This is a paper to be presented in ISCA96 This paper presents a novel disk storage architecture called DC D, Disk
Caching Disk, for the purpose of optimizing I/O performance. The main idea of the DCD is to use a small log disk,
referred to as cache-disk, as a secondary disk cache to optimize write performance. While the cache-disk and the
normal data disk have the same physical properties, the access speed of the former differs dramatically from the latter
because of different data units and different ways in which data are accessed. Our objective is to exploit this speed
difference by using the log disk as a cache to build a reliable and smooth disk hierarchy. A small RAM buffer is used
to collect small write requests to form a log which is transferred onto the cache-disk whenever the cache-disk is idle.
Because of the temporal locality that exists in office/engineering work-load environments, the DC'D system shows write
performance close to the same size RAM (i.e. solid-state disk) for the cost of a disk. Moreover, the cache-disk can
also be implemented as a logical disk in which case a small portion of the normal data disk is used as the log disk.
Trace-driven simulation experiments are carried out to evaluate the performance of the proposed disk architecture.
Under the office/engineering work-load environment, the DCD shows superb disk performance for writes as compared
to existing disk systems. Performance improvements of up to two orders of magnitude are observed in terms of average
response time for write operations. Furthermore, DCD is very reliable and works at the device or device driver level.
As a result, it can be applied directly to current file systems without the need of changing the operating system. This
paper presents a novel disk storage architecture called DCD, Disk Caching Disk, for the purpose of optimizing I/0
performance. The main idea of the DCD is to use a small log disk, referred to as cache-disk, as a secondary disk cache
to optimize write performance. While the cache-disk and the normal data disk have the same physical properties, the
access speed of the former differs dramatically from the latter because of different data units and different ways in which
data are accessed. Our objective is to exploit this speed difference by using the log disk as a cache to build a reliable
and smooth disk hierarchy. A small RAM buffer is used to collect small write requests to form a log which is transferred
onto the cache-disk whenever the cache-disk is idle. Because of the temporal locality that exists in office/engineering
work-load environments, the DCD system shows write performance close to the same size RAM (i.e. solid-state disk)
for the cost of a disk. Moreover, the cache-disk can also be implemented as a logical disk in which case a small portion
of the normal data disk is used as the log disk. Trace-driven simulation experiments are carried out to evaluate the
performance of the proposed disk architecture. Under the office/engineering work-load environment, the DCD shows
superb disk performance for writes as compared to existing disk systems. Performance improvements of up to two orders
of magnitude are observed in terms of average response time for write operations. Furthermore, DCD is very reliable
and works at the device or device driver level. As a result, it can be applied directly to current file systems without the
need of changing the operating system.
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Abstract

This paper presents a novel disk storage architecture called
DCD, Disk Caching Disk, for the purpose of optimizing I/O
performance. The main idea of the DCD is to use a small log
disk, referred to as cache-disk, as a secondary disk cache to op-
timize write performance. While the cache-disk and the normal
data disk have the same physical properties, the access speed
of the former differs dramatically from the latter because of dif-
ferent data units and different ways in which data are accessed.
Our objective is to exploit this speed difference by using the log
disk as a cache to build a reliable and smooth disk hierarchy.
A small RAM buffer is used to collect small write requests to
form a log which is transferred onto the cache-disk whenever
the cache-disk is idle. Because of the temporal locality that
exists in office/engineering work-load environments, the DCD
system shows write performance close to the same size RAM
(i-e. solid-state disk) for the cost of a disk. Moreover, the cache-
disk can also be implemented as a logical disk in which case a
small portion of the normal data disk is used as the log disk.
Trace-driven simulation experiments are carried out to evaluate
the performance of the proposed disk architecture. Under the
office/engineering work-load environment, the DCD shows su-
perb disk performance for writes as compared to existing disk
systems. Performance improvements of up to two orders of mag-
nitude are observed in terms of average response time for write
operations. Furthermore, DCD is very reliable and works at the
device or device driver level. As a result, it can be applied di-
rectly to current file systems without the need of changing the
operating system.

1 Introduction

Current disk systems generally use caches to speed up disk ac-
cesses. Such disk caches reduce read traffic more effectively than
write traffic as shown in [1, 2, 3, 4]. As the RAM size increases
rapidly and more read requests are absorbed, the proportion
of write traffic seen by disk systems will dominate disk traffic
and could potentially become a system bottleneck. In addition,
small write performance dominates the performance of many
current file systems such as on-line transaction processing [5]

and office/engineering environments [3]. Therefore, write per-
formance is essential to the overall I/O performance.

The purpose of this paper is to present a novel disk subsys-
tem architecture that improves the average response time for
writes by one to two orders of magnitude in an office and en-
gineering workload environment without changing the existing
operating system.

1.1 Background

There has been extensive research reported in the literature in
improving disk system performance. Previous studies on disk
systems can generally be classified into two categories: improv-
ing the disk subsystem architecture, and improving the file sys-
tem that controls and manages disks.

