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Abstract

Performance of Web servers is critical to the success of many corporations and organizations. However, very few
results have been published that quantitatively study the server behavior and identify the performance bottlenecks.
In this paper we measure and analyze the behavior of the popular Apache Web server on a uniprocessor system
and a 4-CPU SMP (Symmetric Multi-Processor) system running the IBM AIX operating system. Using the AIX
built-in tracing facility and a trace-analysis tool, we obtained detailed information on OS kernel events and overall
system activities while running Apache driven by the SPECweb96 and the WebStone benchmarks. We found that
on average, Apache spends about 20-25% of the total CPU time on user code, 35-50% on kernel system calls and
25-40% on interrupt handling. For systems with small RAM sizes, the Web server performance is limited by the disk
bandwidth. For systems with reasonably large RAM sizes, the TCP/IP stack and the network interrupt handler are
the major performance bottlenecks. We notice that Apache shows similar behavior on both the uniprocessor and the
SMP systems.

After quantitatively identifying the performance bottlenecks, we proposed 8 techniques to improve the performance
of Apache. We implemented all but one of these techniques. Our experimental results show that these techniques
improve the throughput of Apache by 61%. These techniques are general purpose and can be applied to other Web
servers as well. Finally, our results suggest that operating system support for directly sending data from the file
system cache to the TCP/IP network can further improve the Web server performance dramatically.

1 Introduction

With the explosive growth of the World Wide Web (WWW), more and more corporations and organizations are depending on
high performance Web servers for the success of their business. The high demand of Web requests often stresses or even saturates
systems that have very large capabilities. For example, during the first chess match between IBM “Deep Blue” SP2 supercomputer
and world Chess champion Gary Kasparov, IBM Web site registered over 5 million hits during the first game and more requests
for the following games. IBM had to use 9 SP2 nodes to act as Web servers to handle the heavy Web traffic [1]. According
to CNN, NASA Pathfinder Web site topped 100 million hits for the first 3 days after the Pathfinder spaceship landed on Mars.
NASA had to set up 20 mirror sites around the world to keep up with the traffic demand. During the election night in November
1996, CNN'’s Web site recorded 50 million hits.
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There are three ways for a Web site to handle high traffic, namely replication(mirroring), distributed caching, and improving
server performance. Replication is simply distributing the same Web server information to multiple machines that are either a
cluster [2], or distributed in different locations. Since any one of the machines can serve requests independently, the load of each
individual server is reduced. Distributed caching includes client-side caching [3], proxy caching [4, 5, 6, 7] or dedicated cache
servers [8, 9, 10] . These approaches transparently cache remote documents on local storages or a cache machine that is close to
the clients, thereby reducing the traffic seen by the original server. Finally, improving server performance includes using more
powerful hardware such as a SMP (Symmetric Multi-Processor) system, using better Web server software techniques such as
pre-forking process pools [11], as well as using high-bandwidth network connections.

Considerable effort has been invested in studying replication and distributed caching. Many interesting and effective approaches
have been proposed and implemented. On the other hand, less attention has been paid to improve the Web server performance.
Some software techniques, such as avoiding Unix fork overhead [11] and caching in main memories [12] are suggested and used.
Protocol improvements such as Keep-alive and HTTP-NG [13, 11] are also suggested or implemented. Other than these, there are
very few published results addressing the issue of quantitatively characterizing the behavior of Web servers and improving their
performance. Improving Web server performance is important, however. Even with replication and caching, a significant number
of requests may still hit the original Web server for a busy Web site. In addition, more and more Web pages are dynamically
generated, which can not be cached and must be fetched from the original servers. Finally, the replication servers and the cache
servers often use the same or similar techniques as the original Web servers, thus they may also benefit from improvements to
Web servers in general. Improving Web server performance and reducing the Web server overhead are also important for many
low-traffic Web sites such as most university department web sites. The Web servers of these sites often run on time-sharing
machines that also provide other services such as file servers or computation servers. Reducing the Web server overhead means
other services can have more CPU times and other system resources.

To improve Web server performance, it is important to quantitatively identify the performance bottlenecks. In this paper,
we measure and analyze the behavior of the Apache Web server running on several different hardware platforms. We show that
Apache spends more than 75-80% of its CPU time on OS kernels. We will also give detailed measurement results on where the
kernel time is spent. Based on our performance analyses, we present 8 techniques to improve the performance of the Apache
server. Together, these techniques increase the throughput of Apache by more than 61% under the SPECweb96 workload.

The rest of this paper is organized as follows. Section 2 briefly introduces the Apache Web server, the SPECweb96 and the
WebStone benchmarks. Section 3 outlines our experimental environments. The measurement results and analysis are presented
in Section 4. Section 5 proposes several performance enhancement techniques. The results of these techniques are discussed in
Section 6. We discuss related work in Section 7 and conclude the paper in Section 8.

2 Apache, SPECweb96 and WebStone
2.1 The Apache Web Server

Apache [14] is a freely available, UNIX-based Web server developed by a team of volunteers. It was originally based on code and
ideas found in NCSA httpd 1.3, but has been completely rewritten since then. We choose Apache as the base of our experimental
system for the following three reasons. First, Apache is the most popular Web server running today, accounting for more than
48% of all Web domains on the Internet [14]. Second, Apache is a fully featured, high performance Web server, superior than
many other UNIX-based Web servers in terms of functionality, efficiency and speed. Third, the source code of Apache is available,
enabling us to make changes to the code to improve its performance.

Apache is a multi-processed program. When Apache starts, the main process forks into several child processes that are
responsible for handling incoming HTTP requests. Each child process listens to one or several specific TCP ports (normally port
80). When a HTTP request comes in, one child gets the request. This child process reads the request, parses the URL (Uniform
Resource Locator), finds the file name corresponding to the URL, checks the file states, performs security checking, opens the file,
reads its content, and finally sends the content to the client. The child process then logs the request information to a log file, and

listens to the next request.

