Measurement, Analysis and Performance Improvement of the Apache Web

Server *f

Yiming Huf, Ashwini Nanda*, and Qing Yang!

T Dept. of Electrical & Computer Engineering
University of Rhode Island
Kingston, RI 02881
{hu,qyang}@ele.uri.edu

Abstract

Performance of Web servers is critical to the success of
many corporations and organizations. However, very few
results have been published that quantitatively study the
server behavior and identify the performance bottlenecks.
In this paper we measure and analyze the behavior of the
popular Apache Web server on a uniprocessor system and a
4-CPU SMP (Symmetric Multi-Processor) system running
the IBM AIX operating system. Using the AIX built-in
tracing facility and a trace-analysis tool, we obtained de-
tailed information on OS kernel events and overall system
activities while running Apache driven by the SPECweb96
and the WebStone benchmarks. We found that on aver-
age, Apache spends about 20-25% of the total CPU time
on user code, 35-50% on kernel system calls and 25-40%
on interrupt handling. For systems with small RAM sizes,
the Web server performance is limited by the disk band-
width. For systems with reasonably large RAM sizes, the
TCP/IP stack and the network interrupt handler are the
major performance bottlenecks. We notice that Apache
shows similar behavior on both the uniprocessor and the
SMP systems.

After quantitatively identifying the performance bot-
tlenecks, we proposed 7 techniques to improve the perfor-
mance of Apache. We implemented all but one of these
techniques. Our experimental results show that these tech-
niques improve the throughput of Apache by 61%. These
techniques are general purpose and can be applied to other
Web servers as well. Finally, our results suggest that oper-
ating system support for directly sending data from the file
system cache to the TCP/IP network can further improve
the Web server performance dramatically.

*To be presented in the 18th IEEE International Performance,
Computing and Communications Conference, Phoenix/Scottsdale,
Arizona, February 1999.

TThis work is supported in part by NSF under Grants MIP-
9505601 and MIP-9714370, and IBM. Part of this work was performed
at IBM T. J. Watson Research Center.

tIBM T.J. Watson Research Center
P.O.Box 218
Yorktown Heights, NY 10598
ashwini@watson.ibm.com

1 Introduction

With the explosive growth of the World Wide Web (WWW),
more and more corporations and organizations are depend-
ing on high performance Web servers for the success of their
business. The high demand of Web requests often stresses
or even saturates systems that have very large capabilities.
For example, during the first chess match between IBM
“Deep Blue” SP2 supercomputer and world Chess cham-
pion Gary Kasparov, IBM Web site registered over 5 mil-
lion hits during the first game and more requests for the
following games. IBM had to use 9 SP2 nodes to act as
Web servers to handle the heavy Web traffic. According to
CNN, NASA Pathfinder Web site topped 100 million hits
for the first 3 days after the Pathfinder spaceship landed
on Mars. NASA had to set up 20 mirror sites around the
world to keep up with the traffic demand. During the elec-
tion night in November 1996, CNN’s Web site recorded 50
million hits.

There are three ways for a Web site to handle high traf-
fic, namely replication(mirroring), distributed caching, and
improving server performance. Replication is simply dis-
tributing the same Web server information to multiple ma-
chines that are either a cluster [1], or distributed in different
locations. Since any one of the machines can serve requests
independently, the load of each individual server is reduced.
Distributed caching includes client-side caching [2], proxy
caching [3, 4, 5, 6] or dedicated cache servers [7, 8, 9] .
These approaches transparently cache remote documents
on local storages or a cache machine that is close to the
clients, thereby reducing the traffic seen by the original
server. Finally, improving server performance includes us-
ing more powerful hardware such as a SMP (Symmetric
Multi-Processor) system, using better Web server software
techniques such as pre-forking process pools [10], as well as
using high-bandwidth network connections.

Considerable effort has been invested in studying repli-
cation and distributed caching. Many interesting and ef-
fective approaches have been proposed and implemented.
On the other hand, less attention has been paid to improve
the Web server performance. There are very few published



results addressing the issue of quantitatively characterizing
the behavior of Web servers and improving their perfor-
mance. Improving Web server performance is important,
however. Even with replication and caching, a significant
number of requests may still hit the original Web server for
a busy Web site. In addition, more and more Web pages
are dynamically generated, which can not be cached and
must be fetched from the original servers.

To improve Web server performance, it is important
to quantitatively identify the performance bottlenecks. In
this paper, we measure and analyze the behavior of the
Apache Web server running on several different hardware
platforms. We show that Apache spends more than 75-
80% of its CPU time on OS kernels. We will also give
detailed measurement results on where the kernel time is
spent. Based on our performance analyses, we present
7 techniques to improve the performance of the Apache
server. Together, these techniques increase the through-
put of Apache by more than 61% under the SPECweb96
workload.

2  Apache, SPECweb96 and Web-

Stone

2.1 The Apache Web Server

Apache [11] is a freely available, UNIX-based Web server
developed by a team of volunteers. It was originally based
on code and ideas found in NCSA httpd 1.3, but has been
completely rewritten since then. We choose Apache as the
base of our experimental system for the following three rea-
sons. First, Apache is the most popular Web server running
today, accounting for more than 48% of all Web domains on
the Internet [11]. Second, Apache is a fully featured, high
performance Web server, superior than many other UNIX-
based Web servers in terms of functionality, efficiency and
speed. Third, the source code of Apache is available, en-
abling us to make changes to the code to improve its per-
formance. We used Apache 1.2.0 during the experiment.

