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ABSTRACT: In order to overcome the small write problem in RAID5, especially software 
RAID5, we have designed and implemented a software RAID with a large virtual NVRAM 
cache under the Linux kernel. Because no additional hardware is needed to implement our 
write cache, we named it Virtual NVRAM Cache or VC-RAID for short. The main idea is to 
use a combination of a small portion of the system RAM and a log disk to form a hierarchical 
cache. The log disk can be either a dedicated physical disk or several partitions of disks in the 
RAID. Since the log disk quickly absorbs write data from the small RAM, this hierarchical 
cache appears to the host as a large nonvolatile RAM. A prototype VC-RAID implemented 
under the Linux kernel has been tested for an extended period of time to show that it functions 
properly. Performance measurements have been carried out using typical programs and 
popular benchmarks such as ServerBench 4.1, PostMark and Bonnie. Our measurements 
show that the VC-RAID has superb performance advantages over the built-in software RAID 
shipped with the Linux package. Depending on the workload characteristics, performance 
gains due to VC-RAID range from 67.7% to an order of magnitude. For applications that 
have data locality, we observed up to a factor of 16 performance improvements in terms of 
user response time. In many situations, VC-RAID achieves similar performance as RAID0 
and some time better than RAID0 indicating that VC-RAID realizes the maximum potential to 
hide small write problems in RAID5. 
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1. Introduction 

Software RAID has become very popular for applications that require reliable 
and economic storage solutions as E-commerce emerges. Most commodity operating 
systems such as Windows, Solaris, and Linux have built-in software RAIDs. While 
these built-in software RAIDs provide immediate performance benefits at lowest 
cost, most software RAID installations shy away from RAID5 configuration, the 
most popular RAID configuration in storage industry, and therefore lose the benefit 
of high reliability of RAID. The main reason why RAID5 is not installed in software 
RAID is performance penalty resulting from small write operations. Each such a 
small write requires 4 disk operations: reading old data, reading old parity, writing 
new data, and writing new parity. As a result, for workloads consisting of a mix of 
read and write operations, software RAID5 shows very poor performance and 
becomes impractical. 

The most popular and practical solution to small write problems is to use large 
write cache. Modern RAID systems make extensive use of nonvolatile RAM 
(NVRAM) write caches to allow fast write [CHE 94][HOU 97][MEN 93][TRE 95], 
or asynchronous write. Write requests are acknowledged before they go to disk. 
Such write caches significantly reduce user response times of RAID. Large write 
caches can also improve system throughput by taking advantages of both temporal 
locality and spatial locality of general workloads. Treiber and Menon reported that 
write caches could reduce disk utilization for write by an order of magnitude when 
compared to standard RAID5 [TRE 95]. In fact, some researchers have argued that 
the use of large caches in RAID systems has rendered debates over the best RAID 
level irrelevant [COO 96].  

While most commercial hardware RAID systems have large write caches for 
better performance, there is no readily applicable cache solutions for software RAID 
or do-it-yourself RAID [ASA 95]. This is because that write cache has to be 
nonvolatile to be reliable. Adding a nonvolatile RAM into software RAID not only 
is costly but also requires special hardware devices to interface to the disks. Our 
objective here is to present a simple software cache solution that can be embedded 
into the software RAID package shipped with a commodity OS with no additional 
hardware.  

Our approach is to use a combination of a small RAM and a log disk to form a 
large and nonvolatile write cache. The small RAM (a few megabytes) is obtained 
from a raw partition of the system RAM. The log disk can reside on one physical 
disk or on partitions of several disks in the RAID. The combination of the RAM and 
the log disk form a hierarchical write cache. Disk writes are first collected in the 
small RAM to form a log that is quickly moved to log disk sequentially so that the 
RAM is emptied for further writes. It appears to the host that there is a very large 
RAM cache since there is always space for new writes. At the same time, such a 
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large “RAM” has a very high reliability because the small RAM is used only for 
collecting log and data stay in the RAM for a very short period of time before 
moving to cache disk that is nonvolatile and more reliable. This large virtual RAM 
cache hides the small write penalty of RAID5 by buffering small writes and 
destaging data back to RAID with parity computation when disk activity is low (We 
are using a thread to monitor the system kernel activity dynamically similar to the 
command “top” in Linux). This approach is different from the write-ahead logging 
[GRA 93][MOH 95] in that we use a cache disk which is nonvolatile and 
inexpensive, and also we don’t need to build a new file system as in [CHU 92][MAT 
97][SEL 93][SHI 95]. 

We have designed and implemented this virtual RAM cache under the Linux 
operating system. Extensive testing of the implementation has been carried out to 
show it functions properly. We have also carried out performance measurements and 
comparisons with existing software RAID using typical disk I/O bound programs 
and popular benchmarks such as ServerBench, PostMark and Bonnie. Our 
measurements on ServerBench show that the RAID5 with our virtual RAM cache 
has superb performance advantages over the built-in software RAID shipped with 
the Linux package. Up to a factor of 3 performance improvements have been 
observed in terms of transactions per second.  Measurements on Bonnie also show 
similar performance improvements. When we measure the performance of realistic 
application programs under Linux, we observed much greater performance gains 
because realistic applications show data locality. An order of magnitude 
performance improvement was observed in terms of user response time. In many 
situations, VC-RAID achieves similar performance as RAID0 and some time better 
than RAID0 indicating that VC-RAID realizes the maximum potential to hide small 
write problems in RAID5. 

