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Abstract—Modern high performance disk systems make extensive use of nonvolatile RAM (NVRAM) write caches. A single-copy
NVRAM cache creates a single point of failure while a dual-copy NVRAM cache is very expensive because of the high cost of NVRAM.
This paper presents a new cache architecture called RAPID-Cache for Redundant, Asymmetrically Parallel, and Inexpensive Disk
Cache. A typical RAPID-Cache consists of two redundant write buffers on top of a disk system. One of the buffers is a primary cache
made of RAM or NVRAM and the other is a backup cache containing a two-level hierarchy: a small NVRAM buffer on top of a log disk.
The small NVRAM buffer combines small write data and writes them into the log disk in large sizes. By exploiting the locality property of
I/0O accesses and taking advantage of well-known Log-structured File Systems, the backup cache has nearly equivalent write
performance as the primary RAM cache. The read performance of the backup cache is not as critical because normal read operations
are performed through the primary RAM cache and reads from the backup cache happen only during error recovery periods. The
RAPID-Cache presents an asymmetric architecture with a fast-write-fast-read RAM being a primary cache and a fast-write-slow-read
NVRAM-disk hierarchy being a backup cache. The asymmetrically parallel architecture and an algorithm that separates actively
accessed data from inactive data in the cache virtually eliminate the garbage collection overhead, which are the major problems
associated with previous solutions such as Log-structured File Systems and Disk Caching Disk. The asymmetric cache allows cost-
effective designs for very large write caches for high-end parallel disk systems that would otherwise have to use dual-copy, costly
NVRAM caches. It also makes it possible to implement reliable write caching for low-end disk 1/0 systems since the RAPID-Cache
makes use of inexpensive disks to perform reliable caching. Our analysis and trace-driven simulation results show that the RAPID-
Cache has significant reliability/cost advantages over conventional single NVRAM write caches and has great cost advantages over
dual-copy NVRAM caches. The RAPID-Cache architecture opens a new dimension for disk system designers to exercise trade-offs

among performance, reliability, and cost.

Index Terms—Disks, storage systems, performance, reliability, fault-tolerance.

1 INTRODUCTION

MODERN disk I/O systems make extensive use of
nonvolatile RAM (NVRAM) write caches to asyn-
chronous write [2], [3], [4], i.e., a write request is acknowl-
edged before the write goes to disk. Such write caches
significantly reduce response times of disk I/O systems
seen by users, particularly in RAID systems. Large write
caches can also improve system throughput by taking
advantage of both temporal and spatial localities [2], [5], as
data may be overwritten several times or combined together
before been written to the disk. IO requests are very bursty
[6], requests are often come together with long intervals of
relative inactive periods in between. Large write caches also
benefit from the the burstiness of write workloads since
data coming from bursts can be quickly stored in the cache
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and written back to the disk later when the system is less
busy. Treiber and Menon reported that write caches could
reduce disk utilization for writes by an order of magnitude
when compared to basic RAID-5 systems [3]. However, the
use of write caches introduces two problems: poor
reliability and high cost.

Disks are impressively reliable today, with a Mean Time
To Failure (MTTF) of up to one million hours. Such a low
failure rate, coupled with possible redundancy such as
RAID, gives a Mean Time To Data Loss (MTTDL) of several
hundreds of millions of hours in a typical RAID-5 system
[7]. Adding a single cache in front of a disk system creates a
single point of failure, which is vulnerable to data loss.
Savage and Wilkes pointed out in [7] that because typical
NVRAM technology (battery backed RAM) has a quite low
MTTF of 15K hours, a single-copy NVRAM cache suffers
significantly higher risk of data loss than results from disk
failures. To overcome the reliability problem, some high-
end RAID systems use dual-copy caches so that a failure in
one cache leaves the other cache intact [2]. When a write
request comes, the controller writes two copies of the data
independently into the two caches, a primary cache and a
backup cache. Besides the reliability problem, NVRAM is
also known to be very costly [7], [8], [9] so the size of the
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NVRAM cache is often limited. For example, a major
NVRAM manufacturer quoted the price of NVRAM with
embedded lithium-cell batteries for $55/MB in quantity as
of December 2000. The cost of disks, on the other hand, is
about 0.5 cents/MB, which is a difference of four orders of
magnitude. Moreover, the cost difference is widening (the
difference was three orders of magnitudes two years ago)
because prices of disks are falling very rapidly. For a disk
system with a reasonably sized write cache, the NVRAM
may dominate the cost of the entire system. For example, in
a system with 16 disks (40 GB per disk) and an NVRAM
write cache of 256 MB, at $55/MB, the NVRAM costs about
$14,080, while the total cost of 16 disks is only $3,200
(assuming each 40-GB disk costs $200). If we use dual-copy
caches to ease the reliability problem of the single-copy
cache, the cost becomes prohibitively high, particularly for
large caches. As a result, it is only suitable for the upper
echelon of the market [10].