Apache is a multi-processed program. When Apache
starts, the main process forks into several child processes
that are responsible for handling incoming HTTP requests.
Each child process listens to one or several specific TCP
ports (normally port 80). When a HTTP request comes
in, one child gets the request. This child process reads
the request, parses the URL (Uniform Resource Locator),
finds the file name corresponding to the URL, checks the
file states, performs security checking, opens the file, reads
its content, and finally sends the content to the client. The
child process then logs the request information to a log file,
and listens to the next request.

2.2 The SPECweb96 Benchmark

SPECweb96 was developed by the Standard Performance
Evaluation Corporation (SPEC). It is the first standardized

Expected Total File
Throughput (Ops) | Set Size (MB)
1 22
2 31
5 49
10 69
20 98
50 154
100 218
200 309
500 488
1000 690

Table 1: Throughput vs. File Set Size

Classes | File Sizes Access Frequencies
Class 0 | 0 — 1IKB 35%
Class 1 | 1KB — 10KB 50%
Class 2 | 10KB — 100KB 14%
Class 3 | 100KB — 1MB 1%

Table 2: File Sizes per Class and Frequency of Access

benchmark for measuring the performance of Web servers.

SPECweb96 consists of two parts: a file set generator
and a workload generator. Before testing a Web server,
the file set generator must be run in the server machine to
populate a test file set consisting of many files of different
sizes. The workload generator then runs on one or sev-
eral computers connected to the Web server machine being
tested via a TCP/IP network. It simulates Web clients
by sending HTTP “GET” commands to the Web server,
requesting for files in the test file set. The workload gen-
erator measures the response time of the Web server, and
increases the request rate until the server can not handle
them. The maximum HTTP request rate that the Web
server can handle is the SPECweb96 value.

An important feature of SPECweb96 is that the total
size of the file set scales with the expected throughput of
the server. This is because SPEC believes that a higher-end
server should not only provide faster services but also serve
more files (Web pages) than a smaller server can. Table 1
shows the relationship between the expected throughput
and the total file set sizes defined by SPECweb96.

Many studies indicate that small files are accessed more
frequently than large files in most real world Web servers
[12, 13, 14]. Similarly, in SPECweb96, the data files are
classified by their sizes into 4 classes, as shown in Table 2.
Smaller classes are accessed more frequently by the work-
load generator than larger classes are. The file sizes and ac-
cess frequencies are based upon analysis of logs from several
popular servers, including NCSA’s site, the home pages for
Hewlett-Packard and HAL Computer.



In the SPECweb96 file set, Class 3 files account for 90%
of the total file set size. However their chances of being ac-
cessed are only about 1%. The remaining files account for
only 10% of the total file set size, yet receiving 99% of total
accesses. This leads to an important conclusion. That is,
a relatively small amount of RAM can be used to cache
the file set and eliminate most disk accesses. For example,
a 4-way SMP system can typically achieve a SPECweb96
number of 2000, corresponding to a file set of 1 GB. Only
100 MB of RAM is required to cache the file set to achieve a
document hit ratio of 99%, or a byte hit ratio of about 60%.
In fact, most high performance server systems nowadays
have memory sizes of hundreds megabytes or even several
gigabytes, as demonstrated by SPECweb96 reports. These
systems effectively cache almost all files in RAM. As a re-
sult, for such systems, disk activities have little effect on
the overall server performance.

2.3 The WebStone Benchmark

SPECweb96 is a standardized benchmark that generates
relatively realistic Web workloads for evaluating the overall
system performance. It mixes 4 different classes of files in
a way close to the access patterns observed in real world
Web servers. However, researchers often need to change the
characteristics of the workload, such as the request sizes, to
identify the server performance bottleneck under a specific
condition. SPECweb96 does not allow users to change the
workload. Therefore, when we need to study the behavior
of Apache under different request sizes, we will use the
WebStone benchmark developed by SGI, which gives users
almost complete control over the workload characteristics,
including the request sizes and mixtures.

One problem of WebStone is that its default file gen-
erator populates the server with only 32 files. If we use
these files as the server file set, the server will transfer a
very small number of files over and over again. This may
generate misleading results, since the small number of files
will always stay in the file cache and the CPU cache. For-
tunately, WebStone allows using any data files. We choose
the same SPECweb96 data files, which is large enough (sev-
eral hundreds megabytes), as the Server data file. We setup
WebStone to selectively request the SPECweb96 files on a
specific size range.

3 Experimental Environments

We studied the behavior of the Apache server on both a
uniprocessor system and a SMP multiprocessor system.
The uniprocessor experimental system consists of a IBM
RS/6000 system as the server and two Pentium PC systems
as clients, as shown in Table 3. Each client machine has a
dedicated 100 Mbps Ethernet connection to the server. The
SMP experimental system consists of two state-of-the-art
IBM 4-Way SMP machines with 2 GB of RAM each, one
as the server and the other as a client, connected through

Model 43P-140
Server CPU Type | 200 MHz PPC 604e
Machine RAM Size 128 MB
(1 RS/6000) Disk Space 2x2GB
[OF] AIX 4.2.1
Model Pentium PC
Client CPU Type | 133 MHz Pentium
Machines RAM Size 32 MB
(2 Pentium PCs) | Disk Space 2GB
0S Linux 2.0.30
Network 2 x 100 Mbps Ethernet

Table 3: Uniprocessor Test System Configuration

two dedicated 100 Mbps Ethernets.

We use the AIX built-in trace facility to capture the
system activities while Apache is running. The trace facil-
ity records kernel events with an extremely fine granularity
of details [15]. The collected trace data is post-processed
by the UTLD 1.2 program [16] developed by IBM RISC
System /6000 Division. UTLD analyzes the trace file and
generates a detailed system utilization report including the
CPU utilization, locking time, interrupt handling time, as
well as CPU times of individual system calls. For bet-
ter measurement accuracy, we repeat each measurement 3
times and average the results.