The paper is organized as follows. In the next section, we present detailed 
concept and design of the large virtual NVRAM cache. Section 3 presents the 
implementation details. Benchmark and performance results are presented in Section 
4. We discuss previous related research work in Section 5 and conclude our paper in 
Section 6. 

2. Architecture and Design of the Virtual NVRAM Cache 

In the absence of physical NVRAM cache in software Do-it-yourself RAID, we 
try to make use of existing system resources and implement a virtual NVRAM cache 
by means of software. Our idea is very simple. We use a small raw partition of the 
system RAM and partitions of disks in the RAID to form a cache hierarchy. A thin 
layer of driver program is inserted between the Linux kernel and the physical device 
driver for disks. This driver program manages the operation of the cache hierarchy 
in the way described below.  
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The general structure of the virtual NVRAM cache has a two level hierarchy: a 
small RAM buffer on top of a disk called cache disk. Small write requests are first 
collected in the small RAM buffer.  When the RAM buffer becomes full or a 
programmable timer is out, all the data blocks in the RAM buffer are written to the 
cache disk in several large data transfers.  Each large transfer finishes quickly since 
it requires only one seek instead of tens of seeks. As a result, the RAM buffer is very 
quickly made available again to accept new incoming requests.  The two-level cache 
appears to the host as a large virtual NVRAM cache with a size close to the size of 
the cache disk.  When the system I/O activity is low, it performs destaging 
operations which computes parity and transfer data from the cache disk to the disk 
array, referred to as data disks or data disk array. The destaging overhead is quite 
low, because most data in the cache disk are short-lived and are quickly overwritten 
therefore requiring no destaging at all [HU 96].  Moreover, many systems, such as 
those used in office/engineering environments, have shown significant temporal and 
spatial data locality giving rise to sufficient long idle periods between bursts of 
requests. Destaging can be performed in the idle periods therefore will not interfere 
with normal user operations at all. Since the cache disk is a disk with a capacity 
much larger than a normal NVRAM cache, it can achieve very high performance 
with much less cost. It is also nonvolatile thus highly reliable. 
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Figure 1. Possible approaches to VC-RAID. (a) one RAM buffer and one cache disk 
(b) one RAM buffer and several cache disks (c) one RAM buffer and several cache 
disks, each cache disk is associated with a disk in the array (d) Several RAM buffers 
and cache disks, each RAM buffer and cache disk are associated with a disk in the 
array. 
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The cache disk in the virtual NVRAM cache can be a separate physical disk 
dedicated for caching purpose. Given the low cost of today’s hard drives, it is quite 
feasible to have one of the disks in the disk array to carry out the cache disk 
function. The cache disk can also be implemented using a collection of logical disk 
partitions from disks in the RAID with no dedicated cache disk. Depending on how 
the cache disk is formed, we have four alternative architecture configurations for 
VC-RAID as illustrated in Figure 1.  

In the first configuration, a RAM buffer and a physical cache disk are used to 
cache data to be written to the entire disk array (Figure 1a). This configuration is 
referred to as Single Cache Disk (scd) configuration. All data to be written to the 
array are first written to the RAM buffer. When the RAM buffer is full or the cache 
disk is idle, the data in the RAM buffer are transferred to the cache disk by a kernel 
thread, called RAIDDestage thread. The RAIDDestage thread combines small write 
requests writes into large one and write to the cache disk at a time. The data in the 
cache disk are destaged to the data disk array during the system idle time and/or 
when the cache disk is full. We can choose the size of the cache disk to be large 
enough to ensure that most of the destages occur during the system idle time. 

The above configuration (scd) is effective for a small array consisting of a few 
disks. With the increase of the number of disks in the array, single cache disk in the 
above configuration may become a new system bottleneck since all write operations 
and some read operations are performed at this cache disk. To avoid this bottleneck 
problem, the second configuration uses Multiple Cache Disks (mcd) as shown in 
Figure 1b. Several cache disks collectively form the cache disk in the virtual 
NVRAM hierarchy. These cache disks are logical partitions physically residing on 
the data disk array. All these logical partitions form a uniform disk space to cache all 
write data to the data disk array. When the RAM buffer is full or there are idles 
cache disks, the destage thread is invoked to move data from RAM buffer to one of 
the cache disks. A round-robin algorithm is used to determine which cache disk is 
used next in a log write. Writing to and reading from cache disks can therefore be 
done in parallel reducing the bottleneck problem. 

The above two configurations (scd and mcd) both have a global cache that cache 
data for the entire disk array. It is also possible to have private write caches for each 
disk in the disk array. That is, there is a virtual NVRAM cache for each individual 
disk in the disk array. Figure 1c shows this configuration where a cache disk is 
associated with each data disk in the array and only cache data for the particular data 
disk below it. If the RAM buffer is also managed individually for each data disk, 
then we have the fourth configuration as shown in Figure 1d.  