Because of the mechanical nature of magnetic disks, the per-
formance of disks has increased only gradually in the past. One
of the most important architectural advances in disks is the
RAID (Redundant Array of Inexpensive Disks) architecture pi-
oneered by a group of researchers in UC Berkeley [2]. The main
idea of the RAID is to use multiple disks in parallel to increase
the total I/O bandwidth which scales with the number of disks.
Multiple disks in a RAID can service a single logical I/O request
or support multiple independent I/Os in parallel. Since the size
and the cost of disks drop rapidly, RAID is a cost effective ap-
proach to high I/O performance. One critical limitation of the
RAID architecture is that their throughput is penalized by a
factor of four over nonredundant arrays for small writes which
are substantial and are becoming dominant portion of typical
I/O workloads. The penalty results from parity calculation for
new data, which involves readings of old data and parity, and
writings of new data and parity. Stodolsky et al. [5] proposed
a very interesting solution to the small-write problem by means
of parity logging. They have shown that with minimum over-
head, parity logging eliminates performance penalty caused by
the RAID architectures for small writes.

The RAID architectures are primarily aimed for high through-
put by means of parallelism rather than reducing access la-
tency. Especially for low average throughput workload such as
office/engineering environment, performance enhancement due
to RAID is very limited [6, 7]. Caching is the main mechanism
for reducing response times. Since all write operations need
eventually be reflected on a disk, volatile cache may pose a re-
liability problem. Nonvolatile RAM (NVRAM) can be used to
improve disk performance, particularly write performance [1, 8].
However, because of the high cost of nonvolatile RAMs, the
write buffer size is usually very small compared to disk capac-
ity. Such a small buffer gets filled up very quickly and can
hardly catch the locality of large I/O data. Increasing the size



of nonvolatile cache is cost-prohibitive making it infeasible for
large I/O systems.

Since attempts in improving the disk subsystem architecture
have so far met with limited success for write performance, ex-
tensive research has been reported in improving the file systems.
The most important work in file systems is the Log-structured
File System (LFS) [4, 3, 9]. The central idea of an LFS is to im-
prove write performance by buffering a sequence of file changes
in a cache and then writing all the modifications to the disk
sequentially in one disk operation. As a result, many small and
random writes of the traditional file system are converted into
a large sequential transfer in the log structured file system. In
this way, the random seek times and rotational latencies asso-
ciated with small write operations are eliminated thereby im-
proving the disk performance significantly. While LFS has a
great potential for improving write performance of traditional
file systems, it has not been commercially successful since it
was introduced more than eight years ago. Applications of LFS
are mainly limited to academic research such as Sprite LFS [3],
BSD-LFS [9] and Sawmill [10]. This is because LFS requires
significant changes in the operating system, needs a high cost
cleaning algorithm, and is much more sensitive to disk capacity
utilization than traditional file systems [3, 4]. The performance
of LFS degrades rapidly when the disk becomes full and gets
worse than the current file system when the disk utilization ap-
proaches 80%. In addition, LFS needs to buffer a large amount
of data for a relatively long period of time in order to write into
disk later as a log, which may cause reliability problems.

There are several other approaches such as log-structured
array [11], Loge [12], and Logical Disk approach [13]. The Log-
ical Disk approach improves the I/O performance by working
at the interface between the file system and the disk subsys-
tem. It separates file management from disk management by
using logical block numbers and block lists. Logical Disk hides
the details of disk block organization from the file system, and
can be configured to implement LFS with only minor changes
in operating system code. However, the Logical Disk approach
requires a large amount of memory, about 1.5 MB for each GB
of disk, to keep block mapping tables. Moreover, the mapping
information is stored in main memory giving rise to reliability
problems.

1.2 Owur New Approach

From the above discussion, it is clear that caching is the main
mechanism for reducing access latency. But caching has not
been as effective as expected so far because of large data sizes
and small cache sizes. For write accesses, caching is even more
expensive due to the high cost of nonvolatile RAMs. It is also
clear that a log structured file system can reduce access time sig-
nificantly. It is shown in [5] that the data transfer rate in unit of
tracks is almost eight times faster than in unit of blocks. Even
faster data transfer rate can be achieved if the transfer unit is
larger. Based on this observation, we propose a new disk orga-
nization referred to as disk caching disk or DC D for short. The
fundamental idea behind the DCD is to use a log disk, called
cache-disk, as an extension of RAM cache to cache file changes
and to destage the data to the data disk afterward when the
system is idle. Small and random writes are first buffered in a
small RAM buffer. Whenever the cache-disk is idle, all data in
the RAM buffer are written, in one data transfer, into the cache-
disk which is located between the RAM buffer and the data disk.
As a result, the RAM buffer is quickly made available for addi-
tional requests so that the two level cache appears to the host as
a large RAM. When the data disk is idle, a destage operation is

performed, in which the data is transferred from the cache-disk
to the normal data disk. Since the cache is a disk with a capac-
ity much larger than RAM, it can capture the temporal locality
of I/0 file transfers; it is also highly reliable. In addition, the
log disk is only a cache which is transparent to the file system.
There is no need to change the underlying operating system to
apply the new disk architecture. Our trace-driven simulation
experiments show that DCD improves write performance over
traditional disk systems by two orders of magnitude for a small
amount of additional cost. Furthermore, less cost is possible if
the idea is implemented on the existing data disk with a fraction
of the disk space used as the logical cache-disk.