The two server systems used by this study have large
RAM sizes. To study the behavior of Web servers un-
der smaller RAM sizes, we run the AIX rmss (Reduced-
Memory System Simulator) command [17] to simulate sys-
tems with different sizes of real memories that are smaller
than the actual memory size, without having to extract and
replace memory boards.

4 Measurement Results

4.1 Effects of System RAM sizes

In our first experiment, we run Apache on the uniprocessor
system with different RAM sizes. Using rmss, we set the
usable system RAM sizes to 16, 32, 64 and 128 MB, and
run the SPECweb96 benchmark to drive the Web server.
Figure 1 shows the achieved SPECweb96 throughput (the
number of HTTP requests per second) as well as the net-
work bandwidth (the number of bytes transfered per sec-
ond), both differ dramatically under different system RAM
sizes.

Our analysis indicates that the performance differences
are mainly caused by the effect of disk caching. For the
workload range we considered, SPECweb96 touches about
100-380 MB of file data during a typical test run. When
the RAM size is small, such as in the cases of 16 and 32
MB, the system RAM is used up mainly by the program
code and data pages. As a result, most files can not be



160 4000
40— - Throughput
120——777 savicth

3500

~

3000

=
o
i1

N
o
t=]
S

Bandwidth (KBs/sec

@
I3

-

-

32 64
Server Memory Sizes (MB)

Throughput (ops/sec)
@
o

40

20 7

Figure 1: Apache SPECweb96 Performance

%7 1000

A\

N

80

60
40
30
20
0 + + +
16 32 64 128

Server Memory Sizes (MB)

Percentage of CPU Busy Time
o
o

Figure 2: Apache CPU Utilization

cached in the RAM and must be fetched from the disk.
In fact, we observed that in such cases the disk is 100%
busy most of time, meaning that to get the data for the
next Web request, the CPU must wait until all current disk
requests in the disk queue finish. In other words, the Web
server performance at low system RAM sizes is limited by
the disk bandwidth. This can be further demonstrated by
Figure 2, which shows the CPU utilization (the proportion
of time that the CPU is busy). For the system with 16 MB
of RAM, the CPU does useful work for less than 20% of
time. For the rest of the time the CPU simply waits for
disk I/Os. On the other hand, the CPU is almost 100%
busy for the system with 128 MB of RAM.

We also traced the system activities and obtained de-
tailed timing information of the system. Figure 3 shows the
CPU activities as percentages of the total CPU busy time.
In general, Apache spends only about 20-25% of its CPU
time on the user code. On the other hand, it spends al-
most 35-50% of its CPU time on kernel system calls, which
includes the “file system”, the “network” and the “other
syscalls” portions as shown in Figure 3 !. The remaining

1We include the Ethernet and disk drivers as the TCP/IP stack

W /O Interrupt

= other interrupts

m data page fault

other syscalls

Total CPU Times
o
o
S

file system

network

™ user

32 64
Server Memory Sizes (MB)

F

[o] ~
o o
L ¥
"
(=]

128

Figure 3: Apache CPU busy-time breakdown

25-40% of the CPU time is for handling first level inter-
rupts including I/O interrupts (Ethernet and disk inter-
rupts), page faults and other interrupts(clock interrupts,
etc.). The interrupt handlers belong to the bottom half
of the OS kernel [18]. Technically they are not parts of
the Web server processes. However, they provide necessary
services for the Web server and consume a very significant
portion of the CPU time.

As pointed out before, the Web server performance is
limited by the disk bandwidth for small system RAM sizes.
There is perhaps little that one can do to improve the server
performance under small RAM sizes, except for using fast
disk systems or adjusting the disk caching algorithms. On
the contrary, the Web server performance on a system with
alarge RAM size is mainly limited by its CPU performance,
since our profiling data show that the CPU is saturated. If
we can identify the performance bottlenecks and remove
them to reduce their CPU time requirements, we can im-
prove the server performance. In the following discussions
we will concentrate on studying the behavior of Web servers
on systems with large RAM sizes. All following results for
the uniprocessor system are obtained with 128 MB of RAM.
For the SMP system, all results are measured under the de-
fault setup of 2 GB of RAM.

Figure 4 gives detailed CPU time breakdown for Apache
running on the uniprocessor system with 128 MB of RAM.
It clearly shows that the TCP/IP stack and the low level
network handling consume the majority of the CPU re-
source. The code directly involved with TCP/IP (the dark
sectors on the bottom, including the Ethernet Driver, the
write 2, select and other TCP/IP system calls) takes 29%

and File system activities because the device drivers are closely related
to the TCP/IP stack and File system. However the device drivers are
actually called by Second Level Interrupt Handlers. Thus strictly
speaking, they are bottom-half kernel activities and are not parts of
the Web server processes.

2A very small percentage of the write time is actually caused by
writing the log file, which is a file system activity. Similarly, a small
portion of the read time (about 10%) is caused by read requests from
the network, although we classify read as a file system operation.



of the total CPU time. The first level interrupt handlers
(the light sectors on right, including I/O Interrupt, data
page fault and other interrupts) also use a significant amount
(24%) of CPU time. Among them, the I/O Interrupt por-
tion is mainly for handling Ethernet interrupts. Since most
disk files are cached in RAM, there are very few disk ac-
tivities observed. The TCP/IP and the Ethernet interrupt
handlers together take 43% of the total CPU time, which is
the main performance bottleneck. File system operations
(the light sectors on the left, including the read, open, stat
and other system calls) use 17% of the CPU time, which
is very wasteful because more than 99% of the active data
files can be cached in the system RAM. The user code uses
about 23% of total CPU time. Finally, the “incinterval”
system call that is mainly used by the alarm and other
timer functions uses 3% of the processing time. All other
miscellaneous syscalls, which include signal handling and
system calls such as getpid and exit, take only about 2%
of the total CPU time together.