3. Implementation 

This section presents data structures and algorithms used in implementing the 
VC-RAID. We have implemented the VC-RAID as a loadable module under Linux 
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kernel 2.0.36 based on the MD (Multi-Device) driver. The md Multi-Device kernel 
module, included as a standard part of the v2.0.x kernels, provides RAID-0 (disk 
striping) and multi-disk linear-append spanning support in the Linux kernel. The 
RAID 1,4 and 5 kernel modules are a standard part of the latest 2.1.x kernels; 
patches are available for the 2.0.x kernels and the earlier 2.1.x kernels.  

Let us first look at how disk requests are processed on Linux. Take a 
synchronous write as an example. As shown in Figure 2a, a user program issues a 
write request by calling fwrite(). The system switches to the kernel mode through the 
system call write().  Then the Linux generic block driver accepts the requests 
through ll_rw_block() and issues a request to the low-level physical disks through 
make_request(). The physical disk driver finishes the request by hd_request() (IDE 
disks) or sd_rquest (SCSI disks).  Figure 2b shows the case of software RAID, 
where md driver accepts the requests and determines which disk in the array services 
the request and computes the parity, finally writes the data and parity to the 
corresponding disks through low level physical disk drivers.  Figure 2c shows how 
VC-RAID processes a write request. VC-RAID_request accepts all requests to the 
array, and combines small writes into large ones in the RAM buffer firstly. 
Whenever the cache disk is idle, the data in the RAM buffer are moved to the cache 
disk in a large write. During the system idle time, data in the cache disk will be 
destaged to disk arrays.  
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Figure 2. Procession of write requests. 

3.1. In-memory Data Structure 

During the system initialization, a fixed amount of physical RAM is reserved for 
our VC-RAID, all the in-memory data structures reside in this RAM area. The In-
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memory data structure includes a Hash table which is used to locate data in the 
cache, a data buffer which contains several data slots and a number of In-memory 
headers (Figure 3). The In-memory headers form two lists: the Free List which is 
used to keep track of free slots and the LRU list which traces the Least Recently 
Used slots. 
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Figure 3. RAM buffer layout. RAM buffer consists of slot entries and slots. The hash 
table, LRU list and Free list are used to organize the slot entries. 

In our implementation, a data block may exist in one of the following places: the 
RAM buffer, the cache disk or the data disks. A data Lookup Table is used to keep 
track of the data location in these places. Since the driver must search the table for 
every incoming request, it is imperative to make the searching algorithm efficient. In 
Linux kernel 2.0.36, the default file system is ext2 file system. When a file system is 
created by mke2fs, the block size, b_size, will be fixed. The default is 1024 byte per 
block, or it can be specified to be 1024, 2048 or 4096. After a file system is created, 
the LBAs (Logical Block Address) of all requests are aligned to the b_size boundary. 
And all atomic request size equals to b_size. We use a hash table to implement the 
data lookup table with the LBA of incoming requests being the search key, and the 
slot size being the size of a block, as shown in Figure 3. A slot entry consists of the 
following fields: 

��An LBA entry that is the LBA of the cache line and serves as the search key of 
hash table; 

��A location field is divided into three parts: 
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1) A cache disk index (8 bits), used to identify a cache disk in multiple cache 
disk configuration. It can support up to 256 cache disks. In single cache 
disk configuration, this field is set to zero; 

2) A state tag (4 bits), used to specify where the slot data is: 
IN_RAM_BUFFER, IN_CACHE_DISK, IN_DATA_DISK or 
SLOT_FREE; 

3) A cache disk block index (20 bits), used to specify the cache disk block 
number if the state tag indicates IN_CACHE_DISK. The size of each 
cache disk can be up to 1048576 blocks. 

��Two pointers (hash_prev and hash_next) are used to link the hash table;  
��Two pointers (prev and next) are used to link the LRU list and FREE list; 
��A Slot-No is used to describe the in-memory location of the cached data. 

3.2. Cache Disk Organization 

The organization of cache disk is much simpler compared to that of RAM buffer. 
The cache disk consists of cache disk headers and an amount of physically 
consecutive blocks. The block size equals to the slot size in RAM buffer. A cache 
disk header comprises a number of cache-disk-block-index/array-LBA pairs which 
are used to track the locations of cached data blocks in the data disk array. The 
cache disk headers are only for crash-recovery purpose and are never accessed 
during normal operations. 

3.3. Basic Operations 

3.3.1. Write 

After receiving a write request, the VC-RAID driver first searches the Hash 
Table. If an entry is found, the entry is overwritten by the incoming write. 
Otherwise, a free slot entry is allocated from the Free List, and the data are then 
copied into the corresponding slot, and its address is recorded in the Hash table. The 
LRU list and Free List are updated. The driver then signals the kernel that the 
request is complete, even though the data has not been written into the disk array. 
This immediate report scheme does not cause any reliability problem as will be 
discussed in section 3.4. If user applications set “O_SYNC” flag in the write request, 
the driver writes the data to the cache disk directly and wait until the requests 
finishes before signalling the kernel that the request is complete.  

