed physical
disk can be done in maximal parallelism. That is, parallel
readings of multiple subRAIDs are conflict-free during
data reconstruction.

S0 S1

X.0 X.2

1.0

4.0

7.0

2.0

5.0

8.0

0.1

5.1

7.1

1.1

3.1

8.1

4.1

6.1

4.2

8.2

1.2

5.2

6.2

S2

D4 D1 D8 D7 D6 D5 D3 D2

3.1 1.1 8.1

D0

2.1 0.2 2.2

7.2

3.2

6.0

3.0

0.0

Fig. 1. An overview S2-RAID5 data layout.

Let notation S.L represent logic disk number L in
subRAID number S. Fig. 1 shows an example of such
subRAIDs formation with R = 9 and G = N = β = 3.
SubRAID 0 uses physical disks D0, D3, and D6 to store
logic disks 0, 1, and 2, respectively. Similarly, subRAID 1
uses physical disks D1, D4, and D7 to store logic disks 0,
1, and 2, respectively, as shown in Fig. 1. In this example,
we have total 9 subRAIDs each of which contains 3
logic disks. Such skewed placement of subRAIDs allows
maximal parallelism of data reconstruction.

Suppose physical disk D4 failed resulting in loss of
logic partitions of 1.1, 3.1, and 8.1 as shown in shaded
area of Fig. 1. To rebuild the lost logic partitions, we
would need 1.0 and 1.2 to rebuild 1.1, 3.0 and 3.2 to
rebuild 3.1, and 8.0 and 8.2 to rebuild 8.1. The placement

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

of the subRAIDs in Fig. 1 assures that all the needed
data stripes to rebuild the lost data chunks reside on
different physical disks allowing parallel and conflict-
free reconstruction. S0, S1, and S2 in Fig. 1 are spare
disks to store newly rebuilt data.

One may notice that RAID disks D3 and D5 were not
involved in the above reconstruction process when we
used spare disks S0, S1, and S2. Assuming there are some
free spaces in these disks, D3 and D5 can play the role
of spare disks. That is, the rebuilt partitions 1.1 and 3.1
can be written to the free partitions of disks D3 and D5
respectively. In this way, only one spare disk is needed.
Alternatively, if we do have 3 spare disks, disks D3 and
D5 can serve frontend application I/Os exclusively.

In general, consider a RAID system with R disks that
are divided into N groups of size G each. Let Pi,j be a G
elements vector representing subRAIDs of partition j on
disks of group i in the RAID. For example, in Fig. 1, we
divide 9 disks into 3 groups with group 0 consisting of
D1, D2, and D3; group 1 consisting of D3, D4, and D5;
and group 2 consisting of D6, D7, and D8. Therefore,
P0,0 = (0 1 2) gives subRAID numbers of partition 0
on D0, D1, and D2 of group 0. P1,1 = (5 3 4) gives
subRAID numbers of partition 1 of the same group of
disks, group 1. P2,2 = (8 6 7) represents subRAID
numbers of partition 2 of group 2 containing disks D6,
D7, and D8, and so forth.

SubRAIDs are mapped to physical disks in S2-RAID5
using a mapping table defined by a matrix M, where
M = (m0,m1, . . . ,mN−1). Each sub-matrix mi in map-
ping table M is defined recursively by

m0 =


P0,0

P0,1

P0,2

. . .

P0,K−1

 ,m1 =


P1,0

P1,1

P1,2

. . .

P1,K−1

 =


SH0

r (P0,0)

SH1
r (P0,1)

SH2
r (P0,2)

. . .

SHK−1
r (P0,K−1)


,

mi =


Pi,0

Pi,1

Pi,2

. . .

Pi,K−1

 =


SH0

r (Pi−1,0)

SH1
r (Pi−1,1)

SH2
r (Pi−1,2)

. . .

SHK−1
r (Pi−1,K−1)

 ,

. . . , and

mN−1 =


SH0

r (PN−2,0)

SH1
r (PN−2,1)

SH2
r (PN−2,2)

. . .

SHK−1
r (PN−2,K−1)

 , (1)

where SHb
r(Pi,j) is a cyclic shift operator that shifts

vector Pi,j cyclically to the right by b positions and we
denote the shift direction to right as r. For example,
SH1

r (P1,0) = SH1
r (3 4 5) = (5 3 4).

Consider again the example shown in Fig. 1. We have

m0 =

P0,0

P0,1

P0,2

 =

0 1 2

3 4 5

6 7 8

 ,

m1 =

P1,0

P1,1

P1,2

 =

SH0
r (P0,0)

SH1
r (P0,1)

SH2
r (P0,2)

 =

0 1 2

5 3 4

7 8 6

 ,

and

m2 =

P2,0

P2,1

P2,2

 =

SH0
r (P1,0)

SH1
r (P1,1)

SH2
r (P1,2)

 =

0 1 2

4 5 3

8 6 7

 .

The final mapping table M is given by

M = (m0,m1,m2) =

0 1 2 0 1 2 0 1 2

3 4 5 5 3 4 4 5 3

6 7 8 7 8 6 8 6 7

 .

The resultant mapping of subRAIDs to disks is shown
in Fig. 1. Recall the notation of S.L where S repre-
sents subRAID number whereas L represents logic disk
number. Mapping subRAID to disks in this way can
achieve maximal parallelism during data reconstruction,
as will be discussed in section 2.2. While it is an optimal
distribution of subRAID, there are limitations because of
the requirement that the size of each subRAID group G
(except subRAID10) must be a prime number. Proof of
this fact is given in Appendix A.1 in Supplemental File.
Besides, we will discuss more flexible but suboptimal
subRAID distributions in Section 3.

The design concept presented above can also be ap-
plied to other RAID levels. For instance, instead of
striping data regularly as done in traditional RAID10,
S2-RAID10 forms subRAIDs using smaller partitions and
skew data partitions in a similar way as S2-RAID5.

2.2 Mapping of Sub-arrays to LUNs

Fig. 2. Mapping of subRAIDs (SR for short) to LUNs.

In this section, we give the method of how the uni-
fied addressing space of S2-RAID is constructed. From
above description we know, S2-RAID divides disks into
subRAIDs resulting in smaller stripe sizes that may

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

adversely affect overall I/O throughput during normal
data services. However, such performance impact can be
easily eliminated by proper mapping of LUNs seen by
clients to the S2-RAID storage system.

Fig. 2 shows an example of mapping of subRAID to
user LUNs allowing the same level of parallelism as the
traditional RAID. This mapping is based on the S2-RAID
shown in Fig. 1. Suppose each subRAID can hold K
units of data. Users’ data will be stored on the first three
subRAIDs, SR0, SR1, and SR2, first. We store data units
0, 1, 2 on SR0, SR1, and SR2, respectively. Each of these
three data units is composed of two data chunks and
one parity chunk to be stored on three separate physical
disks (refer to Fig. 1). The three data units together form
a stripe as seen by storage users across the three sub-
arrays. As a result, the 3 data units are physically stored
on 9 disks. This organization is similar to RAID5+RAID0
or RAID50.

After the first three subRAIDs are filled up with K
data units each, we move on to the next three subRAIDs,
SR3, SR4, and SR5 starting from data unit 3K as shown
in Fig. 2. The same process repeats until all the three
subRAIDs are filled out. After that, we move on to the
next three subRAIDs and so forth. This mapping ensures
that storage users see the S2-RAID in the same way as the
original RAID in terms of data striping and parallel disk
accesses. All the subRAID partitions and data mappings
are done transparently to users at lower storage level.

However, there is an additional storage overhead
brought by S2-RAID to store additional parity blocks.
For the example in Fig. 1, S2-RAID5 requires one parity
chunk for every two data chunks because the subRAID
size is three. The original RAID, on the other hand, needs
1 parity chunk for every 8 data chunks because the stripe
size is 8 plus one parity. Such additional overhead can
be easily justified with increased disk volume that is
very inexpensive and the increased importance of data
reliability and availability.