2.2 The SPECweb96 Benchmark

SPECweb96 was developed by the Standard Performance Evaluation Corporation (SPEC). It is the first standardized benchmark
for measuring the performance of Web servers.

SPECweb96 consists of two parts: a file set generator and a workload generator. Before testing a Web server, the file set
generator must be run in the server machine to populate a test file set consisting of many files of different sizes. The workload
generator then runs on one or several computers connected to the Web server machine being tested via a TCP/IP network. It
simulates Web clients by sending HTTP “GET” commands to the Web server, requesting for files in the test file set. The workload



Expected Total File
Throughput (Ops) | Set Size (MB)
1 22
2 31
5 49
10 69
20 98
50 154
100 218
200 309
500 488
1000 690

Table 1: Throughput vs. File Set Size

Classes | File Sizes Access Frequencies
Class 0 | 0 - 1KB 35%
Class 1 | 1IKB — 10KB 50%
Class 2 | 10KB — 100KB 14%
Class 3 | 100KB - 1MB 1%

Table 2: File Sizes per Class and Frequency of Access

generator measures the response time of the Web server, and increases the request rate until the server can not handle them. The
maximum HTTP request rate that the Web server can handle is the SPECweb96 value.

An important feature of SPECweb96 is that the total size of the file set scales with the expected throughput of the server.
This is because SPEC believes that a higher-end server should not only provide faster services but also serve more files (Web
pages) than a smaller server can. Table 1 shows the relationship between the expected throughput and the total file set sizes
defined by SPECweb96.

Many studies indicate that small files are accessed more frequently than large files in most real world Web servers [15, 16, 17].
Similarly, in SPECweb96, the data files are classified by their sizes into 4 classes, as shown in Table 2. Smaller classes are accessed
more frequently by the workload generator than larger classes are. The file sizes and access frequencies are based upon analysis
of logs from several popular servers, including NCSA'’s site, the home pages for Hewlett-Packard and HAL Computer.

In the SPECweb96 file set, Class 3 files account for 90% of the total file set size. However their chances of being accessed are
only about 1%. The remaining files account for only 10% of the total file set size, yet receiving 99% of total accesses. This leads
to an important conclusion. That is, a relatively small amount of RAM can be used to cache the file set and eliminate most disk
accesses [18]. For example, a 4-way SMP system can typically achieve a SPECweb96 number of 2000, corresponding to a file set
of 1 GB. Only 100 MB of RAM is required to cache the file set to achieve a document hit ratio of 99%, or a byte hit ratio of
about 60%. In fact, most high performance server systems nowadays have memory sizes of hundreds megabytes or even several
gigabytes, as demonstrated by SPECweb96 reports[18]. These systems effectively cache almost all files in RAM. As a result, for
such systems, disk activities have little effect on the overall server performance.

2.3 The WebStone Benchmark

SPECweb96 is a standardized benchmark that generates relatively realistic Web workloads for evaluating the overall system
performance. It mixes 4 different classes of files in a way close to the access patterns observed in real world Web servers. However,
researchers often need to change the characteristics of the workload, such as the request sizes, to identify the server performance
bottleneck under a specific condition. SPECweb96 does not allow users to change the workload. Therefore, when we need to
study the behavior of Apache under different request sizes, we will use the WebStone benchmark developed by SGI [19], which
gives users almost complete control over the workload characteristics, including the request sizes and mixtures.

One problem of WebStone is that its default file generator populates the server with only 32 files. If we use these files as the
server file set, the server will transfer a very small number of files over and over again. This may generate misleading results,
since the small number of files will always stay in the file cache and the CPU cache. Fortunately, WebStone allows using any data



Model 43P-140
Server Number of CPUs 1
Machine CPU Type 200 MHz PPC 604e
(1 RS/6000) RAM Size 128 MB
Disk Space 2x2GB
oS AIX 4.2.1
Model Pentium PC
Client Number of CPUs 1
Machines CPU Type 133 MHz Pentium
(2 Pentium PCs) RAM Size 32 MB
Disk Space 2 GB
OS Linux 2.0.30
Network 2 x 100 Mbps Ethernet

Table 3: Uniprocessor Test System Configuration

Model RS/6000 7025 F50
Server Number of CPUs 4
Machine CPU Type 166 MHz PPC 604e
(1SMP) RAM Size 2 GB
Disk Space 8x 4.5 GB
0S AIX 4.2.1
Model RS/6000 7025 F50
Client Number of CPUs 4
Machine CPU Type 166 MHz PPC 604e
(1SMP) RAM Size 720 MB
Disk Space 8x 4.5 GB
0S ATX 4.2.1
Network 2 x 100 Mbps Ethernet

Table 4: Multiprocessor Test System Configuration

files. We choose the same SPECweb96 data files, which is large enough (several hundreds megabytes), as the Server data file. We
setup WebStone to selectively request the SPECweb96 files on a specific size range.

3 Experimental Environments

‘We studied the behavior of the Apache server on both a uniprocessor system and a SMP multiprocessor system. The uniprocessor
experimental system consists of a IBM RS/6000 system as the server and two Pentium PC systems as clients, as shown in Table
3. Each client machine has a dedicated 100 Mbps Ethernet connection to the server. The SMP experimental system consists of
two state-of-the-art IBM 4-Way SMP machines, one as the server and the other as a client, connected through two dedicated 100
Mbps Ethernets. Its configuration is listed in Table 4.

We use the AIX built-in trace facility to capture the system activities while Apache is running. The trace facility records kernel
events with an extremely fine granularity of details [20]. The collected trace data is post-processed by the UTLD 1.2 program [21]
developed by IBM RISC System/6000 Division. UTLD analyzes the trace file and generates a detailed system utilization report
including the CPU utilization, locking time, interrupt handling time, as well as CPU times of individual system calls. For better
measurement accuracy, we repeat each measurement 3 times and average the results.