It is interesting to note a surprising similarity between the
development of memory systems and the recent advances in disk
systems. A few decades ago, computer architects proposed a
concept of memory interleaving to improve memory through-
put. Later, cache memories were introduced to speedup mem-
ory accesses for which interleaved memory systems were not able
to do. We view the RAID systems as being similar to the in-
terleaved memories while our DC'D system is similar to CPU
caches. Existing disk caches that use either part of main mem-
ory or dedicated RAM, however, are several orders of magnitude
smaller than disks because of the significant cost difference be-
tween RAMs and disks. Such “caches” can hardly capture the
locality of I/O transfers and can not reduce disk traffic as much
as a CPU cache can for main memory traffic. Therefore, tra-
ditional disk “caches” are not as successful as caches for main
memories, particularly for writes. Our new DCD architecture
marks a new start of caching disk using a disk that has a similar
cost range as the data disk making it possible to have the disk
cache large enough to catch the data locality in I/O transfers.
However, it is not easy to make one disk physically much faster
than the other so that the former can become a cache as done
in main memory systems. The trick is to exploit the tempo-
ral locality of I/O transfers and to make use of the idea of log
structured file systems to minimize the seek time and rotational
latency which are the major part of disk access times.

1.3 Paper Organization

In the next section, we will describe in detail how the DCD
architecture is organized and how it works. Section 3 presents
performance evaluation methodology and workload character-
istics. Numerical results obtained from our trace-driven sim-
ulation are presented in Section 4. We will also evaluate and
compare the performance of our DCD with traditional disk ar-
chitectures in this section. Previous research as related to our
work is discussed in Section 5. We conclude the paper in Section
6.

2 The DCD Architecture

The structure of the DCD is shown in Figure 1. The disk
hierarchy consists of 3 levels. At the top of the hierarchy is a
RAM buffer with the size ranging from hundreds of kilobytes
to 1 megabytes. The second level cache is a disk drive with
capacity in the range of a few MB to tens of MB, called cache-
disk. The cache-disk is a small and sequential access disk or log
disk. Note that the cache-disk can be a separate physical disk
drive to achieve high performance as shown in Figure 1, or one
logical disk partition physically residing on one disk drive or on
a group of disk drives for cost effectiveness as shown in Figure
2. At the bottom level, the disk is the normal data disk drive
in which files reside. The data organization on this disk is a
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Figure 2: A DCD consisting of 2 logical disks

traditional, unmodified, read-optimized file system such as the
UNIX Fast File System or Extended File System.

2.1 Writing

Upon a disk write, the controller first checks the size of the re-
quest. If the request is a large write, say over 64 KB or more, it
is sent directly to the data disk. Otherwise, the controller sends
the request to the RAM buffer that buffers small writes from
the host and to form a log of data to be written into the cache-
disk. As soon as the data are transferred to the RAM buffer,
the controller sends an acknowledgement of “write complete” to
the host, referred to as immediate report. The case for report
after disk transfer is complete will be discussed shortly. The
data copy in the RAM is then sent to the cache-disk to ensure
that a reliable copy resides on the cache-disk if the cache-disk
is not busy with writing a previous log or reading. Since the
disk head of the log disk is usually positioned on an empty
track that is available to write a log, called Current Log Posi-
tion (CLP), seeking is seldom necessary except for the situation
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Figure 3: Timing relationship between log collecting and writing

where the log transfer occurs when the log disk is being read
or destaged. The write can start immediately after the rotation
latency. While the writing is in progress on the cache-disk, the
controller continues to collect incoming write requests, putting
them into the RAM buffer, combining them to form a large log,
and committing them as finished immediately after the data
transfer is finished. When the cache-disk finishes writing, the
new large log is written immediately into the cache-disk again,
and another round of collecting small write requests to a large
log starts.

One important feature here is that data do not wait in the
buffer until the buffer is full. Rather, they are written into the
cache-disk whenever the cache-disk is available. In other words,
DCD never lets the cache-disk become idle as long as there are
write requests coming or in the buffer queue. This policy has two
important advantages. First, data are guaranteed to be written
into the cache-disk when the current disk access finishes. Thus,
data are stored in a safe storage within tens of milliseconds on
average resulting in much better reliability than other methods
that keep data in the RAM buffer for a long time. Even in the
worst case, the maximum time that data must stay in the RAM
is the time needed for writing one full log, which takes less than
a few hundreds milliseconds depending on the RAM size and the
speed of the disk. This situation occurs when a write request
arrives just when the cache-disk starts writing a log. Another
advantage is that, since data are always quickly moved from the
RAM buffer to the cache-disk, the RAM buffer can have more
available room to buffer a large burst of requests which happens
very frequently in office/engineering workload.

Although seek times are eliminated for most write opera-
tions on the cache-disk, at the beginning of each log write there
is on average a half-revolution rotation latency. Such rotation
latency will not cause severe performance problem because of
the following reasons. In case of low write traffic, the log to be
written on the cache-disk is usually small making the rotation
time a relatively large proportion. However, such large propor-
tion does not pose any problem because the disk is in idle state
most of time due to the low write traffic. In case of high write
traffic, the controller is able to collect a large amount of data
to form a large log. As a result, the rotation latency becomes
a small percentage of the log to be written and is negligible.
Therefore, the DCD can dynamically adapt to the rapid change
of write traffic and perform very smoothly. Figure 3 shows the
timing relationship between log collecting and log writing. From
this figure, we can see that the total throughput of the DCD will
not be affected by the above delay. At low load, the cache-disk
has enough time to write logs as shown in the left hand part
of the figure. At high load, on the other hand, the cache-disk
continuously writes logs that fill the RAM buffer as shown on
the right hand part of Figure 3.
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2.2 Reading

Read operations for the DCD are straightforward. When a read
access arrives, the controller first searches the RAM buffer and
the cache-disk. If the data is still in the RAM buffer then the
data is immediately ready. If the data is in the cache-disk,
then a seek operation to the data track is needed. If the data
has already been destaged to the data disk, the read request
is sent to the data disk. We found in our simulation experi-
ments that more than 99% of read requests are sent to the data
disk. Reading from buffer or cache-disk seldom occurs. This is
because most file systems use a large read cache so that most
read requests for the newly written data are captured by the
cache while the least recently used data are most likely to have
a chance to be destaged from the cache-disk to the data disk.
The read performance of the DCD is therefore similar to and
some times better than that of traditional disk because of re-
duced traffic at the data disk as evidenced later in this paper.