2.3 Reliability of S2-RAID5

While each subRAID5 in S2-RAID5 provides fault toler-
ance in the same way as traditional RAID5, as a whole
storage system our S2-RAID5 can tolerate multiple disk
failures in many cases. This is an extra benefit that
S2-RAID5 architecture offers in addition to the high
reconstruction performance when disk failures occur.

Fault tolerance of multiple disk failures of S2-RAID5
can be achieved because of the fact that every stripe is
stored across different groups. Lost data in any group
can be reconstructed from remaining groups. As a result,
even all G disks failed in the same group, their data can
be reconstructed from remaining N−1 groups. Therefore,
S2-RAID5 can tolerate up to G disk failures provided that
all these failures happen to be in the same group.

Although data reconstruction of multiple failed disks
may take longer time than that of single disk failure, it is
expected that the probability of simultaneous failures of

multiple disks is small. However, our experiments have
shown that the reconstruction time of three disk failures
is comparable to the reconstruction time of single disk
failure of traditional RAID5 and RAID50. Substantial
shorter reconstruction time have also demonstrated the
superb advantage of our S2-RAID5 to minimize data
loss. Therefore, we claim that our S2-RAID5 provides
much higher reliability than traditional RAID systems.

3 S2-RAID5 EXPANSION STRATEGY

As we can see from the reconstruction process, conflict-
free parallel operations in S2-RAID5 require extra spare
disks, and thereby give rise to high hardware cost.
Furthermore, strictly conflict-free constraints the RAID
system to only a limited number of configurations. To
generalize S2-RAID5 to more configurations, this sub-
section presents several methods that can configure a
general S2-RAID5 flexibly although they are not the op-
timal solutions. Storage designers can exercise tradeoffs
between high reconstruction performance and low cost
in S2-RAID5 configurations by tuning subRAID size and
the number of disk partitions. Besides, we also propose
the layout of S2-RAID10 in Appendices A.2 and A.3, and
their evaluations in Appendix C.4 in Supplemental File.

3.1 Conventional Data Layout Strategy
The following example illustrates one method of gener-
alizing S2-RAID5 with R = 16. Since R is in the range of
32 and 52, the matrix layout of these disks can adopt
the final mapping table of G = 5. And 25 disks are
divided into five groups as shown in Fig. 3. Then we
can generate four matrixes m1, m2, m3, and m4 based
on the initial matrix m0 and have 25 subRAIDs in total.
The first sixteen columns of the mapping table can be
used as the layout of R = 16. As we can see from the
figure, the layout of R = 16 is composed by different
sizes of subRAIDs. For example, the size of subRAID 0 is
four and subRAID 1 is formed by three partitions. Even
though the layout of R = 16 goes against the principle
of G being a prime number, this hybrid subRAIDs still
have the parallel reconstruction characteristic.

Considering the data layout of R = 12 as shown in
Fig. 3, one can see that only a few subRAIDs can be built
(e.g., subRAID 0, subRAID 15 etc.). But for subRAID 10
or subRAID 17, only two partitions are available with
the least disk number equaling 3 for RAID5. Similar
limitations are also found in the case of R = 13 and
R = 14 and the alternative solution will be discussed
below.

Generally, the number of disks, R, should meet the
conditions of G2

a < R ≤ G2
b and R ≥ 3 × Gb, where Ga

and Gb must be prime numbers. And the final mapping
table of R disks is the first R columns of the table Mb,
which is generated by Equation (1). The reason why R
must meet the criterion R ≥ 3×Gb is that each subRAID
has at least 3 disks to build a standard RAID5 level.
If this criterion is not met, some disk space will be

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

!

"

#
#
#
#
#
#

$

%

22212024232221202423212024232220242322212423222120

17161519181519181716181716151916151918171918171615

11101413121312111014101413121112111014131413121110

5987665987765988765998765

4321043210432104321043210

Fig. 3. Data layouts of S2-RAID5 with R = 16 and R = 12.

wasted since some disk partitions can not be used in
constructing subRAIDs.

3.2 Compromise Data Layout Strategy

!

"

#
#
#
#
#

$

%

14131215131215141215141315141312

981110111098981110111098

4765547665477654

3210321032103210

m0 m1 m2 m3

12 columns

Fig. 4. Data layout of S2-RAID5 with R = 12.

Of course, the above strategy is not applicable to
all values of R. For instance, if R equals 12 shown in
Fig. 3, even though R satisfies the constraint condition
(G2

a<R ≤ G2
b), some subRAIDs may not be constructed.

In order to deal with special case like this, we give the
tailored layouts for 12, 13, and 14 disks using the layout
of G = 4 in this section. The configuration process is
also based on Equation (1). As seen from Fig. 4, the
mapping table of G = 4 does not satisfy conflict-free
requirements (e.g., partitions 4 and 12 in m0 and m2

respectively). To construct the parallel data layouts of
12-14 disks, we present a tradeoff layout based on the
distribution of G = 4. Take the layout of R = 12 as an
example, we give an optimized solution by erasing the
third and fourth rows and select the first twelve columns
to form the final distribution of R = 12. And then the
degree of parallelism drops to 2. When the number of
disks R equals to 13 or 14, accordingly the data layouts
also take the mapping table shown in Fig. 4 with β = 2.

Considering the criteria of S2-RAID5 layout, there is
no reasonable solution for the layouts of 10 and 11 disks
either conventional data layout in Fig. 3 or compromise
way in Fig. 4 due to their low space utilization. We
believe that S2-RAID5 is not suitable to the layouts of
10 and 11 disks and using the layout of R = 9 is a good
choice for them.

4 EVALUATION METHODOLOGY
This section presents our experimental settings and
methodology that we use to study quantitatively the
performance of S2-RAID. We also have implemented
another baseline Parity Declustering [7], [8] prototype
on Linux OS and an existing RAID architecture that
share similar characteristics to S2-RAID. The details of
these two prototypes can be found in Appendix B. in
Supplemental File.

4.1 Experimental Settings
The prototype S2-RAID is installed on a storage serv-
er that is embedded in iSCSI target. Storage client is
connected to the storage server using a gigabit Ethernet
switch. The storage server and client have the similar
settings, including operating system (Fedora 14 with
kernel-2.6.35), and 8GB DDR3 memory. We use 2 HBA
cards in the server to house 15 disks and the details of
software and hardware in the server and client are listed
in Appendix C.1. The chunk size and speed limit min in
evaluations are set to 64KB and 8MB/s respectively.

In our experiments, all I/O requests are generated
from client by replaying real world I/O traces. The trace
replay tool is btreplay that replays traces at block level.
As results of the replay, I/O requests are generated to
the storage server in the form of iSCSI requests.

For performance comparison purpose, some baseline
RAID layouts are built on the same testing environment:

1) RAID5: RAID5 is configured by MD with 8 data
disks and one parity disk. For a fair comparison,
S2-RAID5 takes the same settings as RAID5.

2) Parity Declustering (PD for short): The second
baseline is one type of 9-disk PD based on the block
design shown in Appendix B.2. All settings are also
the same as S2-RAID5 and an extra mapping table
is used for this layout.

3) 9-disk RAID50: The third baseline is a hybrid RAID
assembled with RAID5 and RAID0 since the cur-
rent MD release does not support RAID50 directly.
One RAID0 is composed of three RAID5s, and each
RAID5 is rebuilt by three disks. This alternative
scheme maintains parallel reconstruction feature.

4) 12-15 disks RAID50: The last one is the RAID50
setting scheme for 12-15 disks. Each RAID50 is
organized as follows: four RAID5s and each con-
sists 3 or 4 disks for 12, 13, and 14 disks RAID50,
respectively; five RAID5s for 15-disk RAID50, and
each consists of 3 disks.

Moreover, our experiments assume one spare disk
unless otherwise specified. Parallel reconstruction is re-
alized by writing rebuilt data into the spare disk and
available partitions on other data disks that are not
involved in the reconstruction.