3.3.2. Read  

After receiving a read request, the VC-RAID driver searches the Hash Table to 
determine the location of the data. In our case, data requested may be in one of three 
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different places: the VC-RAID RAM buffer, the cache disk(s), or the data disk array. 
If the data is found in the RAM buffer, the data are copied from the ram buffer to the 
requesting buffer, and then the driver signals the kernel that the request is complete. 
If the data is found in the cache disk(s), the data are read from the cache disk into 
the requesting buffer; otherwise, the VC-RAID driver forwards the read request to 
the disk array.  

3.3.3. Destages 

There are two levels of destages: detaging data from the RAM buffer to the 
cache disk (Level 1 destage) and destaging data from cache disk to data disk array 
(Level 2 destage). We implement a separate kernel thread RAIDDestage to perform 
the destaging tasks. The RAIDDestage thread is registered during system 
initialization and monitors the VC-RAID states. The thread keeps sleep at most of the 
time, and is activated when the VC-RAID driver detects an idle period or the VC-
RAID RAM buffer and/or the cache disk becomes full. Level 1 destage has higher 
priority than the Level 2 destage. Once the Level 1 destage starts, it continues until 
the RAM buffer becomes empty and it is uninterruptible. Once the Level 2 destage 
starts, it continues until the cache disk becomes empty, or until a new request comes 
in. In the later case, the destage thread is suspended, until the driver detects another 
idle period. 

As for Level 1 destage, the data in the RAM buffer are written to the cache disk 
sequentially in large size (up to 64K). The cache disk header and the corresponding 
in-memory slot entries are updated. In the multiple-cache-disk (mcd) configuration, 
a round-robin algorithm is used to select the cache disk to receive data. All data are 
written to the cache disk(s) in “append” mode, which ensures that every time the 
data are written to consecutive cache disk blocks. 

For Level 2 destage, we use a “last-write-first-destage” algorithm according to 
the LRU List. Each time a data segment (64Kb in our preliminary implementation, 
and it is a configurable parameter to make use of optimal striping unit size [CHE 
95]) are read from the consecutive blocks of the cache disk and then written to the 
disk array in parallel. At this point, parity code is calculated and written to the parity 
block. After data is destaged to the data disk array, the LRU list and free list are 
updated subsequentially.  

3.4. Reliability Analysis 

One potential reliability problem with this virtual NVRAM cache is that the 
cache disk fails before data are destaged to the data disk array. The cache disk may 
become a potential single point of failure. To address this problem, we can mirror 
the cache disk by using another partition on different disk which acts as a backup 
cache disk. In this case the Level 1 destage writes data from the RAM buffer to 
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cache disk and backup cache disk in parallel. Since the total size of a good 
performance cache is usually in the range of 1% of total data volume of the storage 
system, we would not expect significant waste in terms of disk space. On the other 
hand, the cost of disk is rapidly dropping and it is quite practical to have one 
percentage point increase in disk space to trade for high reliability. 

 VC-RAID uses immediate report mode for writes as discussed in section 3.3.1, 
except for those requests with the “O_SYNC” flags. This immediate report does not 
cause a serious reliability problem for the following reasons: First, the delay caused 
by the VC-RAID driver is limited to several hundreds of milliseconds at most. The 
driver writes the data to the cache disk within several hundreds of milliseconds. As 
default, the Linux caches file data and metadata in RAM for 30 and 5 seconds, 
respectively, before they are flushed into the disks. We believe that the additional 
several hundreds of milliseconds should not cause any problem. In fact, we can use a 
tracking structure to track the metadata dependency and adopt a mechanism similar 
to Soft Updates [MCK 99] to further protect the metadata integrity and consistency. 
Second, the VC-RAID RAM buffer is reserved during the system boot and is not 
controlled by the OS kernel. It is isolated from the other part of RAM used by the 
system and used exclusively by VC-RAID driver. It should have less chance to be 
crashed by other applications. Finally, a small amount of NVRAM can be used in 
the real implementation to further guarantee the reliability before the data is written 
to the cache disks.  

Our current implementation of VC-RAID is for RAID level 5. As soon as data are 
destaged to the data disk array, they are parity protected in the same way as RAID 5. 

Another issue about reliability is crash recovery. In case of system crash, data 
can be recovered from the cache disk. The system first switches to the single user 
mode. All data that have not destaged to the data disk array are written to data disk 
array according to the cache disk headers which record the relationships between a 
cache disk block and the corresponding data disk block. At this point the VC-RAID 
returns to a clean and stable state. Then the file system can start the normal crash-
recovery process by running “e2fsck”. 

4. Performance Evaluations 

4.1. Experimental Setup 

We installed and tested our drivers on a Gateway G6-400 machine running 
Linux 2.0.36. The machine has 64MB DRAM, two IDE interfaces and two 
sym53c875 SCSI adapters. Six hard disks (including 4 SCSI disks and 2 IDE disks) 
are connected to this machine. The disk parameters are listed in Table 1. In the 
following benchmark tests, unless specified otherwise, the size of VC-RAID RAM 
buffer is 4M. A cache disk size is 200MB with data block size being 1KB. The 4 
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SCSI disks are used to form the disk array while the OS kernel runs on the first IDE 
disk (model 91366U4). The second IDE disk (model 91020D6) is used as cache disk 
in the single cache disk (scd) configuration. For the case of the multiple cache 
disk(mcd) configuration, two logical partitions, one from each of the IDE disks, are 
used as cache disks. 