2.3 Destaging

The basic idea of the DCD is to use the combination of the RAM
buffer and the cache-disk as a cache to capture both spatial
locality and temporary locality. In other words, the RAM buffer
and the cache-disk are used to quickly absorb a large amount
of write quests when the system is busy. Data are moved from
the cache-disk to the data disk when the system is idle or less
busy. Since the destage process competes with disk accesses, a
good algorithm to perform data destaging is important to the
overall system performance.

Since a disk is used as the disk cache, we have a sufficiently
large and safe space to temporarily hold newly written data. In
addition, we observed from traces under the office/engineering
environment that write requests show bursty patterns as will be
discussed shortly in Section 3. There is usually a long period
of idle time between two subsequent bursts of requests. We
therefore perform the destage only at idle time so that it will
not interfere with incoming disk accesses. There are several
techniques to detect idle time in a disk system [14]. In our
experiment, we use a simple time interval detector. If there is
no incoming disk access for a certain period of time (50 ms in
our simulation), we consider the disk as idle and start destaging.

A Last-Write-First-Destage (LWFD) destage algorithm was
developed for the DCD. When the idle detector finds the system
idle, the LWFD algorithm is invoked by reading back a fixed
length of data called a destage segment from the cache-disk to
a destage buffer. The length of the destage segment is normally
several tracks starting from the CLP (current log position). As
shown in Figure 4, among data logs there may be holes that
are caused by data overwriting. The LWFD will eliminate these
holes and pack the data when destaging is performed. The data
are re-ordered in the destage buffer and written back to the

data disk to their corresponding physical locations. If a read or
a write request comes during destaging, the destaging process
is suspended until the next idle time is found. After destaging,
destage segment on the cache-disk will be marked as blank; the
CLP is moved back to a new CLP point; and the next round of
destaging starts until all data on the cache-disk are transferred
to the data disk and the cache-disk becomes empty.

The LWFD algorithm has two distinct advantages. First
of all, after reading the destage segment and writing them to
the data disk, the destage segment in the cache-disk is marked
as blank and the CLP can be moved back. The disk head is
always physically close to the blank track either right on it or
several tracks away. When a new write request comes, the disk
head can start writing very quickly. Secondly, in many cases
especially for small or medium write bursts, the latest writes are
still in the RAM buffer. The LWFD picks up current destage
segment from the buffer rather than from the cache-disk when
it starts destaging. The corresponding segment in the cache-
disk is marked as blank. In this way, read frequency from the
cache-disk is reduced for destaging.

2.4 DCD with Report After Complete

In the previous discussion, we assumed that the DCD sends
an acknowledgement of a write request as soon as the data are
transferred into the RAM buffer. This scheme shows excellent
performance as shown in our simulation experiment. With only
512 KB to 1 MB RAM buffer and tens of MB cache-disk, the
DCD can achieve performance close to that of a solid-state disk.
The reliability of the DCD is also fairly good because data do not
stay in the RAM buffer for a long time as discussed previously.
If high reliability is essential, the RAM can be implemented
using a nonvolatile memory for some additional cost, or using
convention RAM but committing a write request as complete
only after it has been actually written into a disk similar to the
traditional disk. We call this a report after complete scheme.
The performance of this configuration would be lower than that
of immediate reporting because a request is reported as complete
only when all requests in its log are written into a disk.

2.5 Crash Recovery

Crash recovery for DCD is relatively simple. Since data are al-
ready saved as a reliable copy on the cache-disk, only the map-
ping information between the PBA (Physical Block Address) in
the data disk and the LBA (Log Block Address) in the cache-
disk needs to be reconstructed. One possible way to do this is to
keep an additional summary sector for each log write. The addi-
tional summary sector which contains the information about the
changes of the mapping table is written as the first block of the
current log, similar to the technique used in the Log-structured
File System. During a crash recovery period, the whole cache-
disk is scanned and the mapping table is reconstructed from the
summary sectors. The capacity of the cache-disk is very small
compared to that of data disk, so the recovery can be done very
quickly. Another possible way is to keep a compact copy of
the mapping table in the NVRAM making crash recovery much
easier. The size of NVRAM needed for this information is from
tens of kilobyte to hundreds of kilobyte, depending on the size
of the cache-disk.



3 Performance Evaluation Method-
ology

3.1 Workload Characteristics

The performance of an I/O system is highly dependent on the
workload environment. Therefore, correctly choosing the work-
load is essential to performance evaluation. There are basically
three types of I/O workloads that are common in practice as
outlined below.