4.2 Workload Characteristics
The I/O traces used in our evaluations are obtained
from the following three sources: Storage Performance

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

Council, Microsoft Research, and multimedia server. The
details of these traces are described below:

Three traces, Financial-1 (Fin1), Financial-2 (Fin2), and
Websearch2 (Web), come from SPC traces [4], [17]. A-
mong them, Fin1 and Fin2 were collected from OLTP
applications in a financial institution. Web trace was
collected from a search engine thus all I/Os are read
requests.

The Usr and Rsrch traces were collected from LVMs
in user home directory and research projects servers
in Microsoft Research over a week, and only LVM0s
of Usr and Rsrch are used in our evaluations. Their
characteristics and details can be found in [15].

The last one that drives our experiments is the multi-
media trace (MM). We setup a trace collector in a multi-
media server under temporary authorization, which pro-
vides multimedia sharing services to an entire university
campus. The traced period was about 8 hours starting
from 16pm GMT-8 on March 9, 2013.

TABLE 2
Traces Characteristics.

Traces Write Ratio Ave Req Size:KB Total Req
Rsrch 90.68% 9.14 1, 433, 655
Fin1 76.84% 3.38 5, 334, 987
Usr 59.58% 23.21 2, 237, 889
Fin2 17.65% 2.39 3, 699, 195
Web 0% 15.07 4, 579, 809
MM 0% 64 3, 976, 436

Table 2 summaries I/O traces used in our experiments.
Rsrch trace has the highest write ratio, followed by Fin1,
Usr and Fin2. While the traces of Web and MM are two
different types of read-intensive applications, with MM
trace having the largest request size of 64KB and mostly
sequential read I/Os.

5 NUMERICAL RESULTS AND DISCUSSIONS

Using our prototype implementation and the experi-
mental settings described in the previous sections, we
measure the performance of S2-RAID as compared to
other RAID layouts. In order to have enough confidence
on our numerical results and eliminate any discrepancy
caused by different runs, we carry out 4 independent
runs for each set of results and report the average across
the 4 runs. To make the large number of experiments
manageable with long traces (e.g., Microsoft traces for
Usr and Rsrch are 168 hours long), we speedup the
replay of traces by 16× for traces Fin1, Fin2, Web, and
MM; and by 32× for traces Usr and Rsrch. Furthermore,
we assume the volume of each disk to be 10GB. All
experimental results are recorded and analysed in the
storage server.

5.1 S2-RAID5 Performance under One Disk Failure
Our first experiment is to evaluate the reconstruction
performance under one disk failure. All four RAID

layouts are configured using 9 disks. We then artificially
make one disk fail and activate RAID reconstruction to
recover data on failed disk.

Fin1 Fin2 Web MM Usr Rsrch Offline
0

200

400

600

800

1000

1200

1400

R
ec

on
st

ru
ct

io
n

tim
e

(s
)

 RAID5 PD RAID50 S2-RAID5

Fig. 5. Data reconstruction times of different RAID layouts for
different I/O traces.

Fig. 5 shows the results of reconstruction time of
four different RAID layouts for different I/O traces. As
we can see from the figure, S2-RAID5 speeds up the
online reconstruction process by a factor of 3 compared
to RAID5 and RAID50. Compared to PD, S2-RAID5
doubles the speed of reconstruction. These dramatic
speedups can be attributed to the conflict-free paral-
lel reconstructions of subRAIDs. Recall Fig. 1 where
subRAIDs 1, 3, and 8 can be reconstructed in parallel
without conflict when physical disk D4 failed. For the
traditional RAID5, on the other hand, failed disk is
rebuilt only one data chunk at a time using remaining
chunks of each stripe residing on good disks. Therefore,
S2-RAID5 can clearly speed up the reconstruction pro-
cess. Because the stripe width of RAID50 is narrow, the
reconstruction process is limited to a smaller number of
disks even though this parallel processing is possible. As
a result, RAID50 has a close performance to traditional
RAID5.

From our experiments, we observed that PD has high
rebuilding bandwidth compared to RAID5 due to its
stripe width. Parallel reconstruction in PD can be used
to accelerate reconstruction process between different
reconstruction requests. However, there are many re-
construction request conflicts among different requests
during reconstruction for the failed disk. Moreover, as
seen from the layout of PD, all reconstruction requests
to each physical disk read only one chunk after every
three chunks, which may cause more head movements
and thus give an impact on reconstruction performance.
Therefore, PD takes much longer time than S2-RAID5.
We also noticed that the reconstruction time of different
RAID layouts is very close under different traces. The
reason is the rate-limiting mechanism in Linux soft-
ware RAID. When we set the reconstruction parameter
speed limit min to a fixed value, the speed of reconstruc-
tion is always maintained at this value as long as the
frontend I/O request remains. This limitation is gone
when we perform offline reconstruction, in which case
all RAID layouts have shorter reconstruction time. And
the time reductions of offline reconstruction from those
of online reconstruction are 88.17%, 86.21%, 92.68% and

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

88.02% for RAID5, PD, RAID50, and S2-RAID5 respec-
tively, as shown in Fig. 5.

Fin1 Fin2 Web MM Usr Rsrch
0

5

10

15

20

25

30

35

U
se

r r
es

po
ns

e
tim

e
(m

s)
 RAID5 PD RAID50 S2-RAID5

Fig. 6. Frontend production I/O response times while data
reconstruction is in progress.

If data reconstruction is done online while frontend
production I/Os are still being served, another interest-
ing performance measure is the average I/O response
time. Fig. 6 shows the results of frontend performance
among different RAID layouts under the same set of I/O
traces. It can be seen that compared to RAID50, the per-
formance of S2-RAID drops by approximately 19.56% on
average under six traces, especially for the read-intensive
traces Web and MM, up to 32.48% and 30.89% respec-
tively. Likewise, the similar trend was also observed with
PD. By contrast, S2-RAID5 outperforms RAID5 under
write-intensive traces Rsrch, Fin1, and Usr with approx-
imate improvements being 50.77%, 28.91%, and 49.37%,
respectively. However, S2-RAID performance drops as
the read/write ratio increases. Careful analysis of the
RAID structures unveiled two main reasons for the write
and read performance difference as summarized below.

First of all, we noticed that S2-RAID5 shows better
performance for high write ratio. The reason is the less
I/O required when an I/O request is to perform a write
to the failed disk. S2-RAID5 only needs 1 read I/O to
compute parity and 1 write I/O for parity update while
traditional RAID5 needs 7 read I/Os to compute new
parity and 1 write I/O for parity update. Since there
are extensive small writes in the traces, S2-RAID5 shows
much better performance.

The write pattern of RAID50 is similar to that of
S2-RAID5 for one stripe, but RAID50 has a lighter
reconstruction workload, compared to RAID5 and S2-
RAID5. Because the reconstruction process in RAID50 is
limited at a small number of disks, 3 disks in this case.
That is, only 3 disks are dedicated to the reconstruction
process while the remaining 6 disks in other two RAID5
groups are mainly in charge of responding frontend
I/O requests in parallel. Therefore, RAID50 shows fairly
good performance under all traces.

PD also has a lighter reconstruction workload than
RAID5 and S2-RAID5. But PD causes more I/O conflicts
for disks among stripes since many stripes share the
same disk and the large write I/O requests (e.g., Rsrch
and Usr traces) may give rise to access conflicts further.
Moreover, all reconstruction requests to each disk in PD
only read one chunk after every three chunks, which

would cause more head movements and has an impact
on frontend performance.

Secondly, S2-RAID5 shows slight performance degra-
dation for high read ratio. From the descriptions of S2-
RAID5, we know that there are 8 disks involved in
reconstruction, with 6 disks for reading and 2 disks for
saving rebuilt data. Considering another fact that the
capacity of parity data in S2-RAID5 occupies a third
of whole RAID size in total. Therefore, the handling
of frontend read requests may need more disk I/Os to
get same amount of data compared with RAID5. For
instance, if a read I/O requests 8 chunks of data, one
stripe read operation completes the read I/O in a 9-disk
RAID5. However, in S2-RAID5, at least two stripe read
operations are required, the first reads 6 chunks of data
and the second reads the remaining 2 chunks. PD and
RAID50 would behave similarly to S2-RAID5 for such
large read I/Os, although PD and RAID50 show better
frontend performance than RAID5 and S2-RAID5 due to
their lighter reconstruction workloads than RAID5 and
S2-RAID5.