Disk Model Interface Capacity Data 
buffer 

RPM Latency 
(ms) 

Transfer 
 rate 
(MB/s) 

Seek 
time 
(ms) 

DNES-318350 Ultra SCSI 18.2G 2MB 7200 4.17 12.7-20.2 7.0 
DNES-309170 Ultra SCSI 9.1G 2MB 7200 4.17 12.7-20.2 7.0 
91366U4 ATA-5 13.6G 2MB 7200 4.18 Up to 33.7 9.0 
91020D6 ATA-4  10.2G 256KB 5400  5.56 18.6 9.0 
ST52160N Ultra SCSI 2.1G 128KB 5400 5.56 10 11 
ST32151N SCSI-2  2.1G 256KB 5400 5.54 10 10.4 

Table 1. Disk parameters. 

The performance of VC-RAID is compared to that of the standard software 
RAID0 and RAID5 shipped with the Linux operating system. To ensure that the 
initial environments are the same for every test, we performed tests for each 
benchmark run in steps as follows: 

1) Load the corresponding driver VC-RAID, RAID0 or RAID5 (using “insmod”); 
2) Execute the benchmark program; 
3) Unload the driver (using the command “rmmod”); 
4) Reboot the system and prepare for the next test. 

4.2. Benchmarks 

Workload plays a critical role in performance evaluations. We paid special 
attention in selecting workload for our performance testing. In order to give a 
realistic performance evaluation and comparison, we use real world benchmarks in 
our performance measurements. Benchmark programs that are used in our 
performance measurements are ServerBench which is a very popular benchmark for 
testing server performance, Bonnie which is a standard benchmark used for unix 
systems, PostMark which is a popular file system benchmark and some user 
application programs that are disk I/O bound such as untar, copy, and remove. 

4.2.1. ServerBench 4.1 

ServerBench [SER 2000] is a popular benchmark developed by ZD Inc. and has 
been used by many organizations including ZD Lab to measure the performance of 
application servers in a client/server environment. It consists of three main parts: a 
client program, a controller program and a server program. A server, a controller and 
several clients are needed to run server program, controller program and client 
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program respectively. The aforementioned G6-400 machine act as the server in the 
test, and 5 PCs with Celeron 500MHZ CPU, 64MB DRAM acts as controller and 
clients which run windows 98. All  machines are equipped with 3C905B 10/100M 
network adaptors and interconnected through a D-Link 10/100M 8 port switch. Our 
test suites are based on the standard test suite provided by ServerBench. The size of 
data set is 128 MB, which is divided into 4 data segments with each segment being 
32MB.  

The performance metric used in this measurement is Transactions Per 
Second(TPS) which is the standard performance measure as output of ServerBench. 
For each run, we measured the TPS results of standard software RAID0, RAID5, scd 
(Single Cache Disk) VC-RAID, and mcd (Multiple Cache Disk) VC-RAID under the 
same conditions. Within each run, there are 4 test sets corresponding to 1 to 4 clients 
respectively. For each test set, there are 16 groups (mixes), each with 32 
transactions. Every transaction comprises 3 basic steps: client requests (read or 
write) to the server; server accepts and processes the request; and finally client 
receives a response from the server. The percentage of write requests, referred to as 
write ratio, is an important parameter to be determined in each test round. We 
determine the write ratio based on our observations of existing disk I/O traces and 
previously published data. 

4.2.2. Bonnie 

Bonnie [BON 96] is a benchmark used to measure the performance of Unix file 
system operations. It performs a series of tests on a file of known size. For each test, 
Bonnie reports the results of sequential output, sequential input and random seek 
time for both block device and character devices. Since disk driver and RAID driver 
are both block devices, in our experiments we are only concerned with performance 
of block devices. We measured write performance and random seek performance for 
block devices. For block writes, a file is created using system call write(). For 
random seeks, we run 4 concurrent processes operating on one large file of 100MB. 
The 4 processes perform a total of 200,000 lseek()s to random locations computed 
using random(). Each such random seek is followed by a read operation using 
system call, read(). Among all these random read operations, 10% of them are 
rewritten immediately in the same location. 

4.2.3. Postmark 

PostMark [KAT 99] is a popular file system benchmark developed by Network 
Appliance. It measures system throughput in terms of transaction rates in an 
ephemeral small-file environment by creating a large pool of continually changing 
files. “PostMark was created to simulate heavy small-file system loads with a 
minimal amount of software and configuration effort and to provide complete 
reproducibility [KAT 99].” PostMark generates an initial pool of random text files 
ranging in size from a configurable low bound to a configurable high bound. This 
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file pool is of configurable size and can be located on any accessible file system. 
Once the pool has been created, a specified number of transactions occur. Each 
transaction consists of a pair of smaller transactions, i.e. Create file or Delete file 
and Read file or Append file. Each transaction type and its affected files are chosen 
randomly. The read and write block size can be tuned. On completion of each run, a 
report is generated showing some metrics such as elapsed time, transaction rate, total 
number of files created and so on.  