The general office/engineering environment is the most typi-
cal workload environment, and is considered by some researchers
as the most difficult situation to handle [3]. In this environment,
disk traffic is dominated by small random file read and write re-
quests [3]. Two important characteristics of this environment
are bursty requests and a low average request rate. When there
is a request, it is usually accompanied by a cluster of requests
in a short time frame. We define this bursty request pattern
as the temporal locality of disk requests. It is common to find
more than 5 write requests waiting in a queue and the max-
imum queue length goes up to 100 and even 1000 [15]. One
possible reason to this bursty pattern is the periodical flushing
of dirty data from the cache by the UNIX operating system.
Another possible reason is that, in a UNIX system, each file
creation/deletion operation causes 5 disk accesses and each file
read takes at least 2 disk accesses. Moreover, users tend to read
or write a group of files, such as copying, moving, deleting or
compiling a group of files. Moving and compiling are especially
file system intensive operations because they involve reading,
creating, writing and deleting files.

In addition, there is usually a relatively long period of idle
time between two consecutive request bursts. Ruemmler and
Wilkes [15] found that in three UNIX file systems (cello for
timesharing, snake for file server and hplajw for workstation),
the average disk access rate is as low as 0.076/second (hplajw)
to the highest of 5.6/second (cello). That is, over 70% of time
the disk stays in an idle state. Such a low average request rate in
the office/engineering environment is very common as indicated
in [3]. For file system /swap2 which has an unusually high traffic
than others, the maximum disk write workload is about 13.3 MB
per hour. With such high traffic, we have, on average, a write
access rate of only 3.69 or 0.5 times per second if the average
write request size is 1K bytes or 8K bytes, respectively. Taking
into account the bursty requests phenomenon, we expect a very
long idle period between two request bursts.

Another type of important workloads is transaction process-
ing which can be found in many database applications such as
airline ticket reservation systems and banking systems. The
characteristics of this workload are quite different from the of-
fice/engineering environment. The average access rate is medium
to high and the distribution of disk accesses is fairly uniform
over time unlike office/engineering environment. Throughput
is the major concern in this environment. The performance of
such systems, however, is largely determined by the small write
performance [5].

The I/O access pattern in scientific computing or super-
computing environment is dominated by sequential readings or
writings of large files [2, 16, 3]. The I/O performance of this
kind of workload is mainly determined by the raw performance
of the I/O hardware such as the disk speed and the I/O channel
bandwidth.

Clearly, different workloads have different disk access pat-
terns. There has been no one optimal I/O system for all dif-
ferent workloads. For example, the Log File System performs
much better than the Fast File System for small file writes in

Formatted Capacity: 335 MB
Track Buffer: none
Cylinders: 1449
Data Head: 8

Data Sector per Track: 113
Sector Size: 256 B
Rotation Speed: 4002 rpm
Controller Overhead (read) 1.1 ms
Controller Overhead (write) 5.1 ms
Average 8 KB access: 33.6 ms

Table 1: HP C2200A Disk Drive Parameters

the office/engineering environment. However, both the Fast File
System and the Extended File System are still good choices for
transaction processings. One may suggest to choose different file
systems for different work loads, but for a system with mixed
workloads, keeping multiple file systems in one I/O system is
prohibitively expensive. DCD is the winner here because it is
implemented at the device driver or device level so that only one
file system is needed to satisfy diverse workloads. A DCD can
also change its configuration on-the-fly to adapt to a changing
workload. One command can make the DCD redirect all fol-
lowing requests to bypass the cache-disk and go directly to the
data disk, which is equivalent to changing the DCD back to a
traditional disk.

Due to the time limit, we concentrate on the typical work-
load environment in our performance evaluation, the office and
engineering workload environment. We use the real-world work-
load to carry out the simulation. The trace files are obtained
from Hewlett-Packard. The trace files contain all disk I/O re-
quests made by 3 different HP-UX systems during a four-month
period [15]. The three systems represent 3 typical configurations
of the office/engineering environment. Among them, cello is a
timesharing system used by a small group of researchers (about
20) at HP laboratories to do simulation, compilation, editing
and mail. The snake is a file server of nine client workstations
with 200 users at the University of California, Berkeley. And
hplajw is a personal workstation.

For each system, we randomly selected 3 days of the trace
data and concatenate the 3 files together into one. We selected
the following three days: 92-04-18, 92-05-19 and 92-06-17 for
hplajw, 92-04-18, 92-04-24 and 92-04-27 for cello, and 92-04-25,
92-05-06, and 92-05-19 for snake. Because each system contains
several disk drives, we used the most-active disk trace from each
system and use it as our simulation data. The exception is cello,
because the most active disk in it contains a news feed that
is updated continuously throughout the day resulting in high
amount of traffic similar to the transaction processing workload.
We excluded the disk containing the news partition from our
simulation.

3.2 Trace-Driven Simulator

A trace-driven simulation program was developed for our perfor-
mance evaluation purpose. The program was written in C++
and run on Sun Sparc workstations. The core of the simula-
tion program is a disk simulation engine based on the model
presented in [17]. The disk parameters that we use in this sim-
ulation are chosen based on the HP C2200A [17], as shown in
Table 1.

The detailed disk features such as seek time interpolation,



head positioning, head switching time and rotation position are
included in the simulation model. It is also assumed that the
data transfer rate between the host and the DCD disk controller
is 10 MB/s. For the DCD consisting of 2 physical disks, the
program simulates two physical disk drives at the same time,
one for the cache-disk and the other for the data disk. The same
disk parameters are used for both the cache-disk and the data
disk except for the capacity difference. For the DCD consisting
of only one physical disk, two logic disk drives are simulated
by using two disk partitions on a single physical drive. Each
of the partitions corresponds to a partition of one physical HP
C2200A disk.