1/0 Interrupt
14%

other filesystem
2%

stat

2%

open

3%
data page fault
8%

read
10%

other interrupts
4%
other syscalls
2%
incinterval
3%
ethernet driver
5%

other tcp/ip

2% select

2%

20%

Figure 4: Detailed Apache CPU Time Breakdown (128MB)

We have also run Apache on a 4-CPU SMP system with
2 GB of RAM as a server and SPECweb96 on another SMP
system as a client to generate HTTP requests. We found
that the behavior of Apache on a SMP system is very sim-
ilar to that on a uniprocessor one. Interested readers can
refer to our technique report [19] for a detailed description
of the behavior of Apache on the SMP machine.

4.2  Effects of Request Sizes

SPECweb96 generates Web requests with mixed request
sizes. While it gives us a balanced view on the overall
system performance and behavior, it is often desirable to
study the system behavior under different request sizes.
The studies of ours and others [20] indicate that different
request sizes stress the system in very different ways.

To study the behavior of Apache under different request
sizes, we conducted another 4 groups of tests on the unipro-

cessor system, using the WebStone benchmark. For the
reasons described in Section 2, we use SPECweb96 data
files as the test file set for WebStone. The SPECweb96
files are classified according to their sizes with class 0 be-
ing the smallest sizes and class 3 the largest sizes. In each
group of the tests we let the WebStone request about 100
different files from a specific SPECweb96 file class. As a
results, we are able to measure the behavior and identify
the problems of Apache under different file sizes.

100%
= /O Interrupt

= other interrupts

m data page fault

other syscalls

Total CPU Times
o
Q
=

2
§
—
o
O
5
4
=}

m file system

network

= user

F

o
)
7}
Il
=

class2
File Classes

class3

Figure 5: Apache CPU Time for different file sizes

Figure 5 summarizes the results of the Apache behavior
under different request sizes. This figure clearly shows that
when the request sizes are small (class 0 and class 1 files),
user time dominates the total CPU time. The file system
and the TCP/IP stack are relatively equally stressed. For
large requests (class 2 and class 3 files), Apache spends
most of its time on the TCP /IP stack.

The detailed CPU time breakdowns for different file
sizes are shown in Figures 6 to 9. It is clear from the figures
that, for small request sizes (class 0 and class 1), Apache
user code is the main performance bottleneck, accounting
for 34-36% of the total CPU time. This is because that
there is a fixed amount of overhead, such as parsing the
request and logging the request, involved in each request.
When the request size is small, the time spent on transfer-
ring data from the file system to the network is relatively
short, therefore this fixed overhead becomes a dominant
portion. The large overhead suggests that there is poten-
tially a large room of improvement on the user code of
Apache. First level interrupt processing is another major
overhead, consuming 19-20% of the total processing time.
However, there is perhaps little one can do about this, ex-
cept for using a very intelligent device that requires less
CPU attention. Finally, the CPU spends almost identical
amounts of times on the file system and the TCP/IP stack.
There are no obviously dominant system calls, implying
that one can not expect a significant performance increase
by eliminating one or a few system calls.

The cases for large file sizes are completely different.
Because of the large request sizes, the overhead of the user



user

other filesystem
3%

stat
4%

open

4% 1/0 Interrupt

15%

read
6%

other tcplip data page fault

2%
5% other interrupts

sigaction 3%
~incinterval 2%
ethernet driver 5oy

3%

select
4%

write
8%

Figure 6: Detailed CPU Time Breakdown for Class 0 files

user

other filesystem
3%

stat
3%

open
4%

1/0 Interrupt
15%

data page fault
1%
other interrupts

. . 3%
sigaction
incinter\?a?fu

ernet driver 4%
13% A%

Figure 7: Detailed CPU Time Breakdown for Class 1 files

code becomes a relatively small portion of the total pro-
cessing time. Rather, the CPU spends most of its time
on the write system call, which copies data from the user
space to the kernel M BU F's (the buffer structures used by
the TCP/IP stack). The total time spent on the file sys-
tem is similar to the cases of small file sizes. However, now
the read system call, which transfers file data from the file
system cache to the user space, dominates the file system
operations because of the large file sizes. The overheads
caused by other file system activities, such as open and
statz, become negligible.

5 Improving the Apache Perfor-
mance

We have shown that for the SPECweb96 workload, on a
uniprocessor system Apache spends about 23% of the total

user

1/0 Interrupt
16%

other filesyste
1%

stat

1%

open
1%

other interrupt

sigaction
1%

incinterval

4%

ethernet driver
6%

28%

Figure 8: Detailed CPU Time Breakdown for Class 2 files

user

1/0 Interrupt
9%

other interrupts
5%

other filesystem
1%

incinterval
5%

read

18%

ethernet driver
7%

write
43%

Figure 9: Detailed CPU Time Breakdown for Class 3 files

CPU time on user code, 26% on interrupt handlers, 29% on
TCP/IP processing and 17% on file system operations. It
is difficult to reduce the overheads caused by TCP/IP pro-
cessing and interrupt handling unless we modify the OS
code or change the hardware. On the other hand, it is pos-
sible to greatly reduce the file system overhead and the user
code overhead, as will be demonstrated in the remaining of
this section.

5.1

For our system with 128 MB of RAM, almost all frequently
accessed file data are cached in the file system cache. How-
ever, Figures 6 to 9 clearly indicate that for all 4 different
classes of files, Apache still spends a considerable amount
(17-19%) of its CPU time on file system activities. The rea-
son to this high overhead is that for almost every HTTP
request, Apache has to check the file state using the stat

Using the mmap function



system call, open the file and read the file data from the
file system cache into the user buffer, before it can ship the
data to the network.