4.2.4. Untar/Copy/Remove 

We have created a set of our own metadata intensive benchmark programs. This 
benchmark consists of 3 sets of script programs: untar, copy, and remove. Untar 
creates a directory tree by untaring a tar file (using “tar xf” command). The 
particular tar file we used is the standard test suites file of web-bench by ZDNet. To 
make the data set larger, we double the test suites. The resulting file tree contains 
952 subdirectories with different depths and 12322 files with an average file size 
being 9.9 KB. The total size of the directory tree is 122MB. This source directory 
tree resides in a local system disk. The copy and remove perform users’ copying 
(using the “cp –r” command) and removing (using the “rm –rf” command) the entire 
directory tree created by the untar test. The performance metric used for this 
benchmark is user response time since in this case user would be mostly interested 
in response time.  The smaller number means better performance. 

4.3. Numerical Results and Discussions 

With the experimental settings and the benchmarks described above, we have 
carried out extensive experiments to evaluate the performance of VC-RAID and 
compare it with standard software RAID0 and RAID5 shipped with Linux package. 
All numerical results presented in this subsection are the average of 3 experimental 
runs. In our tests, mcd and scd stand for VC-RAID with multiple cache disks and 
VC-RAID with single cache disk, respectively. 

4.3.1. Transactions Per Second (TPS) 

Figure 4 shows the average transactions per second (TPS), the performance score 
output by ServerBench, as a function of number of clients. Three separate figures 
are plotted corresponding to different write ratios. As mentioned previously, the 
write ratios were selected based on our observation of typical disk I/O traces. For 
example, our observation of HP traces (Snake, Cello, and hplajw) [RUE 93] and 
EMC traces [HU 99] indicate that average write-ratio in a typical office and 
engineering environment is about 57%. Hua et al [HUA 99] used write ratios of 0.1, 
0.5 and 0.9 in their performance evaluation for cached RAID system. From Figure 
4a, we can see that when the write ratio is very low (0.1) the performances of VC-
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RAID, standard software RAID0 and RAID5 are very close. One can hardly notice 
the difference in terms of TPS for these different RAID systems implying that the 
software RAID performs fine with such low write ratio. 
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(c) Overall ServerBench Score
(write ratio=0.9)
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Figure 4. VC-RAID vs. RAID5 and RAID 0 (Mean request size=1k). 

As the system RAM size increases in today’s server computers, a large portion 
of disk read operations are cached in the system RAM. That is, the large system 
RAM filtered out many disk read operations. As a result, the proportion of write 
operations as seen by the disk I/O system increases. When the write ratio increases, 
the performance penalty due to small write problems of RAID5 comes into picture. 
Figures 4b and 4c show the TPS for write ratios being 0.5 and 0.9 respectively. For 
these types of workloads, our VC-RAID shows significant performance advantages. 
With multiple cache disks  (mcd), the TPS number is doubled compared to standard 
software RAID5 for write ratio of 0.5 and more than tripled for write ratio of 0.9. 
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We noticed in all our measurements that TPS drops after the number of clients 
exceeds 2. This result can be mainly attributed to the network congestion caused by 
NIC at the server. The 3C905B 10/100M network adapter at the server is not fast 
enough to handle large number of requests from more clients. 

In order to observe how much the VC-RAID can hide the small write problem of 
RAID5, we also compared the performance of VC-RAID to that of software RAID0. 
Since RAID0 has no redundancy, there is no overhead for write operations such as 
parity computations and parity updates. Figures 4b and 4c show that mcd can realize 
about 80% performance of RAID0 for write ratio of 0.5 and over 90% performance 
of RAID0 for write ratio of 0.9. The reason for the performance gap between the 
VC-RAID and RAID0 can be explained as follows. The workload to the server 
generated by ServerBench is fairly random with no spatial and temporal localities. 
As a result, destage operations may affect the overall performance because the 
system cannot find idle period to do destage operations. Further more, some read 
operations may find data in cache disk in the VC-RAID limiting the parallelism for 
these reads. This is why the performance gap is getting smaller as write ratio 
increases as shown in Figure 4c. 
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Figure 5. scd vs. mcd (mean request size=0.5k). 

We noticed performance different between single cache disk (scd) VC-RAID and 
multiple cache disk (mcd) VC-RAID in Figure 4b and 4c. We believe that this 
difference mainly results from destage overhead. In order to verify this, we change 
the average request size issued from clients to the server from 1 KB to 0.5 KB. The 
measured results are shown in Figure 5. As is shown, with smaller request size, the 
performance difference between scd and mcd becomes smaller. This is because the 
frequency of destage operation is smaller due to small data sizes. For large request 
sizes, multiple cache disk allows destage operations to be performed in parallel 
resulting in better performance than single cache disk case.  
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Effect of RAM buffer size
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Figure 6. Effect of RAM buffer size. 

To examine the effect of the size of the RAM buffer reserved for VC-RAID on 
the overall performance of the VC-RAID system we plotted the TPS as a function of 
RAM buffer size as shown in Figure 6.  Our measurement results show that 4 MB 
RAM buffer gives optimal performance. Smaller RAM may get filled up quicker 
than cache disk can absorb resulting in wait time for some I/O requests. If the RAM 
buffer is too large, on the other hand, the remaining system RAM used for regular 
file system becomes small adversely affecting the overall performance.  Depending 
on the workload environment, the optimal RAM buffer size should be tuned at set 
up time. 