The two server systems used by this study have large RAM sizes. To study the behavior of Web servers under smaller RAM
sizes, we run the AIX rmss (Reduced-Memory System Simulator) command [22] to simulate systems with different sizes of real
memories that are smaller than the actual memory size, without having to extract and replace memory boards.

We use Apache 1.2.0 during the experiment. Apache is compiled with the IBM C set++ C compiler, using the -O2 optimization
flag. All results are obtained with the Apache request logging turned on, unless otherwise specified. The “HostnamelLookups”



option for logging is also turned on because this is the default setting of Apache 1.2.0.

4 Measurement Results

4.1 Effects of System RAM sizes

In our first experiment, we run Apache on the uniprocessor system with different RAM sizes. Using rmss, we set the usable
system RAM sizes to 16, 32, 64 and 128 MB, and run the SPECweb96 benchmark to drive the Web server. Figure 1 shows the
achieved SPECweb96 throughput (the number of HTTP requests per second) as well as the network bandwidth (the number of
bytes transfered per second), both differ dramatically under different system RAM sizes.
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Figure 1: Apache SPECweb96 Performance

60
30
20
16 32 64 128

Server Memory Sizes (MB)

~ Al

3
Server Memory Sizes (MB)

@
o

~
o

iy
s}

Percentage of CPU Busy Time
[
o

Figure 2: Apache CPU Utilization

Our analysis indicates that the performance differences are mainly caused by the effect of disk caching. For the workload
range we considered, SPECweb96 touches about 100-380 MB of file data during a typical test run. When the RAM size is small,
such as in the cases of 16 and 32 MB, the system RAM is used up mainly by the program code and data pages. As a result, most
files can not be cached in the RAM and must be fetched from the disk. In fact, we observed that in such cases the disk is 100%
busy most of time, meaning that to get the data for the next Web request, the CPU must wait until all current disk requests in
the disk queue finish. In other words, the Web server performance at low system RAM sizes is limited by the disk bandwidth.
This can be further demonstrated by Figure 2, which shows the CPU utilization (the proportion of time that the CPU is busy).
For the system with 16 MB of RAM, the CPU does useful work for less than 20% of time. For the rest of the time the CPU
simply waits for disk I/Os. On the other hand, the CPU is almost 100% busy for the system with 128 MB of RAM.

We also traced the system activities and obtained detailed timing information of the system. Figure 3 shows the CPU activities
as percentages of the total CPU busy time. In general, Apache spends only about 20-25% of its CPU time on the user code. On
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Figure 3: Apache CPU busy-time breakdown

the other hand, it spends almost 35-50% of its CPU time on kernel system calls, which includes the “file system”, the “network”
and the “other syscalls” portions as shown in Figure 3 2. The remaining 25-40% of the CPU time is for handling first level
interrupts including I/O interrupts (Ethernet and disk interrupts), page faults and other interrupts(clock interrupts, etc.). The
interrupt handlers belong to the bottom half of the OS kernel [23]. Technically they are not parts of the Web server processes.
However, they provide necessary services for the Web server and consume a very significant portion of the CPU time.

As pointed out before, the Web server performance is limited by the disk bandwidth for small system RAM sizes. There is
perhaps little that one can do to improve the server performance under small RAM sizes, except for using fast disk systems or
adjusting the disk caching algorithms. On the contrary, the Web server performance on a system with a large RAM size is mainly
limited by its CPU performance, since our profiling data show that the CPU is saturated. If we can identify the performance
bottlenecks and remove them to reduce their CPU time requirements, we can improve the server performance. In the following
discussions we will concentrate on studying the behavior of Web servers on systems with large RAM sizes. All following results
for the uniprocessor system are obtained with 128 MB of RAM. For the SMP system, all results are measured under the default
setup of 2 GB of RAM.

Figure 4 gives detailed CPU time breakdown for Apache running on the uniprocessor system with 128 MB of RAM. It
clearly shows that the TCP/IP stack and the low level network handling consume the majority of the CPU resource. The code
directly involved with TCP/TP (the dark sectors on the bottom, including the Ethernet Driver, the write 3, select and other
TCP/IP system calls) takes 29% of the total CPU time. The first level interrupt handlers (the light sectors on right, including
I/0 Interrupt, data page fault and other interrupts ) also use a significant amount (24%) of CPU time. Among them, the /0
Interrupt portion is mainly for handling Ethernet interrupts. Since most disk files are cached in RAM, there are very few disk
activities observed. The TCP/IP and the Ethernet interrupt handlers together take 43% of the total CPU time, which is the main
performance bottleneck. File system operations (the light sectors on the left, including the read, open, stat and other system
calls) use 17% of the CPU time, which is very wasteful because more than 99% of the active data files can be cached in the system
RAM. The user code uses about 23% of total CPU time. Finally, the “incinterval” system call that is mainly used by the alarm
and other timer functions uses 3% of the processing time. All other miscellaneous syscalls, which include signal handling and
system calls such as getpid and exit, take only about 2% of the total CPU time together.

4.2 Context Switching Overhead

Apache uses multiple processes to handle multiple requests concurrently. As a result, the overhead of the context switching
between Apache processes is of a performance concern. To reduce the overhead, many new Web servers such as Zeus [24] now
use multi-threaded architectures.

To quantitatively identify the context switching overhead of Apache, we use the UTLD program to generate process dispatching
reports. We found that the overhead caused by the dispatcher is a minimal (0.4%) portion of the total CPU time. While we
are not able to directly measure the context switching overhead caused by cache misses, our results of running the Imbench [25]

2We include the Ethernet and disk drivers as the TCP /IP stack and File system activities because the device drivers are closely related
to the TCP/IP stack and File system. However the device drivers are actually called by Second Level Interrupt Handlers. Thus strictly
speaking, they are bottom-half kernel activities and are not parts of the Web server processes.

3A very small percentage of the write time is actually caused by writing the log file, which is a file system activity. Similarly, a small
portion of the read time (about 10%) is caused by read requests from the network, although we classify read as a file system operation.