Additional experiments driven by standard bench-
marks are shown in Appendices C.2 and C.3.

5.2 S2-RAID5 Performance in Normal Mode

Fin1 Fin2 Web MM Usr Rsrch
0
2
4
6
8
10
12
14

(a) User response time

U
se

r r
es

po
ns

e
tim

e
(m

s)

 RAID5 PD RAID50 S2-RAID5

Fin1 Fin2 Web MM Usr Rsrch
0

200
400
600
800
1000
1200
1400
1600

Th
ro

ug
hp

ut
 in

 IO
PS

(b) Throughput

Fig. 7. Comparisons of performance in normal mode under
different RAID layouts.

In order to see how S2-RAID5 performs while no
reconstruction is being done, we have also measured
I/O performances of four RAID layouts under normal
working conditions. The results are shown in Fig. 7 in
terms of user response time and I/O throughput driven
by six I/O traces. As we can see from the Fig. 7(a),
traditional RAID5 shows large average user response
time for the write-intensive applications due to its large
stripe width. With large stripes, most of write I/Os
in the traces become small writes giving rise to read-
modify-write penalty and 4 disk operations for each
such small write in RAID5. While the other three RAID
layouts with only 3 disks in each sub-array, make most
small writes in the traces be treated as read-reconstruct-
write eliminating one additional disk read for parity
computation.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

For traces with most large sequential read I/Os, tra-
ditional RAID5 performs well because of large stripes
allowing high degree of parallelism among disks in the
array. In this case, S2-RAID5 suffers from slightly larger
average user response time than those of PD and RAID50
under MM trace.

The main reason is the different implementations be-
tween S2-RAID5 and other three RAID layouts. S2-RAID
is based on an open source iSCSI target located at the
top of MD, and all subRAIDs are remapped into a
uniform LUN based on mapping in Fig. 2. There is a
request handling mechanism in iSCSI target, that is, all
requests are handled via 8 parallel threads and every
thread does one request with synchronous mode, which
also limit the parallelism between subRAIDs. While the
other three RAID layouts are all based on MD, in which
many special parallel optimizations are taken for large
sequential read requests such as asynchronous requests
and so on. Therefore, S2-RAID5 suffers from a perfor-
mance disadvantage compared to other RAID layouts
under MM trace.

Fig. 7(b) shows the I/O performance of four RAID
layouts under the open-loop mode (set the parameter
”-N” -no-stalls in btreplay tool). One can see that, PD,
RAID50, and S2-RAID show the similar performance due
to their similar stripe structures, with less than 4 per-
cent difference, while RAID5 achieves higher throughput
than them under all traces. Especially for the write-
intensive applications, this superiority is more signifi-
cant. The reason is the high ratio of write combining
for the same stripe in RAID5 since small write I/Os (see
characteristics of Fin1 and Fin2 in Table 2) are more likely
to be.

5.3 S2-RAID5 Expansion Capabilities

Because of slot limitation of hardware, we only choose
12, 13, 14, and 15 disks to evaluate performance of
the suboptimal S2-RAID5 under one disk failure. Their
layouts adopt the principles presented in Section 3.1.
And the layouts of 12, 13, and 14 disks are based on
the optimized descriptions of Fig. 4, while the layout
of 15 disks takes the standard mapping table in Fig.
3. By contrast, traditional RAID5 and RAID50 are our
baselines due to their flexible configurations and we omit
the PD for its complex layout. As shown in Fig. 8(a),
S2-RAID5 speeds up reconstruction time by a factor of
2, 2, 2, 5 for 12, 13, 14, and 15 disks respectively over
RAID5 and RAID50. Recalling the parallelism degree β
for the layouts in Fig. 3 and Fig. 4, the improvements
of these four layouts in S2-RAID5 already reach their
theoretical values. The results also tell us a fact that the
structural difference between the two data layouts may
take a significant toll on performance.

Fig. 8(b) shows frontend performance of four data
layouts under traces. As we have just seen, S2-RAID5
outperforms RAID5 in term of average user response
time by up to 62.87%, and all four layouts of S2-RAID5

Fin1 Fin2 Web MM Usr Rsrch
0

200

400

600

800

1000

1200

1400

R
ec

on
st

ru
ct

io
n

tim
e

(s
)

(a) Reconstruction time

 12 RAID5 12 RAID50 12 S2-RAID 13 RAID5 13 RAID50 13 S2-RAID
 14 RAID5 14 RAID50 14 S2-RAID 15 RAID5 15 RAID50 15 S2-RAID

Fin1 Fin2 Web MM Usr Rsrch
0

5

10

15

20

25

U
se

r r
es

po
ns

e
tim

e
(m

s)

(b) User response time

Fig. 8. Effects of number of array disks under three data
layouts. Note that all RAID50 setting schemes are based on the
descriptions in Section 4.1.

achieve excellent performance under most traces. But for
the read-intensive applications, they have shown poor
frontend performance, at an average decrease of 27.67%
under MM trace. Especially for the layout of 15 disks,
there is about 40% decrease. Compared to RAID50, S2-
RAID5 still shows poor frontend performance, with an
average reduction of 17%, 16.9%, 16.57%, and 52.03% for
12, 13, 14, and 15 disks respectively. Besides the reason
discussed in the evaluation of 9-disk RAID layouts, an-
other more important reason is the different data layouts
between 12-14 disks and 15 disks in S2-RAID5. For
instance, S2-RAID5 with 15 disks has higher reconstruc-
tion parallelism, and all disks involve in reconstruction,
while only 6-8 disks involve for 12-14 disks respectively.
Thus, we observed the frontend performance differences
between 15 disks and the other three layouts as shown
in Fig. 8(b).

Based on the analysis of the results of Fig. 8, we
have reasons to believe that the expansion schemes
of S2-RAID5 trade off frontend performance for faster
reconstruction time especially under sequential read ap-
plications, in which case using standard S2-RAID5 layout
would be a better option.

5.4 S2-RAID5 Performance under Multiple Disk Fail-
ures
To evaluate the performance of multiple disk failures,
we concentrate on RAID50, and compare it with S2-
RAID5 under multiple disk failures. Fig. 9(a) shows the
reconstruction time results of 1-failure, 2-failure, and
3-failure, respectively. S2-RAID5 has shown excellent
reconstruction performance over RAID50 under one or
two disk failures. And the reconstruction time of S2-
RAID5 becomes longer as the number of disk failures
increases. The main reason behind this phenomenon
increased amount of the data to be rebuilt. But still S2-
RAID5 has shown the comparative performance under
3-failure comparing with RAID50 as shown in the figure.

As we expected, there is trade off between reconstruc-
tion time and average user response time. S2-RAID5

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

Fin1 Fin2 Web MM Usr Rsrch
0

200

400

600

800

1000

1200

1400

R
ec

on
st

ru
ct

io
n

tim
e

(s
)

(a) Reconstruction time

 1-failure RAID50 2-failure RAID50 3-failure RAID50
 1-failure S2-RAID5 2-failure S2-RAID5 3-failure S2-RAID5

Fin1 Fin2 Web MM Usr Rsrch
0
5
10
15
20
25
30
35
40

U
se

r r
es

po
ns

e
tim

e
(m

s)

(b) User response time

Fig. 9. Comparisons of reconstruction performance with re-
spect to different disk failures.

and RAID50 all show performance degradation in the
cases of 2-failure and 3-failure as shown in Fig. 9(b).
The frontend performance of S2-RAID5 is slightly slower
under 2-failure and 3-failure, decreased by the average
of 13.87% and 4.1%, respectively as compared with that
of RAID50. Especially in the case of 3-failure, the decline
of S2-RAID5 is not so sharp, and the reason behind
this is that the all available disks are more busy with
faster reconstruction for both RAID layouts. After all,
a series of experiments have demonstrated the excellent
reconstruction performance of S2-RAID5 under most ap-
plications, with slight sacrifice of frontend performance
during online reconstruction.