4.3.2. Response Times 

Our next experiment is to measure and evaluate user response times by running 
realistic application programs under Linux operating system such as untar, remove, 
and copy. Figures 7 shows user response times or execution times of standard 
software RAID0, RAID5, and VC-RAID including scd and mcd for both 
synchronous and asynchronous mode. In the case of synchronous request mode, the 
performance gains of mcd VC-RAID over RAID5 are a factor of 5.0 for untar 
(Figure 7a), a factor of 16 for remove (Figure 7b), and a factor of 4.2 for copy 
(Figure 7c) respectively. Even the scd VC-RAID presents performance 
improvements of a factor 2.8, 3.9, and 2.3, respectively for the three programs. It 
can be seen from these figures that the VC-RAID even performs better than standard 
RAID0. There are three reasons for such a great performance gain. First of all, in 
this experiment we measured performance of real applications. As we indicated 
earlier, real applications have strong data locality properties.  Cache works only 
when locality exists. This is true for any cache. A CPU cache would not work if 
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application programs do not have locality properties and evenly access data across 
entire main memory. This is also true for disk caches that would work and show 
performance advantages if disk accesses have locality properties. Secondly, there are 
many overwrites for these metadata intensive workloads such as modifying super 
block, group descriptors, directory entries. The VC-RAID can capture these 
overwrite operations in the write cache before they go to disks. As a result, 
frequency of destage operations is reduced significantly in real applications. The 
final reason is that even with RAID0, small data are written to data disk under this 
synchronous request mode whereas burst simultaneous small requests are combined 
into large requests in VC-RAID. 
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(c) Performance comparisons(copy)

0
100
200
300
400
500
600
700
800
900

1000

scd mcd raid5 raid0

ex
ec

ut
io

n 
tim

e(
se

co
nd

s)

Asynchronous Synchronous

 

Figure 7. Results of untar/copy/remove. 
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In the case of asynchronous requests, we also observed significant performance 
gains compared to standard software RAID. The performance improvements range 
from a factor of 2.5 (Figure 7c) to 7.9 (Figure 7b). This great performance gain can 
be mainly attributed to the effective and large cache size of the VC-RAID. In our 
test, the total system RAM is 64MB. Taking into account the space used by OS, the 
available RAM for caching and buffering is about 50MB, 16MB of which is used 
for system buffering, so the RAM available for file cache is only about 34MB. Even 
though user process does not have to wait until data are written into disk, it is often 
blocked because the file cache size is much smaller than data set of the experiment, 
which is 122MB. However, the cache size of VC-RAID is 200MB including RAM 
and cache disk. This large hierarchical disk cache appears to the host as a large 
RAM that can absorb quickly a large amount of write requests resulting in great 
performance gain. 

We also noticed that the performance of VC-RAID is even much better than that 
of RAID0 for remove program for both synchronous and asynchronous mode 
(Figure 7b). The reason for this is as follows. When a file or a directory is removed, 
the super block, group descriptors, block and inode bitmap and corresponding 
inodes are updated while the “real data” are not removed. In our test, 952 
subdirectories and 12322 files are removed, many blocks are overwritten over and 
over again. Most of these operations are small writes. VC-RAID can cache these 
small writes effectively giving rise to great performance gain. 

4.3.3. Bonnie Throughput 
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Figure 8. Results of Bonnie. 

Our next experiment is to compare the throughput of VC-RAID to that of RAID0 
and RAID5 using the benchmark program Bonnie. The size of the data set is 100M 
bytes. Figures 8a and 8b show the results for block write and random seek 
respectively. The performance gains of scd and mcd over RAID5 are 2.4 and 3.65 
for block write as shown in Figure 8a. We also notice that the performance of mcd 
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are comparable to that of RAID0, because all requests are write operations under the 
block write test, where small writes are absorbed by Virtual NVRAM cache. For the 
random seek operations, we observed very small performance gain of VC-RAID over 
RAID5 as shown in Figure 8b. The reason is that 90% of requests are read requests 
during the random seek test, which are bypassed to the disk array by VC-RAID 
directly. Furthermore the 10% follow up write operations are in place write with no 
seek time involved. Therefore, the performance of RAID5, VC-RAID and RAID0 
are very close (Figure 8b). From Figure 8b we also noticed that the performance of 
random seeks are very poor, which confirms the claim of the Bonnie author, 
“random seeks on Unix file systems are appallingly slow [BON 96]”.  

4.3.4. PostMark Throughput 

Our final experiment is to use PostMark to measure the I/O throughput in terms 
of transactions per second. PostMark measures performance in terms of transaction 
rates in the ephemeral small-file regime by creating a large pool of continually 
changing files. The file pool is of configurable size. In our tests, PostMark was 
configured in three different ways as in [KAT 99], i.e: 1) small: 1000 intial files and 
50000 transactions; 2) medium: 20000 initial files and 50000 transactions; and 3) 
large: 20000 initial files and 100000 transactions. The read and block sizes are set to 
1KB which is the default block size on Linux. We left all other PostMark at their 
default settings.  Our VC-RAID was configured by using single cache disk (scd). The 
results of testing are shown in Table 2, where larger numbers indicate better 
performance. 