OS benchmark indicate that the context switching overhead for 20 processes that touch 4KB data each after context switching
is 43 microseconds in our system. The overhead is 121 microseconds if each process touches 16 KB of data. These numbers
match with the results reported by McVoy and Staelin [25]. Since on average each Apache process touches (reads and sends)
several KBs of data before another context switching, we can reasonably assume that the context switching delay for Apache
processes in our system is close to or less than 100 microseconds. The UTLD program has reported that the average time between
dispatches of Apache processes is about 8 milliseconds, which means that the context switching overhead is around or less than
1-2% (100/8000). On the other hand, in a thread-based system, context switching to another thread may also cause many cache
misses if the thread touches a large amount of data.

The main advantage of using thread is that a thread typically uses less kernel resources than a process does. The context
switching overhead of threads is also lower than that of processes. This is especially true for some systems that have to flush
the entire content of the cache between each process context switch. On the other hands, our measurement results show that
for a PowerPC system running AIX, the dispatching and context switching overheads of Apache are already very low. This
suggests that using a thread-based Web server architecture instead of a process-based approach may not always improve the
server performance significantly for some platforms. While using threads can also eliminate the inter-process communication
overhead caused by signals, our profiling data shows that signal handling overhead on Apache is not significant. Furthermore,
a process-based application is easier to port compared to a thread-based program, because not all systems support threads. In
general, we believe that the choice between multi-processes and multi-threads should mainly be a preference of programming

style, rather than a major performance consideration.
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Figure 4: Detailed Apache CPU Time Breakdown (128MB)

4.3 Apache on a SMP system

We have also run Apache on a 4-CPU SMP system with 2 GB of RAM as a server and SPECweb96 on another SMP system as a
client to generate HT'TP requests. However, the SMP system running the Web server is so powerful that it can not be saturated
by the clients. As a result, the CPU utilization is only about 60%. Nevertheless, our profiling data, which are shown in Figure 5,
still provide many useful insights.

Figure 5 looks very similar to Figure 4, implying that the behavior of Apache on a SMP system is very similar to that on
a uniprocessor one. A noticeable difference is that the I/O interrupt time in the SMP system accounts for 25% of total CPU
time, as opposite to 14% in the uniprocessor system. Since we use the same 100BaseT Ethernet cards for both the SMP and
the uniprocessor systems, the difference should not be caused by the network cards themselves. Instead, we believe that it is
caused by bus contention or the SMP cache-coherence protocol overhead for DMA data transfer. The data page fault overhead
disappears because the SMP system has sufficient amount of memory to hold all program data and code pages as well as file data.
Finally, the accept system call, which does not show up in the uniprocessor case, now consumes a noticeable portion of time.

4.4  Effects of Request Sizes

SPECweb96 generates Web requests with mixed request sizes. While it gives us a balanced view on the overall system performance
and behavior, it is often desirable to study the system behavior under different request sizes. The studies of ours and others [26]
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indicate that different request sizes stress the system in very different ways.

To study the behavior of Apache under different request sizes, we conducted another 4 groups of tests on the uniprocessor
system, using the WebStone benchmark. For the reasons described in Section 2, we use SPECweb96 data files as the test file set
for WebStone. The SPECweb96 files are classified according to their sizes with class 0 being the smallest sizes and class 3 the
largest sizes. In each group of the tests we let the WebStone request about 100 different files from a specific SPECweb96 file class.
As a results, we are able to measure the behavior and identify the problems of Apache under different file sizes.
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Figure 6 summarizes the results of the Apache behavior under different request sizes. This figure clearly shows that when the
request sizes are small (class 0 and class 1 files), user time dominates the total CPU time. The file system and the TCP/IP stack
are relatively equally stressed. For large requests (class 2 and class 3 files), Apache spends most of its time on the TCP/IP stack.

The detailed CPU time breakdowns for different file sizes are shown in Figures 7 to 10. It is clear from the figures that,
for small request sizes (class 0 and class 1), Apache user code is the main performance bottleneck, accounting for 34-36% of the
total CPU time. This is because that there is a fixed amount of overhead, such as parsing the request and logging the request,
involved in each request. When the request size is small, the time spent on transferring data from the file system to the network is
relatively short, therefore this fixed overhead becomes a dominant portion. The large overhead suggests that there is potentially
a large room of improvement on the user code of Apache. First level interrupt processing is another major overhead, consuming
19-20% of the total processing time. However, there is perhaps little one can do about this, except for using a very intelligent
device that requires less CPU attention. Finally, the CPU spends almost identical amounts of times on the file system and the
TCP/IP stack. There are no obviously dominant system calls, implying that one can not expect a significant performance increase

by eliminating one or a few system calls.
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The cases for large file sizes are completely different. Because of the large request sizes, the overhead of the user code becomes
a relatively small portion of the total processing time. Rather, the CPU spends most of its time on the write system call, which
copies data from the user space to the kernel M BUF's (the buffer structures used by the TCP/IP stack). The total time spent
on the file system is similar to the cases of small file sizes. However, now the read system call, which transfers file data from the
file system cache to the user space, dominates the file system operations because of the large file sizes. The overheads caused by

other file system activities, such as open and statz, become negligible.

5 Improving the Apache Performance

We have shown that for the SPECweb96 workload, on a uniprocessor system Apache spends about 23% of the total CPU time
on user code, 26% on interrupt handlers, 29% on TCP/IP processing and 17% on file system operations. It is difficult to reduce
the overheads caused by TCP/IP processing and interrupt handling unless we modify the OS code or change the hardware. On
the other hand, it is possible to greatly reduce the file system overhead and the user code overhead, as will be demonstrated in

the remaining of this section.
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5.1 Using the mmap function

For our system with 128 MB of RAM, almost all frequently accessed file data are cached in the file system cache. However,
Figures 7 to 10 clearly indicate that for all 4 different classes of files, Apache still spends a considerable amount (17-19%) of its
CPU time on file system activities. The reason to this high overhead is that for almost every HT'TP request, Apache has to check
the file state using the stat system call, open the file and read the file data from the file system cache into the user buffer, before
it can ship the data to the network.