Our first approach is to use the mmap function to elim-
inate the data copying between the file system cache and
the user space. When Apache needs to read a file, we let
the program open the file, then use the mmap function to
map the data of the file into the user space. As a result, the
server can send the mapped data directly to the network,
avoiding the read system call altogether. When the entire
file content is sent out, the file is unmapped and closed to
limit the number of opened files in the system (most OSs
pose a limitation on the number of files a process can open).

This approach is easy to implement. However, we found
that the effectiveness of this approach is limited for the fol-
lowing two reasons. First, for small file sizes (class 0 and
class 1 files), Figures 6 and 7 show that the read system call
accounts for only 30-50% of the total file system overhead.
Other file system calls that can not be eliminated by mmap,
such as open and close, also have significant impacts on the
server performance. Second, for each mmapped pages ac-
cessed by the Web server, the Virtual Memory system gen-
erates a page fault, even the file data are already cached
in the kernel buffer. Since the file is unmapped and closed
after the data are sent out, a sequence of page faults will
occur again when the file is re-mapped into the user space
next time. Because of the overhead of page faults, reading
data from the mmapped area is about 20-100% slower than
from the user memory space in most OSs, as reported by
McVoy and Staelin [21]. Our own experiments also con-
firmed their observation. The Imbench benchmark reports
that our system has a memory bandwidth of 72 MB/sec for
reading data from the user space. The memory bandwidth
is 59 MB/sec for reading data from mmapped areas, which
is about 22% lower than the former. We will further discuss
the performance impact of the mmap overhead shortly.

5.2 Caching files in the User Space

A better solution is to cache the file data in the Web server
user space. A Web server can directly ship the data of
cached files to the TCP/IP stack, avoiding all file system
calls such as open, read and close. Moreover, as discussed
above, reading data cached in the user memory space is
faster than from the mmapped area, resulting in a better
server performance.

To evaluate the performance benefit of caching in the
Web server user space, we conducted the following exper-
iment. we let the WebStone repeatedly retrieve a single 1
MB file from the Apache server. Because of the large file
size, the overheads caused by open and close system calls
are negligible. We have already found that in our system,
reading data from the user space is about 22% faster than
from a mmapped area. Figure 9 shows that when trans-
ferring large files, Apache spends most of the time on the
write function, which reads data from the user space or
from the mmapped area and writes the data to network

buffers. Therefore we expected that the server bandwidth
of Apache caching data in the user space should be notice-
ably higher than that of Apache using mmap. We obtained
an average server bandwidth of 87.24 Mb/sec by caching
the file in the user space, as compared to 78.30 Mb/sec if
we use mmap to fetch the file data, giving rise to almost
11% improvement.

Our profiling data also indicates that Apache frequently
calls the stat system call to get the file states, such as the
access permission and create-time information. For small
file sizes, the stat system call accounts for about 20% of
the total file system overhead. It will be beneficial to cache
the file state in the Web server user space also. Since the
file state information is small, the overhead for caching this
information is minimal.

We have implemented a user-level cache for Apache.
Because of the space limitation, we will not discuss the
implementation details in this paper. Interested readers
can refer to our technique report [19] for more information.
Basically, the cache stores both the file data and the file
states in a user memory region shared by all processes.
When the server tries to read the content or state of a file,
the cache is searched first. On a cache hit, information
stored in the cache is returned immediately. On a cache
miss, the cache invokes system calls to obtain data, put
the data in the cache, and return them to the server.

5.3

Typically a Web server logs every HT'TP request into a log
file. The logging information includes the client name, the
request time, the requested URL, etc. During our exper-
iments we found that the logging process of Apache is a
major overhead. For example, on the uniprocessor system
with 128 MB of RAM, the SPECweb96 number of Apache
with logging is 158 ops/sec. Simply turning off the logging
operation results in a SPECweb96 number of 194 ops/sec,
which is a 22% improvement. Since logging information is
very useful for many Web sites, it is desirable to reduce the
logging overhead of Apache.

Speeding up Logging

5.3.1 Caching DNS results

We found that the majority of overheads of logging comes
from looking up the host names of clients. Apache uses
the getnamebyaddr function to perform the DNS (Domain
Name Service) lookup using client IP addresses as inputs.
Apache calls the function for every HTTP request being
logged. This is very wasteful, since users normally send
out a sequence of requests to a Web server for multiple
objects in a Web page (the HTML file and many small
bitmap files). As a result, multiple name lookup opera-
tions are performed for the same IP address. The overhead
is especially high if there is no name server running at the
local machine. In such a case, the name lookup requests
must be sent across the network to a name server, causing
long delays and extra network traffic. For small file sizes,



the logging delays caused by DNS lookups may dominate
the HTTP request response time. While it is possible to
disable the host name lookup processes and log only the
client IP addresses, most Web administrators would prefer
logging host names, because it provides much more infor-
mation.

We solve the problem by using a simple and effective
technique — A DNS cache that caches the host names and
IP addresses of clients in the Web server address space. The
DNS cache is a small array (about several hundred entries)
of records that contain the host names and IP addresses
of client machines. The cache entries are indexed by hash-
ing the IP address of machines. When Apache needs to
lookup a client’s name with an IP address, the DNS cache
is checked first. If there is a cache hit, the machine name
is returned from the cache. Otherwise the cache calls the
getnamebyaddr function first to find the machine name,
puts the information into the cache, then returns the ma-
chine name. Our measurement results show that this sim-
ple solution improves the throughput of Apache by more
than 14%. This is equivalent to reducing the logging over-
head by 63% (14/22), since the logging overhead reduces
the server throughput by 22%.