From these results, we see that VC-RAID exceeds the throughput of the built-in 
software RAID 5 and is comparable to that of RAID 0. The performance 
improvement of VC-RAID over RAID 5 ranges from 67.7% to 110%. 

 
Series RAID 0 SCD RAID 5 
Small 1111 941 561 

Medium 68 63 30 
Large 31 28 16 

Table 2. PostMark results in terms of Transactions Per Second. 

5. Related Work 

A number of approaches for overcoming small write problems in RAID5 exist in 
the literature.       

Nonvolatile RAM (NVRAM). Modern hardware RAID systems make extensive 
use of NVRAM write caches to allow fast write [CHE 94][HOU 97][MEN 93][TRE 
95], or asynchronous write. Write requests are acknowledged before they go to disk. 
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Such write caches significantly reduce user response times of RAID. Large write 
caches can also improve system throughput by taking advantages of both temporal 
locality and spatial locality of general workloads. While most commercial hardware 
RAID systems have large write caches for better performance, there is no readily 
cache solutions for software RAID. VC-RAID uses a small RAM and a log disk to 
form a large and non-volatile write cache. 

Striping. A scheme called parity striping [GRA 90] proposed by Jim Gray et al 
has similar performance to a RAID with infinitely large striping unit. Chen and Lee 
[CHE 95] investigate how to stripe data across a RAID Level 5 disk array for 
various workloads and studies the optimal striping unit size for different numbers of 
disks in an array. Jin et al [JIN 98] divided the stripe write operation in RAID 5 into 
two categories, full stripe write and partial stripe write. They proposed an adaptive 
control algorithm to improve the partial stripe write performance by reducing the 
stripe read/write operations. Mogi and Kitsuregawa proposed a dynamic parity 
stripe reorganization [MOG 94] that creates a new stripe for a group of small writes 
and hence eliminating extra disk operations for small writes all together. Hua, Vu 
and Hu improve the dynamic parity stripe reorganization further by adding 
distributed buffer for each disk of RAID [HUA 99]. AFRAID [SAV 96] proposed by 
Savage and Wilkes eliminates the small write problem by delaying parity updates 
and allowing some stripes to be non-redundant for a controllable period of time. 

Logging. Logging techniques are used to cure the small write problem by many 
researches [CHE 2000][GAB 98][SEL 93][SHI 95][STO 93].  A very intelligent 
approach called Parity Logging [STO 93] proposed by Stodolsky, Holland and 
Gibson makes use of high speed of large disk access to log parity updates in a log 
disk. As a result, many parity changes are collected and are written into disk in large 
sizes, read from disk in large sizes, and compute new parity in large sizes. Another 
approach is Data Logging proposed by Gabber and Korth [GAB 98]. Instead of 
logging parity changes, it logs the old data and new data of a small write in a log 
disk and compute parity at later time. Data logging requires 3 disk operations for 
each small write: reading old data, writing new data in place, and writing a log of 
old data and new data in log disk, as opposed to 4 operations in RAID5.  

Zebra [HAR 95] and xFS [AND 95] are both distributed file systems that use 
striped logging to store data on a collection of servers. Zebra combines LFS with 
RAID to allow for faster disk operation, and a single meta-data server is used. xFS 
eliminates the centralized elements of Zebra that could cause a bottleneck. Both 
Zebra and xFS are complete file systems, while our VC-RAID is a device level 
driver. 

HP AutoRAID [WIL 95] uses a two-level storage hierarchy and combines the 
performance advantages of mirroring with the cost-capacity benefits of RAID5 by 
mirroring active data and storing inactive data in RAID5. If the active subset of data 
changes relatively slow over time, this method has great performance/cost benefits. 
Similarly, another scheme called dynamic parity grouping (DPG) proposed by Yu et 
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al [YU 2000] partitions the parity into special parity group and default parity group. 
Only the special parity blocks are buffered in the disk controller cache, while the 
default parity blocks remain on disks.  

6.  Concluding Remarks 

We have presented the design and implementation of a virtual NVRAM cache 
(VC-RAID) for software RAID. We called it virtual NVRAM because it does not 
have real or physical NVRAM, nor does it need any additional hardware. The virtual 
NVRAM cache is completely implemented using software while keeping properties 
of NVRAM. It is nonvolatile because the cache is part of a disk and it is fast due to 
the use of log structure in cache disks. 

A prototype do-it-yourself RAID with a large virtual NVRAM cache (VC-RAID) 
has been implemented under the Linux kernel. Through different benchmark tests, 
VC-RAID demonstrates superb performance advantages over the standard built-in 
software RAID5 shipped with the Linux package. Depending on the workload 
characteristics, performance gains due to VC-RAID range from 67.7% to an order of 
magnitude. For applications that have data locality, we observed up to a factor of 16 
performance improvements in terms of user response time. In many situations, VC-
RAID achieves similar performance as RAID0 and some time better than RAID0 
indicating that VC-RAID realizes close to maximum potential to hide small write 
problems in RAID5.  

We are currently working on building a VC-RAID with mirrored cache disks to 
further improve the reliability. We will also be working on porting VC-RAID on 
hardware RAID controllers, where VC-RAID will make use of controllers’ RAM 
other than the host system RAM.  
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