Our first approach is to use the mmap function to eliminate the data copying between the file system cache and the user
space. When Apache needs to read a file, we let the program open the file, then use the mmap function to map the data of the
file into the user space. As a result, the server can send the mapped data directly to the network, avoiding the read system call
altogether. When the entire file content is sent out, the file is unmapped and closed to limit the number of opened files in the
system (most OSs pose a limitation on the number of files a process can open).

This approach is easy to implement. However, we found that the effectiveness of this approach is limited for the following
two reasons. First, for small file sizes (class 0 and class 1 files), Figures 7 and 8 show that the read system call accounts for only
30-50% of the total file system overhead. Other file system calls that can not be eliminated by mmap, such as open and close,
also have significant impacts on the server performance. Second, for each mmapped pages accessed by the Web server, the Virtual
Memory system generates a page fault, even the file data are already cached in the kernel buffer. Since the file is unmapped and
closed after the data are sent out, a sequence of page faults will occur again when the file is re-mapped into the user space next

10



time. Because of the overhead of page faults, reading data from the mmapped area is about 20-100% slower than from the user
memory space in most OSs, as reported by McVoy and Staelin [25]. Our own experiments also confirmed their observation. The
Imbench benchmark reports that our system has a memory bandwidth of 72 MB/sec for reading data from the user space. The
memory bandwidth is 59 MB/sec for reading data from mmapped areas, which is about 22% lower than the former. We will
further discuss the performance impact of the mmap overhead shortly.

5.2  Caching files in the User Space

A better solution is to cache the file data in the Web server user space. A Web server can directly ship the data of cached files to
the TCP/IP stack, avoiding all file system calls such as open, read and close. Moreover, as discussed above, reading data cached
in the user memory space is faster than from the mmapped area, resulting in a better server performance.

To evaluate the performance benefit of caching in the Web server user space, we conducted the following experiment. we let
the WebStone repeatedly retrieve a single 1 MB file from the Apache server. Because of the large file size, the overheads caused
by open and close system calls are negligible. We have already found that in our system, reading data from the user space is
about 22% faster than from a mmapped area. Figure 10 shows that when transferring large files, Apache spends most of the time
on the write function, which reads data from the user space or from the mmapped area and writes the data to network buffers.
Therefore we expected that the server bandwidth of Apache caching data in the user space should be noticeably higher than
that of Apache using mmap. We obtained an average server bandwidth of 87.24 Mb/sec by caching the file in the user space, as
compared to 78.30 Mb/sec if we use mmap to fetch the file data, giving rise to almost 11% improvement.

Our profiling data also indicates that Apache frequently calls the stat system call to get the file states, such as the access
permission and create-time information. For small file sizes, the stat system call accounts for about 20% of the total file system
overhead. It will be beneficial to cache the file state in the Web server user space also. Since the file state information is small,
the overhead for caching this information is minimal.

In the remaining of this section we present the design of a user-level cache for Apache that caches both the file data and the

file states in a user memory region shared by all processes.

5.2.1 Data Structures

The data structures of the cache is shown in Figure 11. The cache is divided into two parts, namely the cache information part
and the cache data part. The cache information part is used to manage the cache and stores file states. It is in a shared memory
section, consisting of a hash table and a Cache Node table. The file data are stored in another shared memory area containing

many buffers.

Cache Information Part Cache Data Part

Hash Table Cache Node Table Buffersfor file data

Nodel Nwm
\/ File1 File2

Nodem FileM

FileN
NOGM

Figure 11: The data structures of the user-level cache

The Cache Node table is a fix size array of Cache Nodes. Each file in the cache has one and only one Cache Node. The total
number of Cache Nodes is the maximum number of files that can be cached. We choose this static array approach because of
its simplicity and efficiency. We do not have to write a memory allocator for the shared memory section to dynamically allocate
data. We can set the maximum number of nodes to a very high number, say 10000, so it will not pose a severe limitation in a
real world system. Since the table resides in the virtual memory space, the unused portion of the table will not be kept in the
real memory so it causes almost no additional overhead.

A Cache Node contains the file name, the LastCachedTime, the Attribute and other information related to a cached file. The
LastCachedTime is for solving the cache coherency problem, which will be discussed shortly. The Attribute field stores the file
attributes (states) such as the file type, ownership, create times, etc. The cache gets the information using the C stat and lstat
functions. Since the file states are cached, a Web server does not have to call the operating system when it needs the information.
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The hash table, which is an array of pointers to Cache Nodes, is used to speed up the lookup of the cache. Each pointer in the
hash table also has an associated lock to prevent two processes from modifying the hash chain at the same time.

The actual cached data is stored in another shared memory area. Each file stores its data in a buffer that is a portion of the
shared memory area. The Buffer data entry in the Cache Node of a file points to the starting address of its buffer. Because all
buffers are in the virtual memory space, we do not have to implement our own LRU algorithm. If real memory becomes limited,
the virtual memory system will automatically page out the least frequently accessed pages.

Since large files are seldom accessed, to prevent a large file from flushing other cached files from the real memory and causing
virtual memory thrashing, the system imposes a user-specified upper limit to the sizes of the files that can be cached. For example,
a file will not be cached if its size exceeds 100 KB. We use the mmap function to speed up accesses for uncached large files. In

any case, the file state is always cached, regardless of the size of the file.

5.2.2 Operations

The cache provides two operations to the Web server, namely “get file state” and “get file content”. The first function returns the
cached file state from a Cache Node on a cache hit, or get the information from the file system and cache it before returning on
a cache miss. Its interface is similar to and can replace the Unix functions stat and Istat. The “get file content” simply returns a
pointer to the file data buffer for a cache hit. On a miss the cache reads the data to a cache buffer from the file system and then
returns the buffer pointer. If the file is not found or not cacheable (for example, too large), the function simply returns a NULL
pointer. The Web server will then use the mmap function to get the file data, or report an error if the file does not exist.