5.3.2 Caching String Results

We ran Apache with the gprof profiling tool and found
that another noticeable portion of the logging overhead is
caused by logging the request time and status code. For
each request, Apache has to convert the current system
time into a human-readable ASCII string and then write
the string into the log file. Similarly, it has to convert the
request status code — success or fail, for example — into
an ASCII string. Both string conversion operations are
expensive.

However, many of the string operations are redundant.
For example, the logging time resolution is only 1 second.
As aresult, in any second, Apache calls the time conversion
routines hundreds times, only to convert the same time into
the same string again and again. Similarly, the majority
(80-90%) of status codes during a normal operation period
should be “successful” [12]. It is wasteful to convert the
same “successful” status code into the same string over
and over again.

The overhead can be significantly reduced by caching
the last string conversion result. For example, we let the
time-conversion routine store the resulting string in a static
array. When Apache calls the conversion routine again, the
routine returns the result in the static array if the current
time argument is the same as the last call, thus avoiding
many redundant string operations. Similar optimizations
can be applied to the status code conversion and several
other places in the Apache code. This requires changing
only several lines of code. The result is a 20% of reduction
on the logging overhead, or a throughput improvement of
about 4 percent.

5.4 Caching URI Processing Results

We have shown that Apache spends about 20-23% of its
CPU time on user code. Using the gprof tool, we found
that about 60% of the user time are for processing URIs
(Uniform Resource Indicators, the parts of URLs after the
colon), e.g., parsing, directory checking, security checking,
translating the URI to a file name, etc. The URI parsing
overhead becomes a major performance bottleneck after
the file system overhead is eliminated by the user-level file
cache.

The problem here is very similar to the one faced by
physically addressed CPU caches. A physical CPU cache
can eliminate the overhead of transferring data between the
main memory and the CPU on cache hits. However, the
CPU needs to translate virtual addresses to physical ad-
dresses before accessing the cache. The address translation
process is potentially very expensive, involving accessing
page tables in the RAM for each memory access. Almost all
modern CPUs use TLBs (Translation Look-aside Buffers)
that significantly reduce the address translation overhead.
A TLB caches the translated physical addresses to speed
up address translation. We adopted the idea of TLB into
the Web server design. The URI parsing process resembles
the process of translating a virtual address (a URI) to a
physical address (a file name). This similarity leads us to
the design and implementation of a URI cache that greatly
speeds up the URI processing of Apache. When Apache fin-
ishes parsing and checking a URI and obtains a file name
corresponding to the URI, the URI/file-name pair is put
into the cache. Later when a client send the same URI to
the server, the server can obtain the file name correspond-
ing to the request directly from the cache and send the
data out, without going through the time-consuming pars-
ing and checking process again. Note that because Apache
supports the concept of “Virtual host” 2, the same URI
may result in different file names. Consequently, each vir-
tual host has its own URI cache. Similarly, different URIs
may correspond to the same file, although it is easy to han-
dle this situation.

This scheme is especially helpful for dynamically gen-
erated Web pages such as directory lists, because it is ex-
pensive to generate such pages. Because dynamic pages
do not have corresponding physical files, the program as-
signs a unique “pseudo-file-name” to each page and stores
the resulting page data with the pseudo-file-name in the
file cache. The URI/pseudo-file-name pair is also cached in
the URI cache to speed up accesses.

Another possible solution is to use the idea of virtual
address caches. For example, the file cache can be indexed
by URIs (the virtual addresses) instead of by file names
(the physical addresses). When a client requests a URI,
the file cache is searched using the URI as the index, and
the file content is returned on a cache hit. This solution is

3 “Virtual hosts” refers to the ability of a single Web server acting
as multiple “virtual” Web servers, each of them has its own name and
IP address.



faster than the decoupled URI-Cache/File-Cache solution
presented above. However, after some experiments we re-
jected this idea. The reason is that this scheme faces the
same problems of synonyms(aliases) and homonyms of
virtual caches. Synonyms occur when several URIs corre-
spond to the same file name. A virtual cache will cache
the same file multiple times for each URI, wasting mem-
ory space and may cause a consistency problem if the Web
server supports the HTTP “PUT” (modification) opera-
tion. Homonyms occur when a URI corresponds to several
different file names, such as in the case of multiple virtual
hosts. Solving the problems of synonyms and homonyms
requires relatively complex software, therefore we imple-
mented the simpler and more flexible decoupled approach.

Apache supports “Content Negotiation”. For the same
URI, Apache may return different documents, say a French
version or an English version, upon the request of clients.
Currently we have not found an efficient way to handle
content negotiations in the URI cache. Therefore, we do
not cache the URI/file-name pair if it is a result of a con-
tent negotiation. This will not cause a major performance
problem, since not many documents nowadays use content
negotiations.

6 Results of the Enhancement Tech-

niques

300

Throughput (ops/sec)

+DNS_cache
+DNS_cache
+str_cache
+DNS_cache
+str_cache+mmap

Figure 10: SPECweb96 Results of the Enhanced Apache

Figure 10 compares the performance of Apache with
various performance-enhancement techniques we proposed
and implemented. The bar on the far left is the perfor-
mance of the original Apache. We can see that the DNS
cache improves the server throughput by more than 14%.
Caching the string conversion brings in another 4% perfor-
mance increase. We then use the mmap function to speed
up both small files and large files accesses. This results
in a 9% throughput increase. However mmap does not
eliminate other file system calls such as open and close,
therefore the server still spends a lot of time on file system
operations. Next we add the cache of the file states, which

eliminates all stat calls and results in a 3% improvement.
We then add the user-level file cache for small files, and use
mmap only to speed up accesses for uncached large files.
The user-level file cache removes almost all file system calls,
improving the performance by about 11%. Finally, we im-
plement the URI cache and obtain another 10% speed up.
Together, the 6 techniques we proposed and implemented
boost the performance of Apache by more than 61%, as
shown by the right most bar in Figure 10.