6 RELATED WORK

Data layout: There have been several approaches to
improving RAID performance by means of data layouts
[5], [8], [9], [12]. A Parity Declustering layout was pro-
posed by Muntz and Lui [12] to utilize as few disks as
possible in data reconstruction so that the rest of the
disks can serve frontend requests resulting in improved
reconstruction time and user response time. Holland
and Gibson [7], [8] have implemented and analysed this
layout, and extended it to the Panasas file system [14],
[24]. Some optimizations for Parity Declustering layout
[1], [2] focus on how to build data layouts that meet the
six layout goals proposed by Holland and Gibson [8].

There are several differences between Parity Declus-
tering and S2-RAID5. Firstly, Parity Declustering needs
a mapping table to handle block requests while the
mapping of S2-RAID5 is the same as traditional RAID.
The S2-RAID5 mapping structure has been established
during the RAID initialization as described in section
2.2. Secondly, Parity Declustering can recover single disk
failure, and multiple disk failures do not result in data
loss in some cases. Finally, reconstruction threads in
Parity Declustering have inevitable I/O conflicts while
S2-RAID5 is conflict-free.

There are also existing works on selecting appropriate
data organizations stored in RAID systems according

to workload characteristics or application scenarios. By
applying different strategies that adapt to different work-
loads, I/O performance can be improved such as HP Au-
toRAID [25], Muti-tier RAID [13], Two-tiered Software
Architecture [18], Muti-partition [22] and so on. Tsai and
Lee [22] presented a new variation of RAID organization,
Multi-partition RAID (mP-RAID), to improve storage ef-
ficiency and reduce performance degradation when disk
failures occur. Their Multi-partition data layout is similar
to what we referred to as subRAID. The key difference
between mP-RAID and S2-RAID is that S2-RAID ensures
that any two subRAIDs share no more than one disk.
This property is important to allow conflict-free parallel
reconstruction of RAID after a failure.
RAID Reconstruction: Realizing the importance of
shortening the ”window of vulnerability”, there is a
great deal of research reported in speeding up RAID re-
construction through exploiting workload characteristics
[3], [10], [20], [21], [26], data or parity reorganization [11],
[27] and system structures [19]. Wu et al. [26] proposed
a surrogate RAID approach in their WorkOut that saves
hot and popular data and rebuilds highly popular data
units prior to rebuilding other units when a disk failed.
The merit of this approach is that it not only reduces
online reconstruction time but also the user average
response time.

Similar in spirit, Menon and Mattson [11] proposed
a technique called distributed sparing that makes use
of parallel spare disks to improve RAID performance.
The objective of this work is to utilize otherwise unused
spare disks in the system. Spare disk is dispersed to the
data disks of the RAID, which can achieve good access
performance and also speed up data reconstruction. The
difference is that S2-RAID makes use of multiple sub-
RAIDs to read in parallel and performs write operations
to the spare disks that are not involved in reading during
reconstruction.

7 CONCLUSIONS

In this paper, we have presented a new disk array
architecture, S2-RAID, for the purpose of fast data recon-
struction in case of disk failures. The idea is to partition
large disks into smaller logic disks to form sub arrays.
The sub arrays are skewed among the physical disks in
such a way that reconstruction can be done in parallel
and conflict free. By making use of multiple spare disks
that consist of either physical spares or available disk
space on data disks, S2-RAID substantially speeds up
RAID reconstruction time. A prototype S2-RAID has
been built in the iSCSI target to measure the performance
of the RAID architecture. Numerical results using real
world I/O traces show that S2-RAID improves RAID
reconstruction time by a factor of 2 to 4, compared to the
other three RAID layouts. The frontend I/O performance
during online RAID reconstruction is comparable to the
baseline of traditional RAID5. There is a good trade-
off for S2-RAID between reconstruction and frontend

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

performance and the performance evaluations based on
measurements have been carried out to demonstrate
the superb advantage of S2-RAID over existing RAID
architectures.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their valuable insights that have improved the quality
of the paper greatly. This work is supported by the
National Basic Research Program (973) of China (No.
2011CB302303), the National Natural Science Foundation
of China (No. 60933002), and the NSF/CCF #1017177.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] Guillermo A. Alvarez, Walter A. Burkhard, Larry J. Stockmeyer,
and Flaviu Cristian. Declustered disk array architectures with
optimal and near-optimal parallelism. In Proceedings of the 25th
annual international symposium on Computer architecture, ISCA ’98,
pages 109–120, 1998.

[2] Siu-Cheung Chau and Ada Wai-Chee Fu. A gracefully degrad-
able declustered RAID architecture. Cluster Computing, 5:97–105,
January 2002.

[3] Mon-Song Chen, Dilip D. Kandlur, and Philip S. Yu. Optimization
of the grouped sweeping scheduling (GSS) with heterogeneous
multimedia streams. In Proceedings of the first ACM international
conference on Multimedia, MULTIMEDIA ’93, pages 235–242, 1993.

[4] Storage Performance Council. Available:
http://www.storageperformance.org.

[5] Zoran Dimitrijević, Raju Rangaswami, and Edward Chang. Pre-
emptive RAID scheduling. Technical Report TR-2004-19, Univer-
sity of California, Santa Barbara, 2004.

[6] Garth Gibson. Reflections on failure in post-terascale parallel com-
puting(Keynote). In Proceedings of the 2007 International Conference
on Parallel Processing, ICPP ’07, 2007.

[7] Mark Holland. On-line data reconstruction in redundant disk
arrays. Ph.D. thesis, Carnegie Mellon University, 1994.

[8] Mark Holland and Garth Gibson. Parity declustering for contin-
uous operation in redundant disk arrays. In Proceedings of the
5th international conference on Architectural support for programming
languages and operating systems, ASPLOS ’92, 1992.

[9] Edward K. Lee. Software and performance issues in the imple-
mentation of a RAID. Technical Report 894351, University of
California at Berkeley, 1990.

[10] Jack Y. B. Lee and John C. S. Lui. Automatic recovery from disk
failure in continuous-media servers. IEEE Transactions on Parallel
and Distributed Systems, 13(5):499–515, 2002.

[11] Jai Menon and Dick Mattson. Distributed sparing in disk arrays.
In Proceedings of the 37th international conference on COMPCON,
pages 410–421, 1992.

[12] Richard R. Muntz and John C. S. Lui. Performance analysis of
disk arrays under failure. In Proceedings of the 16th International
Conference on Very Large Data Bases, VLDB ’90, 1990.

[13] Nitin Muppalaneni and K. Gopinath. A multi-tier RAID storage
system with RAID1 and RAID5. In Proceedings of the 14th
International Parallel and Distributed Processing Symposium, IPDPS
’00, pages 663–671, 2000.

[14] David Nagle, Denis Serenyi, and Abbie Matthews. The panasas
activescale storage cluster: Delivering scalable high bandwidth
storage. In Proceedings of the 2004 ACM/IEEE conference on Super-
computing, SC ’04, 2004.

[15] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron.
Write off-loading: Practical power management for enterprise
storage. ACM Transactions on Storage, 4(3):10:1–10:23, November
2008.

[16] David A. Patterson, Garth Gibson, and Randy H. Katz. A case
for redundant arrays of inexpensive disks (RAID). In Proceedings
of the 1988 ACM SIGMOD international conference on Management
of data, SIGMOD ’88, pages 109–116, 1988.

[17] UMass Trace Repository. Available:
http://traces.cs.umass.edu/index.php/storage/storage.

[18] Brandon Salmon, Eno Thereska, Craig A. N. Soules, and Grego-
ry R. Ganger. A two-tiered software architecture for automated
tuning of disk layouts. In Proceedings of the 1st Workshop on
Algorithms and Architectures for Self-Managing Systems, pages 13–
18, 2003.

[19] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Improving storage
system availability with D-GRAID. In Proceedings of the 3rd
USENIX conference on File and storage technologies, FAST ’04, 2004.