While checking a Cache Node entry, the system also compares the current system time with the LastCachedTime field of
the Cache Node, which gives the time of the last update of the file state. If the difference between the two time values exceeds
a threshold, say 60 seconds, the system reloads the file state and compares newly loaded state with the old one. If the cache
finds that the file have been updated by users, the currently cached file data is discarded so that it will be reloaded from the file
system later. This approach implies that there is a short period of time, say 60 seconds, during which a cached file and its disk
file version might not be the same. We believe that this short time of inconsistency will not cause major problems. In case a user
wants the newly modified Web page available immediately to the Web server, we provide a program to load the file into the cache

immediately.

5.3 Speeding up Logging

Typically a Web server logs every HTTP request into a log file. The logging information includes the client name, the request
time, the requested URL, etc. During our experiments we found that the logging process of Apache is a major overhead. For
example, on the uniprocessor system with 128 MB of RAM, the SPECweb96 number of Apache with logging is 158 ops/sec.
Simply turning off the logging operation results in a SPECweb96 number of 194 ops/sec, which is a 22% improvement. Since
logging information is very useful for many Web sites, it is desirable to reduce the logging overhead of Apache.

5.3.1 Caching DNS results

We found that the majority of overheads of logging comes from looking up the host names of clients. Apache uses the
getnamebyaddr function to perform the DNS (Domain Name Service) lookup using client TP addresses as inputs. Apache calls
the function for every HTTP request being logged. This is very wasteful, since users normally send out a sequence of requests to
a Web server for multiple objects in a Web page (the HTML file and many small bitmap files). As a result, multiple name lookup
operations are performed for the same IP address. The overhead is especially high if there is no name server running at the local
machine. In such a case, the name lookup requests must be sent across the network to a name server, causing long delays and
extra network traffic. For small file sizes, the logging delays caused by DNS lookups may dominate the HTTP request response
time. While it is possible to disable the host name lookup processes and log only the client IP addresses, most Web administrators
would prefer logging host names, because it provides much more information.

We solve the problem by using a simple and effective technique — A DNS cache that caches the host names and IP addresses
of clients in the Web server address space. The DNS cache is a small array (about several hundred entries) of records that contain
the host names and IP addresses of client machines. The cache entries are indexed by hashing the IP address of machines. When
Apache needs to lookup a client’s name with an IP address, the DNS cache is checked first. If there is a cache hit, the machine
name is returned from the cache. Otherwise the cache calls the getnamebyaddr function first to find the machine name, puts the
information into the cache, then returns the machine name. Our measurement results show that this simple solution improves the
throughput of Apache by more than 14%. This is equivalent to reducing the logging overhead by 63% (14/22), since the logging
overhead reduces the server throughput by 22%. Of course, this number represents the best case situation. Because there are
only 2 client machines during our testing, the cache hit ratio is 100%. Nevertheless, we believe that in the real-world situation
the cache can achieve a hit ratio of 70-90% or more. Typically a client generates at least a dozen HT'TP requests to a web site
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during a visit. Only the first request needs a name lookup to a name server. For the remaining requests, the client name can be
obtained from the DNS cache.

5.3.2 Caching String Results

We ran Apache with the gprof profiling tool and found that another noticeable portion of the logging overhead is caused by
logging the request time and status code. For each request, Apache has to convert the current system time into a human-readable
ASCII string and then write the string into the log file. Similarly, it has to convert the request status code — success or fail, for
example — into an ASCII string. Both string conversion operations are expensive.

However, many of the string operations are redundant. For example, the logging time resolution is only 1 second. As a result,
in any second, Apache calls the time conversion routines hundreds times, only to convert the same time into the same string again
and again. Similarly, the majority (80-90%) of status codes during a normal operation period should be “successful” [15]. It is
wasteful to convert the same “successful” status code into the same string over and over again.

The overhead can be significantly reduced by caching the last string conversion result. For example, we let the time-conversion
routine store the resulting string in a static array. When Apache calls the conversion routine again, the routine returns the result
in the static array if the current time argument is the same as the last call, thus avoiding many redundant string operations.
Similar optimizations can be applied to the status code conversion and several other places in the Apache code. This requires
changing only several lines of code. The result is a 20% of reduction on the logging overhead, or a throughput improvement of
about 4 percent.

5.3.3 Delayed Logging

The DNS cache and the string result caches eliminate about 83% of the logging overhead. The rest 17% of performance loss is
mainly caused by other user code dealing with logging, and by the writes system call that writes the log entry into the log file
for each request. Initially we believed that the write system call is the cause of the slowdown, so we designed and implemented a
mechanism called delayed logging, trying to eliminate the overhead caused by writes. We keep a large log buffer (32 - 64 KB) in
a shared memory section shared by all Apache processes. Instead of calling write, the Apache processes copy the log entries to
the log buffer. The write system call is only invoked when the log buffer is full, or by a background process that flushes the log
buffer to the disk file every 60 seconds.

Unfortunately, while the delayed logging approach eliminates most write system calls for logging, our testing results show
that it does not result in a measurable performance increase. We believe that it is because the write system call of AIX is very
efficient. Its main overhead is copying data from the user space to the file system cache. The actual write to the disk occurs later
when the file system cache is full or when the cache is flushed by the flush daemon. The delayed logging scheme does not reduce
the overhead of data copy (it actually increases the numbers of data copy), thus it does not help. However, this scheme may still
be useful for systems of which the write function has a large overhead in addition to data copy.

5.4 Caching URI Processing Results

We have shown that Apache spends about 20-23% of its CPU time on user code. Using the gprof tool, we found that about 60%
of the user time are for processing URIs (Uniform Resource Indicators, the parts of URLs after the colon), e.g., parsing, directory
checking, security checking, translating the URI to a file name, etc. The URI parsing overhead becomes a major performance
bottleneck after the file system overhead is eliminated by the user-level file cache.