While it is possible to further optimize the user code of
Apache, two activities, namely the Ethernet I/O interrupts
and the write system calls, greatly limit the server perfor-
mance. Although it is difficult to reduce the interrupt over-
head, it is possible to greatly reduce the overhead of write
system calls for the following reasons. The overhead of a
write is mainly caused by data copying. Even with mmap
and our user-level file cache, the write system call still has
to copy data to the kernel M BUF, either from the kernel
file cache in the case of using mmap, or from the user file
cache. The data copying causes significant overhead, es-
pecially in the cases of multiprocessor systems because of
the cache-coherence protocols. Moreover, the copying pro-
cess flushes the CPU data cache, increasing the cache miss
ratios.

We believe that future operating systems should provide
support for directly sending data in the kernel buffer to
the network without copying. For example, the OS can
provide a system service called “read_file_into_mbuf”, which
reads the file data from the disk and caches them in the
kernel in an M BUF chain. Later an application can issue
a “send_file_in_mbuf” system call, which passes the M BUF
chain directly to the TCP/IP stack, without the need of
data copying. This will greatly improve the performance
of Web servers as well as other network applications such
as file servers. It is also possible to unify the above two
calls into a single “send_file” system call, which ships the
specified file from the disk (if the file is not cached) to the
network directly 4. This technique is especially important
for large files, because Figures 8 and 9 show that a Web
server spends most of its time on the write system call
for large file sizes. We expect that the technique will at
least double or even triple the server performance for large
files which are becoming more and more important because
of the increasing use of audio and video files on the Web
pages. It will also significantly reduce the server overhead
for small files.

7 Related Work

McGraph [22] measured the throughputs and response times
of several Web servers on 4 different hardware platforms.
He found that delivering large files is dominated by the
network transfer time, regardless of the server software or
platforms.

4Microsoft already has such an API called TransmitFile in the
Windows NT system.



Almeida et al. [20] and Yates et al. [23] have recently
presented an interesting study on measuring the behavior of
the Apache Web server on a PC running Linux [20]. Using
the Webmonitor that they developed and the kernel pro-
filing facility in Linux, they have measured and analyzed
the server performance on top of Linux. Our research dif-
fers from theirs in the following important aspects. First,
the AIX tracing facility and the UTLD program provide
us with much more detailed system activity statistics than
Linux can. Second, Almeida and Yates et al. used a low-
end platform, which is a 75 MHz Pentium PC with 16 MB
RAM. We study the Web server behavior on a range of
hardware systems, such as a fast 200 MHz PowerP C unipro-
cessor system with 128 MB of RAM, and a very powerful
4-Way SMP system with 2 GB of RAM. As indicated pre-
viously, different memory sizes present quite different per-
formance behaviors of the Apache server. Third, they used
a 10 Mbps Ethernet as the connection between the clients
and the server. Our studies, as well as the SPECweb96
documents, indicated that the 10 Mbps Ethernet is satu-
rated by a few clients, leaving the CPU idle most of time
and causing notable measurement errors. Fourth, instead
of only using WebStone, we also use SPECweb96, which
is a standardized benchmark and generates more realistic
workload. Finally, we have also proposed and implemented
several performance enhancement techniques that improve
the performance of Apache significantly.

In [24] Markatos proposed caching Web documents in-
side the address space of Web servers, which is similar to
our user-level caching approach. He referred to this idea as
“Main Memory Web Caching”. He used server traces from
several Web sites to conduct trace-driven simulations. He
showed that even a small amount of main memory (512
Kbytes) can hold more than 60% of the documents re-
quested. We independently proposed the similar idea of
caching file data and actually ¢mplemented the cache for
the Apache Web server. We also use the mmap function to
speed up accesses to large files. Moreover, in addition to
the file content, we cache file states also, since our profil-
ing data show that Apache frequently inquires the states of
files. Our measurements under the SPECweb96 workload
demonstrated that our cache design and implementation is
successful. Finally, we use the OS virtual memory system
to implement the cache LRU algorithm. This approach
greatly simplifies our design and interacts well with other
parts of the system.

Several new Web servers, such as Zeus, also use the
mmap function for fast file accesses. However, because of
the lack of documentation, we do not know their implemen-
tation details. Hu et al. have also independently proposed
the ideas of using file caching and mmap in [25].

8 Conclusions

In this paper, we present measurement results and perfor-
mance analyses of the behavior of the Apache Web server

10

No | Technique Implement. | Effect-

Complexity | iveness
1 | Mmapping large files 0 2
2 | Caching small files 2 3
3 | Caching file states 1 1
4 | Caching DNS 0 3
5 | Caching string results 0 1
6 | Caching URI process results 2 3
7 | Unifying FS/Network caches 3 3

Table 4: Web Server Enhancement Techniques. For complezity,
0 means trivial and 3 means challenging. For effectiveness, 0
means almost useless, while 3 means very effective.

on a uniprocessor system and a 4-CPU SMP system run-
ning the IBM AIX operating system. Using the built-in
tracing facility and a trace-analysis tool, we obtained de-
tailed information on OS kernel events and overall system
activities while running Apache driven by the SPECweb96
and the WebStone benchmarks. We found that, on aver-
age, Apache spends about 20-25% of the total CPU time
on user code, 35-50% on kernel system calls and 25-40% on
interrupt handling. For systems with small RAM sizes, the
Web server performance is limited by the disk bandwidth.
For systems with reasonably large RAM sizes, the TCP/IP
stack and the network interrupt handler are the major per-
formance bottlenecks. We also believe that using a thread-
based Web server architecture instead of a process-based
approach may not always improve the server performance
noticeably. We notice that Apache shows similar behavior
on both the uniprocessor and the SMP systems.