[20] Lei Tian, Dan Feng, Hong Jiang, Ke Zhou, Lingfang Zeng, Jianxi
Chen, Zhikun Wang, and Zhenlei Song. PRO: a popularity-based
multi-threaded reconstruction optimization for RAID-structured
storage systems. In Proceedings of the 5th USENIX conference on
File and Storage Technologies, FAST ’07, 2007.

[21] Lei Tian, Hong Jiang, Dan Feng, Qin Xin, and Xing Shu. Imple-
mentation and evaluation of a popularity-based reconstruction
optimization algorithm in availability-oriented disk arrays. In
Proceedings of the 24th IEEE Conference on Mass Storage Systems
and Technologies, MSST ’07, pages 233–238, 2007.

[22] Wen-jiin Tsai and Suh-yin Lee. Multi-partition RAID: a new
method for improving perform of disk arrays under failure. The
Computer Journal, 40(1):30–42, 1997.

[23] Jiguang Wan, Jibin Wang, Qing Yang, and Changsheng Xie. S2-
raid: A new raid architecture for fast data recovery. In Proceedings
of the 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies, MSST ’10, pages 1–9, 2010.

[24] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian
Mueller, Jason Small, Jim Zelenka, and Bin Zhou. Scalable
performance of the panasas parallel file system. In Proceedings
of the 6th USENIX Conference on File and Storage Technologies, FAST
’08, 2008.

[25] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The
HP AutoRAID hierarchical storage system. ACM Transactions on
Computer Systems, 14(1):108–136, 1996.

[26] Suzhen Wu, Hong Jiang, Dan Feng, Lei Tian, and Bo Mao. Work-
Out: I/O workload outsourcing for boosting RAID reconstruction
performance. In Proccedings of the 7th conference on File and storage
technologies, FAST ’09, 2009.

[27] Qin Xin, Ethan L. Miller, and Thomas Schwarz. Evaluation of
distributed recovery in large-scale storage systems. In Proceedings
of the 13th IEEE International Symposium on High Performance
Distributed Computing, HPDC ’04, 2004.

[28] Qin Xin, Ethan L. Miller, Thomas Schwarz, Darrell D. E. Long,
Scott A. Brandt, and Witold Litwin. Reliability mechanisms for
very large storage systems. In Proceedings of the 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems and Technologies,
MSST ’03, 2003.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

Jiguang Wan received the bachelor’s degree
in computer science from Zhengzhou University,
China, in 1996, the MS and PhD degrees in
computer science from Huazhong Univerisity of
Science and Technology, China, in 2003 and
2007, respectively. He is currently an associate
professor at Wuhan National Laboratory For
Optoelectronics,Huazhong University of Science
and Technology. His research interests include
computer architecture, networked storage sys-
tem, I/O and data storage architectures, parallel

and distributed system.

Jibin Wang received the bachelor’s degree in
computer science from Chengdu University of
Information Technology, China, in 2007, the M-
S degree in computer science from Huazhong
University of Science and Technology, China,
in 2010. He is currently working towards the
PhD degree in computer science department
at Huazhong University of Science and Tech-
nology. His research interests include computer
architecture networked storage system, parallel
and distributed system.

Changsheng Xie received the BS and MS de-
grees in computer science from Huazhong U-
niversity of Science and Technology, China, in
1982 and 1988, respectively. Presently, he is a
professor in the Department of Computer Engi-
neering at Huazhong University of Science and
Technology (HUST). He is also the director of the
Data Storage Systems Laboratory of HUST and
the deputy director of the Wuhan National Labo-
ratory for Optoelectronics. His research interests
include computer architecture, disk I/O system,

networked data storage system, and digital media technology. He is
the vice chair of the expert committee of Storage Networking Industry
Association (SNIA), China.

Qing Yang received the BS degree in computer
science from Huazhong University of Science
and Technology, Wuhan, China, in 1982, the
MS degree in electrical engineering from the
University of Toronto, Canada, in 1985, and the
PhD degree in computer engineering from the
Center for Advanced Computer Studies, Univer-
sity of Louisiana, Lafayette, in 1988. Present-
ly, he is a distinguished engineering professor
in the Department of Electrical, Computer, and
Biomedical Engineering, University of Rhode Is-

land, Kingston, where he has been a faculty member since 1988. His
research interests include computer architectures, memory systems,
I/O and data storage architectures, storage networking (SAN, NAS,
and LAN), parallel and distributed computing (software and hardware),
embedded computer systems and applications, computer applications in
biomedical systems. He is a Fellow of the IEEE and the IEEE Computer
Society and a member of the ACM SIGARCH.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Supplemental File of S2-RAID: Parallel RAID
Architecture for Fast Data Recovery

Jiguang Wan, Jibin Wang, Changsheng Xie, and Qing Yang, Fellow, IEEE

F

APPENDIX A
DATA LAYOUT OF S2-RAID

A.1 Analysis of Conflict-Free Parallelism

In this section, we show mathematically that S2-RAID
can reconstruct data on a failed disk by reading each
stripe on good disks in parallel without conflict.

Let µi,0, µi,1, ..., and µi,G−1 be column sets represent-
ing elements in the 1st, 2nd, ..., and Gth columns of
the sub-matrix mi respectively. Let Ui be a vector set
representing all column vectors of mi. That is, U0 =
(µ0,0 µ0,1 µ0,G−1), U1 = (µ1,0 µ1,1 µ1,G−1), ..., and
UG−1 = (µG−1,0 µG−1,1 µG−1,G−1). Clearly, to realize
the conflict-free parallel reconstruction the following two
conditions must be satisfied simultaneously,

{
µi,j ∩ µj,i = {e}, µi,j ∈ Ui, µj,i ∈ Uj and i ̸= j

µi,j ∩ µi,k = ∅, µi,j , µi,k ∈ Ui and j ̸= k ,

where 0 ≤ i, j, k ≤ G − 1 and {e} is an identity set
with non-null element. In other words, there is only one
common element when intersection column sets from
different groups and no intersection among column sets
in a group. This is the key to the S2-RAID layout.

Now consider column vectors of matrix matrix mi and
mj . We use Ci,p and Cj,q to represent (p + 1)th column
vector of the sub-matrix mi and the (q + 1)th column
vector of the sub-matrix mj respectively. Suppose the
vectors Ci,p and Cj,q are known and given by

Ci,p =


a0,p

a1,p

a2,p

. . .

aK−1,p

 and Cj,q =


b0,q

b1,q

b2,q

. . .

bK−1,q

 ,

where ai,j and bi,j denote elements at (j + 1)th column
(i + 1)th row of the Ci,p and Cj,q, respectively. From
Equation (1) we know that the elements of the Cj,q

can be obtained from sub-matrix mi though cyclic shift

operations, we have

b0,q = a0,q mod G

b1,q = a1,[q+(j−i)] mod G

b2,q = a2,[q+2×(j−i)] mod G ,

. . .

bK−1,q = aK−1,[q+(K−1)×(j−i)] mod G

then Cj,q can be represented by

Cj,q =


b0,q

b1,q

b2,q

. . .

bK−1,q

 =


a0,q mod G

a1,[q+(j−i)] mod G

a2,[q+2×(j−i)] mod G

. . .

aK−1,[q+(K−1)×(j−i)] mod G

 ,

1 ≤ K ≤ G. What we want to show next is that
the column subscripts of a0,q mod G, a1,[q+(j−i) mod G],
a2,[q+2×(j−i)] mod G, ..., and aK−1,[q+(K−1)×(j−i)] mod G are
different from each other.

Suppose that there were two identical subscripts on
row n1 and n2 of that column, the following equation
would hold

[q + n1× (j − i)] mod G = [q + n2× (j − i)] mod G,

which implies

[(n1− n2)× (j − i)] mod G = 0. (2)

However, there are some limitations as follows:
0<n1, n2, i, j<G

n1 ̸= n2, i ̸= j ,

G is a prime number

which mean the true of the following inequalities{
(n1− n2) ̸= 1, (j − i) ̸= 1

(n1− n2)<G, (j − i)<G .