One difficult task in designing the DCD disk system is to
keep the mapping information of the Physical Block Address
(PBA) in the data disk and the Log Block Address (LBA) in
the cache-disk so that the information retrieval is efficient. In
our simulation program, several data structures were created
for this including a PBA hash chain, an LBA table and a buffer
list for the LRU/Free buffer management. Some structures are
borrowed from the buffer management part of UNIX [18].

4 Numerical Results

In this section, we evaluate the performance of the DC D system
described in the previous section by means of trace-driven simu-
lation. The most important I/O performance parameter for the
office/engineering environment is the response time. Users in
this computing environment concern more about the response
time than about the I/O throughput. A system here must pro-
vide a fairly short response time to its users. Two response
times are used in our performance evaluation. One is the re-
sponse time faced by each individual I/O request and the other
is the average response time which is the sum of all individual
response times divided by the total number of access requests
in a trace.

We have run the simulation program under various configu-
rations using the trace data described above. The RAM buffer
size is assumed to be 512 KB and cache-disk is assumed to be
20 MB in our simulation. We have simulated both the physical
cache-disk DC'D and the logical cache-disk DCD systems. For
the logical cache-disk DCD system, we assign the first 80,000
sectors (20 MB) in a disk drive as the logical cache-disk and
the remaining partition as the logical data disk to run the sim-
ulation. All results are obtained with destage process running
unless otherwise specified.

4.1 Write Performance with Immediate Re-
port

For the purpose of comparison, we simulated the write perfor-
mance of both a traditional single-disk system and the DCD
system. Response times of all individual I/O requests in a trace
file are plotted in Figure 5 through Figure 7 for the traditional
disk system (on the left hand side of each figure) and the DCD
system. Each black dot in a figure represents the response time
of a write request in the specified trace. Figures 5 and 6 show re-
sponse times of the hplajw traces and snake traces, respectively.
It can be seen from Figures 5 and 6 that large response times
that are present in the plots for the traditional disk completely
disappear from the response time plots of the DCD system.
The response times for the DC'D system are too small to show
in these figures with such large scales. Note that the y axis in
these figures goes as high as 3000ms. We plotted the response
times of the DC D for these two traces again with smaller y scale

Traces | traditional disk | logical DCD
avg max avg | max )
hplajw | 134 2848 | 0.65 0.8
cello 205.3 | 4686 5.9 | 808.65
snake 127.6 7899 | 0.75 | 109.4

Table 2: Write response time comparison between the tradi-
tional disk and the DCD with a logical cache-disk with imme-
diate report (ms).

as shown in Figure 8. It can be seen from this figure that most
requests have very small response times, mainly data transfer
time, except for one peak in Figure 8(b) that approaches 110
ms. For hplajw traces (Figure 8(a)), write response times are
all between 0.1 and 0.8 ms because the size of most requests is
8 KB which is also the maximum size in the trace. It is inter-
esting to note in this figure that there is virtually no queuing
at all. Similar performance improvements are observed for the
cello trace as shown in Figure 7.

As shown in Figures 5, 6, and 7, The individual write re-
sponse times of the DCD are significantly lower than that of
the traditional disks The few peaks in the curves for the DCD
system correspond to the situations where the RAM buffer be-
comes full before the cache-disk finishes the writing of a current
log so that incoming requests must wait in the buffer queue. As
expected, most write requests in the DC'D system do not need
to wait in the queue. Response times are approximately identi-
cal to data transfer times or the data copy times by the CPU if
the DCD is implemented at the device driver level.

Table 2 lists average and maximum response times for the
three traces. As shown in the table, the average write response
time of the traditional disk system is as high as 205 ms. The
maximum write response time shown here is 7899 ms implying a
very long waiting queue at the controller. However, the average
write response times of the DC D system for hplajw and snake
are less than 1 ms which is more than two orders of magnitude
improvement over the traditional disk. The relatively long re-
sponse time for cello, 5.9 ms, representing about one order of
magnitude improvement over the traditional disk, is mainly due
to several large peaks in Figure 7 because of the limited RAM
buffer size. Other than a few peaks, the performance improve-
ments are similar to those of hplajw and snake.

4.2 DCD with Report After Complete

This scheme has good reliability because a write is guaranteed
to be stored in a disk before the CPU is acknowledged. If the
RAM buffer were a volatile memory, this scheme would be much
more reliable than the immediate report scheme. But the per-
formance of the former is lower than the latter because a request
is acknowledged as complete when all requests in its group are
written into a disk. Nevertheless, the DC D still shows superb
performance as shown in the right most curves of Figures 5, 6,
and 7 that show the performance of the DC'D system with re-
port after complete scheme. In these figures, a separate physical
disk is used as the cache-disk. The number of peaks and the
height of each peak of the DCD system are significantly lower
than that of the traditional disk system as shown in the figures.

Table 3 shows the average and the maximum write response
times for the two architectures. We observed that the DCD
system show about 2 to 4 times better performance than that
of the traditional disk. Note that in our simulation the old HP



Traces traditional physical DCD | logical DCD Traces traditional physical DCD | logical DCD

avg | max | avg max avg max avg | max | avg max avg max
hplajw | 134 | 2848 | 40.3 211 53.1 | 266.4 hplajw | 53.5 | 2873 | 21.1 156.5 22.1 | 156.5
cello 205 | 4686 | 56.5 849 74 | 5665.9 cello 159.3 | 3890 | 149.6 | 3890 | 150.4 | 3890
snake 127.6 | 7898 | 29.4 491 59.4 | 4613.4 snake 189 | 7276 | 103 769 106 810

Table 3: Write response time comparison between traditional
disk and the DCD with report after complete (ms).