After quantitatively identifying the performance bot-
tlenecks, we proposed 7 techniques to improve the perfor-
mance of Apache, which are summarized in Table 4. We
have implemented all but the last one techniques listed
in the table. Our experimental results show that these
techniques are quite effective. Together they improve the
throughput of Apache by 61%. These techniques are gen-
eral purpose and can be applied to other Web servers as
well. Finally, our results suggest that operating system
support for directly sending data from the file system cache
to the TCP/IP network (the last technique listed in Table
4) can further improve the Web server performance.

Acknowledgments

Erich Nahum at IBM Watson read an early draft of this
paper and gave many constructive comments and sugges-
tions that greatly improved this paper. We benefited from
discussions with Rich Neves at IBM Watson and Pedro
Trancoso at University of Illinois. Bulent Abali at Watson
helped us on setting up the test network.



References

[1] E. D. Katz, M. Butler, and R. McGrath, “A scalable
web server: The NCSA prototype,” in WWW’94 Con-
ference Proceedings, 1994.

[2] A. Bestavros, R. L. Carter, M. E. Crovella, C. R.
Cunha, A. Heddaya, and S. A. Mirdad, “Application-
level document caching in the internet,” in Proceed-
ings of the Second Intl. Workshop on Services in
Distributed and Networked Environments (SDNE’95),

1995.

[3] A.Luotonen and K. Altis, “World-Wide Web proxies,”
in WWW’9 Conference Proceedings, 1994.
[4] M. Abrams, C. R. Standridge, G. Abdulla,

S. Williams, and E. A. Fox, “Caching proxies: Limita-
tions and potentials,” in Proceedings of the Fourth In-
ternational Conference on the WWW, (Boston, MA),
Dec. 1995.

[5] C. Maltzahn, K. J. Richardson, and D. Grunwald,

“Performance issues of enterprise level web proxies,”
in Proceedings of the 1997 SIGMETRICS Conference
on Measurement and Modeling of Computer Systems,
June 1997.

[6] P. Cao and S. Irani, “Cost-aware WWW proxy caching
algorithms,” in USENIX Symposium on Internet Tech-

nologies and Systems (USITS), Dec. 1997.

J. Gwertzman and M. Seltzer, “The case for geographi-
cal pushcaching,” in Proceedings of the 1995 Workshop
on Hot Operating Systems, 1995.

[8] S. Glassman, “A caching relay for the World Wide

Web,” in WWW’9/ Conference Proceedings, 1994.

[9] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell, “A hierarchical inter-
net object cache,” in Proceedings of the 1996 USENIX

Technical Conference, (San Diego, CA), Jan. 1996.

[10] A. Cockecroft, “Watching your Web server.”
http://www.sun.com/sunworldonline /swol-03-

1996 /swol-03-perf.html, Mar. 1996.

[11] The Apache Team, “Apache HTTP server project.”

http://www.apache.org/.

M. F. Arlitt and C. L. Williamson, “Web server work-
load characetrization: The search for invariants,” in
Proceedings of the 1996 SIGMETRICS Conference
on Measurement and Modeling of Computer Systems,
May 1996.

V. Almeida, A. Bestavros, M. Crovella, and
A. de Oliveira, “Characterizing reference locality in
the WWW " in Proceedings of the 1996 IEEE Confer-
ence on Parallel and Distributed Information Systems,
Dec. 1996.

[12]

[13]

11

[14] M. E. Crovella and A. Bestavros, “Self-similarity
in World Wide Web traffic: Evidence and possible
causes,” in Proceedings of the 1996 SIGMETRICS
Conference on Measurement and Modeling of Com-
puter Systems, (Philadelphia, PA), May 1996.

[15] D. A. Helly, AIX/6000 Internals and Architecture.
New York, NY 10020: McGraw-Hill, 1996.

[16] IBM RS/6000 Division, “Utld 1.2 user’s guide.”

[17] IBM, “AIX versions 3.2 and 4 performance tuning
guide.”

[18] S. J. Leffler, M. K. McKusick, M. J. Karels, and
J. S. Quarterman, The Design and implementation of
the 4.3BSD UNIX operating system. Addison-Wesley,
1989.

[19] Y. Hu, A. Nanda, and Q. Yang, “Measurement, anal-
ysis and performance improvement of the apache web
server,” Tech. Rep. 1097-0001, Department of Elec-
trical & Computer Engineering, University of Rhode

Island, Oct. 1997.

J. M. Almeida, V. Almeida, and D. J. Yates, “Mea-
suring the bahavior of a world-wide web server,” in
Seventh Conference on High Performance Networking
(HPN), (White Plains, NY), pp. 57-72, Apr. 1997.

L. McVoy and C. Staelin, “lmbench: Portable tools
for performance analysis,” in Proceedings of the 1996
USENIX Conference, 1996.

[21]

[22] R. E. McGrath, “Performance of several web server
platforms.”
http://www.ncsa.uiuc.edu/InformationServers/ Per-

formance/Platforms/report.html.

[23] D. J. Yates, V. Almeida, and J. M. Almeida, “On
the interaction between an operating system and web
server,” Tech. Rep. CS 97-012, Computer Science De-

partment, Boston University, July 1997.

E. P. Markatos, “Main memory caching of web doc-
uments,” in Fifth International WWW Conference,
May 1996.

[24]

[25] J. C. Hu, S. Mungee, and D. C. Schmidt, “Techniques
for developing and measuring high performance web
servers over high speed networks,” in Proceedings of

the IEEE Infocom’98, Apr. 1998.

For More Information

An extended version of this paper is available as a Tech. Rep.

via http://www.ele.uri.edu/Research/hpcl/network/apache. html.