Finally, we can deduce the conclusion, (n1 − n2) × (j −
i) mod G ̸= 0. Then, Equation (2) can never hold. There-
fore, their column subscripts are all different from each
other indicating that they span all columns of matrix mi

and there is one and only one of the same element in any
column of mi. Consequently, the intersection between
Ci,p and Cj,q is always one. That is, the system can carry
out conflict-free parallel reconstruction.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

A.2 Design of S2-RAID10

Fig. 10. An overview of S2-RAID10 data layout.

Fig. 10 shows one example of S2-RAID10 design with
8 disks and subRAID size of 8. Disks D0, D1, D2, and D3
are data disks and D4, D5, D6, and D7 are mirror disks,
respectively. Instead of directly mirroring data stripes in
traditional RAID10, S2-RAID10 skews data partitions in
mirror disks by shifting each subsequent partition by
one position as shown in the figure. In this way, data
reconstruction can be done in parallel in case of a disk
failure. As an example, if disk D2 fails in shaded area as
shown in Fig. 10 and the data partitions in D2 had been
mirrored from D4 to D7 (see the partitions 0.2’, 1.2’, 2.2’,
and 3.2’), then they can be read out in parallel. In other
words, the data reconstruction can be done 4 (β = 4)
times faster than the original RAID10. The data read
from the 4 mirror disks then can be written in parallel
to spare disks. Note that the 4 spare disks labeled S0
through S3 shown in Fig. 10 can be either physical spare
disks if they are available or available disk space on the
8 data/mirror disks, as the similar descriptions on S2-
RAID5. Of course, we also give the general layout of
S2-RAID10 in the next section.

A.3 S2-RAID10 Expansion Strategy

Similar to S2-RAID5, S2-RAID10 is also easily expand-
able. The condition for generalizing S2-RAID10 is that
disk number R must be an even number greater than
4. We separate R disks into two types of groups evenly,
primary and secondary, and the notation N is a constant
(N = 2). We then divide every disk into K(1<K ≤ G)
partitions and select one partition from each disk to
form primary and secondary groups to form subRAIDs.
The subRAID size G is equal to R/2, and the degree
of parallelism, β, is equivalent to the number of disk
partitions at the best (β ≤ K).

The compositional procedure of S2-RAID10 is shown
below. First, we give the initial matrix table mprimary ,

mprimary =


P0,0

P0,1

. . .

P0,K−1

 ,

where P0,j (0 ≤ j ≤ K − 1) is a G elements vector
representing subRAIDs of partition j on disks of group
0 (also called primary group). Then the layout matrix of
secondary group can be created by shift operations,

msecondary =


P

′

0,0

P
′

0,1

. . .

P
′

0,K−1

 =


SH0

r (P0,0)

SH1
r (P0,1)

. . .

SHK−1
r (P0,K−1)

 , (3)

where P
′

0,j denotes the (j + 1)th line of the matrix table
in secondary group, equaling to the result of SHb

r(P0,j).
The function of SHb

r(P0,j) is similar to the Equation (1).
Given the condition R = 8, we can obtain the follow-

ing initial layout matrix mprimary ,

mprimary =


0.0 0.1 0.2 0.3

1.0 1.1 1.2 1.3

2.0 2.1 2.2 2.3

3.0 3.1 3.2 3.3

 .

Recall that notation S.L represents logic disk number L
in subRAID number S. The identifier 0.0, for example,
represents the first logic partition of the subRAID 0. Then
the final mapping table M with R = 8 based on Equation
(3) is:

M =


0.0 0.1 0.2 0.3 0.0

′
0.1

′
0.2

′
0.3

′

1.0 1.1 1.2 1.3 1.3
′

1.0
′

1.1
′

1.2
′

2.0 2.1 2.2 2.3 2.2
′

2.3
′

2.0
′

2.1
′

3.0 3.1 3.2 3.3 3.1
′

3.2
′

3.3
′

3.0
′

 ,

where notation S.L
′

is an image of S.L. Obviously, this
mapping table can achieve parallel reconstruction at 4
times speedup without access conflicts.

APPENDIX B
PROTOTYPE IMPLEMENTATION

For the purpose of proof-of-concept and performance
evaluation, we have built two prototypes of S2-RAID
and Parity Declustering RAID in the same environment.
Our implementations are based on the source code of
the Linux software RAID (MD) and the following two
sections give the details of them.

B.1 Software Structure of S2-RAID
S2-RAID was implemented in the Linux operating sys-
tem inside the kernel and embedded into the iSCSI target
[8]. In the iSCSI target below, we realized the S2-RAID
functionalities. Fig. 11 shows the software structure of

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

iSCSI Initator

Config

Mdadm

Disk

S
2
-RAID

MD

IO Schedule

iSCSI Target

Disk Disk

Fig. 11. Software structure of S2-RAID implementation.

our prototype. It mainly includes three modules, iSCSI
target module, S2-RAID function module and configura-
tion module.

The iSCSI target module modifies the SCSI command
handling and disk I/O process. The disk I/Os of the
iSCSI target call upon interfaces of the S2-RAID module.

The S2-RAID module implements the basic functions
of S2-RAID5 and S2-RAID10 including RAID rebuilder
based on MD. MD itself provides RAID rebuilder that
allows parallel reconstruction of multiple RAIDs for a
disk failure provided that these RAIDs do not share
physical disks. When multiple RAIDs share physical
disks, MD’s rebuilder reconstructs data sequentially with
no parallelism.

Considering the mapping of S2-RAID, we employ two
small mapping tables to manage data layouts as shown
in Fig. 1 (see the figure in the paper) and Fig. 10. And
the mapping mode within each subRAID is the same as
traditional MD. In this way, upon a disk failure, we are
able to use MD’s rebuilder to reconstruct data in parallel.
In addition, some extra information should be recorded
including spare disk locations. While the addressing of
S2-RAID can be done by computation as described in
Fig. 2 in the paper.

For S2-RAID10 shown in Fig. 10, we built 16 subRAIDs
with RAID1 level using 2 disk partitions, then the S2-
RAID module forms a uniform addressing space with
RAID0 level, as called S2-RAID10. From point of view
of RAID reconstruction, there are 4 independent conven-
tional RAID1s without sharing physical disks allowing
parallel reconstruction in case of one disk failure.

The S2-RAID module finally maps the multiple sub-
RAIDs to one unified LUN. This LUN presents to the
iSCSI target module as one logical disk for read and
write I/Os.

The configuration module provides RAID setup and
configuration functions using mdadm commands to re-
alize different S2-RAID functions. It also allows users to
configure iSCSI target by means of iSCSI configuration
functions.

B.2 Implementation of Parity Declustering

This section gives the implementation details of Parity
Declustering. Parity Declustering is one of the existing

TABLE 3
A 9-Disk Parity Declustering Layout Based on Balanced

Incomplete Block Design.

Stripe Number Tuple Stripe Number Tuple
0 0, 1, 2 6 0, 4, 8
1 3, 4, 5 7 1, 5, 6
2 6, 7, 8 8 2, 3, 7
3 0, 3, 6 9 0, 5, 7
4 1, 4, 7 10 1, 3, 8
5 2, 5, 8 11 2, 4, 6

works that is closely related to S2-RAID5. In order to
show the difference both of them, we have implemented
Parity Declustering based on MD. Our implementation is
based on a data construction algorithm, which is derived
from a balanced incomplete block design [3].

Through the concept we know, a block design table is
an arrangement of ν distinct objects into b tuples, each of
which contains k objects, such that each object appears
in exactly γ tuples, and any pair of objects in tuples just
appears λ tuples. There are also two notations C and G,
where C is the number of disks in the RAID and G is
the span of the stripe units with which parity unit can
protect some smaller number of data units instead of
C − 1 and C = ν,G = k. We have implemented a 9-disk
layout of Parity Declustering, with the stripe width of 3.
The detail of distributing parameters are ν = 9, b = 12,
k = 3, and γ = 4 as shown in Table 3.