Traces | Physcal DCD | Logical DCD
On Off On Off
hplajw | 28.5 28.9 39.6 28.5
cello 7 43 112 44
snake 32 32.2 66.7 | 57.5

Table 4: Effects of destaging algorithm in terms of average write
response time (ms) ”On” means that the destage is turned on
while ” Off” means that the destage is turned off.

2200A disk model is used that has slow spindle speed and low
recording density. We expect that the speedup factor will in-
crease when the disk spindle speed and linear density improves.
Our prediction comes from the fact that the performance im-
provement of our DC D mainly results from the reduction of the
seek time and rotation latency, while the disk write time stays
the same as traditional disk. Therefore, the DCD will show
even better performance if the proportion of seek time in each
disk access increases. It is fairly clear that the average seek
time is not likely to reduce very much in the near future, but
the rotation speed is expected to increase to 7200 rpm. Some
disk drives have already used the speed of 7200 rpm. The lin-
ear density are expected to double in the next few years. As
a result, write time will be reduced to one-third of its present
value. Therefore, we expect the speedup factor of the DCD to
increase in the near future.

4.3 Destage Cost

The performance results presented in the previous subsections
were obtained with the destage algorithm running. In order to
study the performance effects of the destage process, we delib-
erately disable the destage process and run the simulation again
for shorter traces until the cache-disk is full. The results were
shown in Table 4. We only measured the response time for re-
port after complete scheme because the performance of the DC'D
with the immediate report is not very sensitive to the destage
process. Destaging has almost no effects on the performance
of the physical DCD for hplajw and snake indicating that the
LWFD destage algorithm performs very well. But it does af-
fect the performance of the logical DCD system because the
data disk is utilized more. Performance degradation caused by
destaging ranges from 16% for snake to 39% for hplajw. It also
has dramatic effect on cello (up to 254%) because of the high
request rate and relatively uniform access pattern in cello. It
is not easy to find a long idle time on the data disk to perform
destaging by our simple idle detector. We expect that more
performance gains in the DCD system can be obtained by us-
ing a good idle detector, and by applying a disk-arm-scheduling
algorithm [19, 20], and other optimal schedule algorithms such
as linear threshold scheduling [21], etc. to the destage process.

Table 5: Read performance in response times (ms)

4.4 Logical Disk Cache vs Physical Disk
Cache

The DCD system can be implemented either using two physical
disk drives, or using two logical drives. The DCD with two
physical drives has good performance but the cost is relatively
high because it requires an additional disk drive though with
small capacity. While the DCD configured using two logical
disk drives may not perform as well as the DC' D with two phys-
ical disks, its cost is just a small disk space (5 - 50 MB) which is
a very small fraction of the total capacity of today’s disk drives
that are usually more than 1 GB each. In order to compare
the performance difference between the physical cache-disk and
the logical cache-disk, we have listed results for both cases in
Tables 3 to 5. As expected, the performance of the DCD with
the logical cache-disk performs very well. For immediate report,
the average write response times are two orders of magnitude
faster than those of traditional disk as shown in Table 2. The
performance of the DCD with Report After Complete is lower
than the DCD with two physical drives as shown in Table 3.
However, the performance of the logical cache-disk DCD is sev-
eral times better than that of a traditional disk as shown in the
tables. We expect that the speed up factor will get larger with
the increase of the disk spindle speed and the linear density.

4.5 Read Performance

The read performance of the DCD and the traditional disk is
compared in Table 5. The results are better than expected.
For hplajw, the average read performance of the DCD is about
2 times better than the traditional disk while the maximum
response time of the DCD is 10 times smaller than that of tra-
ditional disk. For snake, the DC'D shows about 50% better
average response time and about 9 times better maximum re-
sponse time than the traditional disk. It is important to note
that the above improvements are true for both 2 physical disk
DCD and 2 logical disk DCD systems. The performance im-
provements for read requests can mainly be attributed to the
reduction of write traffic at the data disk. The data disk has
more available disk time for processing read requests. For cello,
the DCD shows a similar read performance to the traditional
disk due to high read traffic and the limitation of buffer size as
indicated before.

4.6 Cost Considerations

While the DCD architecture improves I/O performance, it also
introduces an additional cost to the traditional disk system. One
immediate question is whether such additional cost is justified.
Based on the current technology for memories [22], the cost of
1 MB storage is about $0.25 for disks and $120 for nonvolatile
RAMs. Additional 20 to 50 MB of disk space and 512 KB of
NVRAM will bring up the disk system cost by a small fraction.
If a physical cache-disk is to be implemented for high traffic



disk systems such as file servers, the cost will be high because
the smallest hard drive that is available in the market has a
few hundreds MB capacity and the cost is around a couple of
hundreds dollars. However, this cost is a small fraction of the
total cost of a file server. If the logical cache-disk is used in
the DCD, the additional cost boils down to the cost of the
RAM buffer which can be either DRAM or NVRAM depending
on the reliability requirement. With a 512 KB NVRAM being
used as the buffer, we have calculated the response reduction
per additional dollar spent. For instance, the write performance
for traces hplajw and snake triples for each additional dollar
spent. Therefore, we argue that the DCD is a very cost-effective
approach.