The problem here is very similar to the one faced by physically addressed CPU caches. A physical CPU cache can eliminate
the overhead of transferring data between the main memory and the CPU on cache hits. However, the CPU needs to translate
virtual addresses to physical addresses before accessing the cache. The address translation process is potentially very expensive,
involving accessing page tables in the RAM for each memory access. Almost all modern CPUs use TLBs (Translation Look-aside
Buffers) that significantly reduce the address translation overhead. A TLB caches the translated physical addresses to speed up
address translation. We adopted the idea of TLB into the Web server design. The URI parsing process resembles the process of
translating a virtual address (a URI) to a physical address (a file name). This similarity leads us to the design and implementation
of a URI cache that greatly speeds up the URI processing of Apache. When Apache finishes parsing and checking a URI and
obtains a file name corresponding to the URI, the URI/file-name pair is put into the cache. Later when a client send the same
URI to the server, the server can obtain the file name corresponding to the request directly from the cache and send the data out,
without going through the time-consuming parsing and checking process again. Note that because Apache supports the concept
of “Virtual host” * the same URI may result in different file names. Consequently, each virtual host has its own URI cache.
Similarly, different URIs may correspond to the same file, although it is easy to handle this situation.

4“Virtual hosts” refers to the ability of a single Web server acting as multiple “virtual” Web servers, each of them has its own name and
IP address.
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This scheme is especially helpful for dynamically generated Web pages such as directory lists, because it is expensive to
generate such pages. Because dynamic pages do not have corresponding physical files, the program assigns a unique “pseudo-file-
name” to each page and stores the resulting page data with the pseudo-file-name in the file cache. The URI/pseudo-file-name
pair is also cached in the URI cache to speed up accesses.

Another possible solution is to use the idea of virtual address caches. For example, the file cache can be indexed by URIs (the
virtual addresses) instead of by file names (the physical addresses). When a client requests a URI, the file cache is searched using
the URI as the index, and the file content is returned on a cache hit. This solution is faster than the decoupled URI-Cache/File-
Cache solution presented above. However, after some experiments we rejected this idea. The reason is that this scheme faces the
same problems of synonyms(aliases) and homonyms of virtual caches [27]. Synonyms occur when several URIs correspond to
the same file name. A virtual cache will cache the same file multiple times for each URI, wasting memory space and may cause
a consistency problem if the Web server supports the HTTP “PUT” (modification) operation. Homonyms occur when a URI
corresponds to several different file names, such as in the case of multiple virtual hosts. Solving the problems of synonyms and
homonyms requires relatively complex software, therefore we implemented the simpler and more flexible decoupled approach.

Apache supports “Content Negotiation”. For the same URI, Apache may return different documents, say a French version or
an English version, upon the request of clients. Currently we have not found an efficient way to handle content negotiations in
the URI cache. Therefore, we do not cache the URI/file-name pair if it is a result of a content negotiation. This will not cause a

major performance problem, since not many documents nowadays use content negotiations.

6 Results of the Enhancement Techniques
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Figure 12: SPECweb96 Results of the Enhanced Apache

Figure 12 compares the performance of Apache with various performance-enhancement techniques we proposed and imple-
mented. The bar on the far left is the performance of the original Apache. We can see that the DNS cache improves the server
throughput by more than 14%. Caching the string conversion brings in another 4% performance increase. We then use the mmap
function to speed up both small files and large files accesses. This results in a 9% throughput increase. However mmap does not
eliminate other file system calls such as open and close, therefore the server still spends a lot of time on file system operations.
Next we add the cache of the file states, which eliminates all stat calls and results in a 3% improvement. We then add the
user-level file cache for small files, and use mmap only to speed up accesses for uncached large files. The user-level file cache
removes almost all file system calls, improving the performance by about 11%. Finally, we implement the URI cache and obtain
another 10% speed up. Together, the 6 techniques we proposed and implemented boost the performance of Apache by more than
61%, as shown by the right most bar in Figure 12.

To explore the potentials of further improvements, we traced the Apache server incorporating all the above techniques, and
obtained the processing time distribution information shown in Figure 13. As expected, the file system operations are almost
completely eliminated, indicating that our caching schemes worked very well. Because of the reduction of the kernel time, the
proportion of the overhead caused by the Apache user code increases even though our URI cache reduces the user code overhead
significantly. In fact, the Apache user code now takes 31% of the total CPU time, which is the major bottleneck. Using the gprof
program, we found that a large portion of the user time is spent on computing the HT'TP response header information, such as
the file modification time, file length, etc. We are currently trying to pre-compute the HTTP head information and store the
information in the file cache when a file is loaded (or reloaded) into the file cache. This should eliminate most overhead caused
by computing the HT'TP response header. In [28] Kaashoek et al. also suggested to pre-compute the HI'TP header information

14



and store it in a file. Our scheme does not have to store the headers in files. Rather, it takes the advantage of our user level cache
and automatically calculates the header information when a file is loaded into the cache.
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Figure 13: Detailed CPU Time Breakdown for Enhanced Apache

While it is possible to further optimize the user code of Apache, Figures 13 shows that two activities, namely the Ethernet I/O
interrupts and the write system calls, also greatly limit the server performance. Although it is difficult to reduce the interrupt
overhead, it is possible to greatly reduce the overhead of write system calls for the following reasons. The overhead of a write is
mainly caused by data copying. Even with mmap and our user-level file cache, the write system call still has to copy data to the
kernel M BU F', either from the kernel file cache in the case of using mmap, or from the user file cache. The data copying causes
significant overhead, especially in the cases of multiprocessor systems because of the cache-coherence protocols. Moreover, the
copying process flushes the CPU data cache, increasing the cache miss ratios.