APPENDIX C
ADDITIONAL EVALUATION OF S2-RAID
C.1 Details of Testbed Settings
In this section, we introduce the details of software
and hardware configurations used in our evaluations as
listed in Tables 4 and 5.

TABLE 4
Hardware Details of The Storage Client and Server. Note that
all hardwares in either client or server are the same except for

the disk and HBA.

OS Fedora 14(kernel-2.6.35)
Disks (server) 1 Seagate ST3320418AS, 320GB, 7200RPM

15 Seagate ST3500410AS, 500GB, 7200RPM
Disk (client) 1 Seagate ST3320418AS, 320GB, 7200RPM
Mainboard Supermicro X8DT6

CPU Intel(R) Xeon(R) CPU 5650 @2.67GHz
NIC Intel 82574L

Memory 8GB DDR3
HBA (server) Symbios Logic SAS2008

C.2 Benchmark Settings
Besides the traces, we also choose a set of standard
benchmarks as test cases that are widely used in the
research community and industry.

The first benchmark we selected is PostMark [4] that
is widely used as file system benchmark tool written

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

TABLE 5
Parameters Used in Evaluation and Software Settings of The

Storage Server and Client.

Application softwares
blktrace blktrace 1.0

iSCSI Target iSCSI target-1.4.20.2
iSCSI initator iSCSI-initiator-util 6.2.0865

PostgreSql PostgreSQL-8.1.15
MySQL MySQL 5.1.40
TPC-C TPCC-UVA-1.2.3

PostMark PostMark-1.5
Sysbench Sysbench-0.4.12

Important parameters
chunk size 64KB (default)

speed limit min 8MB/s

by NetApp, Inc. In our experiments, we set PostMark
workload to include 100, 000 files of size 4KB to 500KB
and to perform 200, 000 transactions. Read and write
block sizes are set to 4KB.

Sysbench is a system evaluation benchmark designed
for identifying system parameters that are important for
a system running a database under intensive load [5].
Sysbench runs at file-IO test mode with 20 threads and
20GB file size. The file test mode is sequential reading.

TPC-C is a well-known benchmark used to model the
operational end of businesses where real-time transac-
tions are processed. We set up the PostgreSQL database
based on the implementation from TPCC-UVA [6]. 30
warehouses with 10 terminals per warehouse are built on
PostgreSQL database with measurement interval of 120
minutes and 20 minutes ramp-up time. Details regarding
TPC-C workloads specification can be found in [2].

C.3 Additional Results Driven by Benchmarks

TPC-C PostMark Sysbench
0

200

400

600

800

1000

1200

1400

R
ec

on
st

ru
ct

io
n

tim
e

(s
)

(a) Reconstruction time

 RAID5 PD RAID50 S2-RAID5

TPC-C PostMark Sysbench
0

5

10

15

20

25

U
se

r r
es

po
ns

e
tim

e
(m

s)

(b) User responce time

Fig. 12. Comparisons of reconstruction performance driven by
three benchmarks.

In addition to trace-driven experiments, experiments
driven by three standard benchmarks have been carried
out with the same RAID settings described above. The
results are plotted in Fig. 12. One can see from Fig.
12(a) that, S2-RAID5 outperforms other RAID layout-
s significantly in terms of reconstruction time for all

three benchmarks. We have observed over a factor of
two to three performance improvements over RAID5
and RAID50 for all three benchmarks. Even compared
with PD, dramatic performance improvement was also
observed in terms of reconstruction time.

For the frontend performance, we observed that S2-
RAID5 shows comparable performance as RAID5 and
PD for benchmark TPC-C and Postmark even though the
reconstruction time of S2-RAID5 is substantially better
than their counter parts. This fact is shown in Fig. 12(b).
As we all know, TPCC-UVA is open source implemen-
tation of the standard TPC-C benchmark. TPCC-UVA
has the read to write ratio of 1:1 [7], which is different
form standard TPC-C that has read to write ratio of
1.9:1 [1]. And this read to write ratio of TPCC-UVA is
similar to the Usr trace. As a result, its performance
shown in Fig. 12(b) is similar to that shown in Fig. 8.
For PostMark, we also observed a 1:1 read to write ratio
in our experiments. The performance difference among
the four RAID layouts is not that significant similar to
TPC-C.

Different from TPC-C and PostMark, we use the Sys-
bench benchmark under sequential read access mode
to evaluate the frontend performance once again. The
results in Fig. 12(b) also support previous statements
(as explained in section 5.1) of poor sequential read
performance for S2-RAID5 due to the heavy reconstruc-
tion workloads of S2-RAID5 comparing with other three
RAID layouts.

C.4 S2-RAID10 Performance

Fin1 Fin2 Web MM Usr Rsrch Offline
0

200

400

600

800

1000

1200

1400

R
ec

on
st

ru
ct

io
n

tim
e

(s
)

(a) Reconstruction time

 RAID10 S2-RAID10

Fin1 Fin2 Web MM Usr Rsrch
0

5

10

15

20

25

30

U
se

r r
es

po
ns

e
tim

e
(m

s)

(b) User response time

Fig. 13. Comparisons of reconstruction performance for
RAID10 and S2-RAID10 under traces.

To evaluate the reconstruction performance of
RAID10, we conduct experiments for the two RAID
layouts, RAID10 and S2-RAID10, with 8 disks. As
shown in Fig. 13(a), S2-RAID10 outperforms RAID10 by
a factor of 4.13 on average, with the parallelism degree
β equaling 4. Most performance gains of S2-RAID10
come from the disperse disk partitions in secondary
group, and four parallel reconstruction threads can
migrate tiny patches to their reserved disks instead of

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

the whole disk. There are 8 disks in total (including 1
spare disk) involved in reconstruction process for 8-disk
S2-RAID10, with 3 disks and 1 spare disk in primary
group playing the role of spare disks and 4 disks in
secondary group for reconstruction. While traditional
RAID10 is based on a one-to-one reconstruction mode,
with only two disks taking reconstruction by data
migration.

Better disk utilizations and high degree of parallelism
in S2-RAID10 during reconstruction process will also
adversely affect frontend I/O performance while recon-
struction is going on. The results of frontend perfor-
mance while reconstruction is in progress in background
are shown in Fig. 13(b). S2-RAID10 has an average
27.13% performance degradation in terms of user re-
sponse time compared with RAID10. For multimedia
applications such as MM, this performance degradation
is more pronounced. The fact is that all disks in S2-
RAID10 are used for either reconstruction or respond-
ing frontend I/O requests. It is understandable, why
frontend performance suffers a little bit - the heavy
workloads of each disk.

REFERENCES
[1] Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B.

Gibbons, Ryan Johnson, Ippokratis Pandis, and Radu Stoica. TPC-
E vs. TPC-C: characterizing the new TPC-E benchmark via an I/O
comparison study. SIGMOD Record, 39(3):5–10, February 2011.

[2] Transaction Processing Performance Council. TPC benchmarktm

C standard specification, 2005.
[3] Marshall Hall. Combinatorial Theory (2nd Edition). Wiley Inter-

science, 1986.
[4] Jeffrey Katcher. Postmark: a new file system benchmark. Technical

Report TR3022, Network Appliances, 1997.
[5] Alexey Kopytov. SysBench, a system performance benchmark,

Available: http://sysbench.sourceforge.net/index.html, 2004.
[6] Diego R. Llanos. TPCC-UVa: an open-source TPC-C implemen-

tation for global performance measurement of computer systems.
SIGMOD Record, 35(4):6–15, December 2006.

[7] Jin Ren and Qing Yang. A new buffer cache design exploiting both
temporal and content localities. In Proceedings of the 30th IEEE
International Conference on Distributed Computing Systems, ICDCS
’10, pages 273–282, 2010.

[8] iSCSI Enterprise Target. Available:
http://sourceforge.net/projects/iscsitarget/files/, 2012.

	TPDS-2012-10-1093.R2_Wang
	TPDS-2012-10-1093.R2_Wang_Supplemental