5 Related Work

Baker et al. presented a study on using a NVRAM as a disk
cache in distributed client/server systems [1]. They found that
one-megabyte of NVRAM at each client can reduce the write
traffic to the server by 40-50%, and one-half megabyte NVRAM
write buffer for each file system on the server side reduces disk
accesses by 20% to 90%. Ruemmler and Wilkes reported in [15]
their simulation results of applying an NVRAM as a write cache
to a disk system. They found that placing an NVRAM with the
size of 128 to 4096 KB as a write cache can reduce the I/O
response time by a factor of 2 to 3, since overwrites account for
a major portion of all writes (256% for hplajw, 47% for snake
and about 35% for cello)

Another advantage of using a large RAM to buffer disk write
requests is that the requests can be reordered in the buffer. Such
reordering makes it possible to schedule disk writes according to
seek distance or access time so that the average head positioning
time can be reduced substantially. Extensive studies have been
conducted and many good algorithms such as SCAN, Shortest
Access Time First (SATF) and Weighted Shortest Time First
have been proposed [19, 20]. In the DCD system, the data are
first written into the cache-disk in a log format, which eliminates
most seeks and rotation latencies. The disk arm scheduling is
not needed. However it can be applied to the destage algorithm
to reduce the cost of the destaging. This is especially important
for relatively high and uniform time-sharing workloads such as
cello, and transaction processing workloads.

Several techniques have been reported in the literature in
minimizing small write costs in RAID systems. Parity log-
ging, an elegant mechanism proposed by Stodolsky et al. [5],
utilizes the high transfer rate of large sequential data to min-
imize the small write penalty in RAID systems. They have
shown that with minimum overhead, the parity logging elimi-
nates performance penalty caused by the RAID architectures for
small writes. Solworth and Orji [23] proposed a very interesting
approach called write-twice to reduce the small write penalty
of mirror disks. In their method several tracks in every disk
cylinder are reserved. When a write request comes, it is imme-
diately written to a closest empty location, and the controller
acknowledges the write as complete. Later the data are written
again to its fixed location. Up to 80% improvement in small-
write performance was reported. It can also be used to reduce
write response time in normal disks. The write-twice method is
normally implemented in the disk controller level since it needs
detailed timing information of disk drive. It also requires sub-
stantial amount of the disk storage to reserve tracks in each
cylinder. Except for a few high-end products, most disk drives
now use 2 or 3 platters per drive, implying only 4 to 6 tracks
per cylinder. Therefore, the write-twice approach is mainly for

those applications that the cost is not a primary concern.

The Episode file system which is a part of the DECorum
Distributed Computing Environment, uses log to improve crash
recovery of meta-data [10, 24]. The changes of meta-data in the
write buffer are collected into logs and are periodically (typically
every 30 seconds) written into disk to ensure a reliable copy
of the changes. Cache logging eliminates many small writes
caused by meta-data updates. The cache logging works in the
file system level while the DC D works at the device level. The
cache logging works horizontally where the content of the log
disk is basically a mirror image of the large RAM buffer, whereas
the log disk and RAM buffer in the DC D work vertically in the
sense that the log disk acts as an extension of a small NVRAM
buffer to achieve high performance with limited cost.

6 Conclusions

We have proposed a new disk architecture called Disk Caching
Disk, or DCD for short, for the purpose of improving write
performance in the most-widely-used office/engineering environ-
ment. The basic idea of the new architecture is to exploit the
temporal locality of disk accesses and the dramatic difference
in data transfer rate between the log disk system and the tra-
ditional disk system. The DCD is a hierarchical architecture
consisting of three levels: a RAM buffer, a cache-disk which
stores data in a log format, and a data disk that stores data
in the same way as traditional disks. The cache-disk can be
implemented either using a separate physical drive or a logical
disk that is a partition of the data disk depending on perfor-
mance/cost considerations. The disk cache including the RAM
and the cache-disk is transparent to the CPU so that there is
no need to change the operating system to incorporate this new
disk architecture. Simulation experiments have been carried out
by using traces representing 3 typical office/engineering work-
load environments. Numerical results have shown that the new
DCD architecture is very promising in improving write perfor-
mance. With immediate report, the DCD improves write per-
formance by one to two orders of magnitude over the traditional
disk systems. A factor of 2 to 4 performance improvements over
traditional disks are observed for the DCD with the report-
after-complete scheme. It is noted that the DC D also improves
read performance in many cases. The additional cost introduced
by the DCD is a small fraction of the disk system cost.

As a future work, we are currently investigating the possibil-
ity of applying the DC D architecture to the RAID architecture.
The objective is to optimize both throughput and response time
of future RAID systems. We will also investigate the behavior
of the DC'D under different workload environments using syn-
thetic traces.
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Figure 5: Response times for trace hplajw. Each black dot in this figure represents the response time of an individual write
request. The left-most figure is for the traditional disk system; the middle one is for the DCD with Immediate report scheme, i.e.
as soon as the data are transferred to the RAM buffer, the controller sends an acknowledgement of write complete to the host;
the right-most figure is for the DCD with report after complete scheme, i.e. a write request is acknowledged as complete only after
it has been actually written into a disk.
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Figure 6: Response times for trace snake
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Figure 8: Response times for hplajw and snake with smaller scale. Each black dot in this figure shows the response time of an
individual write requ est. Note that the figure scale has been changed to show the small response times. Immediate report is used.
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