We believe that future operating systems should provide support for directly sending data in the kernel buffer to the network
without copying. For example, the OS can provide a system service called “read-file.into_mbuf”, which reads the file data from
the disk and caches them in the kernel in an M BUF chain. Later an application can issue a “send_file_in_mbuf” system call,
which passes the MBUF chain directly to the TCP/IP stack, without the need of data copying. This will greatly improve the
performance of Web servers as well as other network applications such as file servers. It is also possible to unify the above two
calls into a single “send-file” system call, which ships the specified file from the disk (if the file is not cached) to the network
directly 5. This technique is especially important for large files, because Figures 9 and 10 show that a Web server spends most of
its time on the write system call for large file sizes. We expect that the technique will at least double or even triple the server
performance for large files which are becoming more and more important because of the increasing use of audio and video files

on the Web pages. It will also significantly reduce the server overhead for small files.

7 Related Work

McGraph [29] measured the throughputs and response times of several Web servers on 4 different hardware platforms. He found
that delivering large files is dominated by the network transfer time, regardless of the server software or platforms.

Almeida et al. [26] and Yates et al. [30] have recently presented an interesting study on measuring the behavior of the Apache
Web server on a PC running Linux [26]. Using the Webmonitor that they developed and the kernel profiling facility in Linux, they
have measured and analyzed the server performance on top of Linux. Our research differs from theirs in the following important
aspects. First, the AIX tracing facility and the UTLD program provide us with much more detailed system activity statistics
than Linux can. Second, Almeida and Yates et al. used a low-end platform, which is a 75 MHz Pentium PC with 16 MB RAM.
We study the Web server behavior on a range of hardware systems, such as a fast 200 MHz PowerPC uniprocessor system with
128 MB of RAM, and a very powerful 4-Way SMP system with 2 GB of RAM. As indicated previously, different memory sizes
present quite different performance behaviors of the Apache server. Third, they used a 10 Mbps Ethernet as the connection
between the clients and the server. Our studies, as well as the SPECweb96 documents, indicated that the 10 Mbps Ethernet is
saturated by a few clients, leaving the CPU idle most of time and causing notable measurement errors. Fourth, instead of only

5Microsoft already has such an API called TransmitFile in the Windows NT system.
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No | Technique Implement. | Effect-

Complexity | iveness
1 Mmapping large files 0 2
2 | Caching small files 2 3
3 | Caching file states 1 1
4 | Caching DNS 0 3
5 Caching string results 0 1
6 | Delayed logging 0 0
7 | Caching URI process results 2 3
8 | Unifying FS/Network caches 3 3

Table 5: Web Server Enhancement Techniques. For complezity, 0 means trivial and 3 means challenging. For effectiveness, 0
means almost useless, while 8 means very effective.

using WebStone, we also use SPECweb96, which is a standardized benchmark and generates more realistic workload. Finally,
we have also proposed and implemented several performance enhancement techniques that improve the performance of Apache
significantly.

In [12] Markatos proposed caching Web documents inside the address space of Web servers, which is similar to our user-level
caching approach. He referred to this idea as “Main Memory Web Caching”. He used server traces from several Web sites to
conduct trace-driven simulations. He showed that even a small amount of main memory (512 Kbytes) can hold more than 60%
of the documents requested. We independently proposed the similar idea of caching file data and actually ¢mplemented the
cache for the Apache Web server. We also use the mmap function to speed up accesses to large files. Moreover, in addition to
the file content, we cache file states also, since our profiling data show that Apache frequently inquires the states of files. Our
measurements under the SPECweb96 workload demonstrated that our cache design and implementation is successful. Finally,
we use the OS virtual memory system to implement the cache LRU algorithm. This approach greatly simplifies our design and
interacts well with other parts of the system.

Several new Web servers, such as Zeus, also use the mmap function for fast file accesses. However, because of the lack of
documentation, we do not know their implementation details.

In [31] Chen et al. briefly reported the memory behavior of Web servers running on three Personal Computer Operating
Systems, namely the NetBSD, the Windows NT and the MS-Windows. They found that all three systems suffer from very high
cache penalties and suggested that Web servers could benefit from optimizations to avoid cache latency.

The DNS caching technique has been used in almost all network name servers to speed up name lookups. It is also suggested
by Arlitt and Williamson in [15]. We found that it is particular helpful to cache DNS results in the Web server address space
because of the temporal locality of the Web requests. The scheme is effective and simple to implement.

The idea of directly transferring data between the disk system and the network system has been proposed before in the Scout
OS [32], in the Container Shipping system [33], in the IO-Lite system [34] and in the MIT Server OSs [28]. Our profiling results
strongly support applying the idea to Web servers, because Web servers spend most of their CPU time on copying data.

8 Conclusions

In this paper, we present measurement results and performance analyses of the behavior of the Apache Web server on a uniprocessor
system and a 4-CPU SMP system running the IBM AIX operating system. Using the built-in tracing facility and a trace-analysis
tool, we obtained detailed information on OS kernel events and overall system activities while running Apache driven by the
SPECweb96 and the WebStone benchmarks. We found that, on average, Apache spends about 20-25% of the total CPU time on
user code, 35-50% on kernel system calls and 25-40% on interrupt handling. For systems with small RAM sizes, the Web server
performance is limited by the disk bandwidth. For systems with reasonably large RAM sizes, the TCP/IP stack and the network
interrupt handler are the major performance bottlenecks. We also believe that using a thread-based Web server architecture
instead of a process-based approach may not always improve the server performance noticeably. We notice that Apache shows
similar behavior on both the uniprocessor and the SMP systems.

After quantitatively identifying the performance bottlenecks, we proposed 8 techniques to improve the performance of Apache,
which are summarized in Table 5. We have implemented all but the last one techniques listed in the table. Our experimental
results show that these techniques, except “delayed logging”, are quite effective. Together they improve the throughput of Apache
by 61%. These techniques are general purpose and can be applied to other Web servers as well. Finally, our results suggest that
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operating system support for directly sending data from the file system cache to the TCP/IP network (the last technique listed
in Table 5) can further improve the Web server performance.
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