The standard dual-copy write cache system has a
symmetric structure, where both the primary write cache
and the backup write cache have the same size and the
same access characteristics—fast read speed and fast write
speed. However, the backup cache does not provide any
performance benefit to the system during normal opera-
tions. Therefore, it is wasteful to use a backup cache
identical to the primary cache. What is needed is only a
backup cache that can be written to very quickly while its
read operations are not as critical since reads from the
backup cache occur only during error-recovering periods.

Based on these observations, we propose a new disk
cache architecture called Redundant, Asymmetrically Parallel,
Inexpensive Disk Cache, or RAPID-Cache for short, to
provide fault-tolerant caching for disk I/O systems in-
expensively. The main idea of the RAPID-Cache is to use a
conventional, fast-write-fast-read primary cache and a non-
volatile, fast-write-slow-read backup cache. The primary
cache is made of normal NVRAM or DRAM, while the
backup cache consists of a small NVRAM cache and a log
disk (cache disk). In the backup cache, small and random
writes are first buffered in the small NVRAM buffer to form
large logs that are written into the cache disk later in large
transfers, similar to log structured file systems [11], [12],
[13], [14]. Because large writes eliminate many expensive
small writes, the buffer is quickly made available for
additional requests so that the two-level cache appears to
the host as a large NVRAM. As a result, the backup cache
can achieve the same write speed as the primary cache. The
slow-read performance of the backup cache does not affect
the system performance since every data block in the
backup cache has a copy in the primary cache which can be
read at the speed of RAM. The dual cache system here is
asymmetric since the primary cache and the backup cache
have different sizes and structures. The reliability of the
RAPID-Cache is expected to be high since, disk is very
reliable. The system is also inexpensive because the
NVRAM in the backup cache can be very small, ranging
from hundreds of KB to several MB and the cost of the disk
space is significantly less than that of a large NVRAM. We
will show that RAPID-Caches provide much higher relia-
bility compared to single-copy NVRAM caches and much

lower cost compared to dual-copy NVRAM caches, without
sacrificing performance. On the other hand, because of its
low cost, with the same budget, RAPID-Caches can have
significantly higher performance compared to conventional
NVRAM cache architectures by affording much larger
primary cache sizes, while still maintaining good reliability.

While the idea of RAPID-Cache can be used in any I/0
system, it is particularly suitable for parallel disk systems
such as RAID because RAID systems are most likely to be
used in environments which require high performance and
high reliability. Therefore, we concentrate our study on
RAPID-Caches on top of RAID-5 systems in this paper. We
have carried out trace-driven simulation experiments as
well as analytical studies to evaluate the performance and
reliability of the RAPID-Cache. Using real-world traces as
well as synthetic traces generated based on realistic work-
loads [6], [15], we analyze the performance of the RAPID-
Cache architecture and compare it with existing disk cache
architectures. Numerical results show that the RAPID-
Cache has significant performance/cost and reliability
advantages over the existing architectures.

The paper is organized as follows: The next section
presents the detailed architecture and operations of the
RAPID-Cache. Section 3 presents our experimental metho-
dology. Simulation results will be presented in Section 4,
followed by an approximate reliability and cost analysis in
Section 5. We discuss related work in Section 6 and
conclude the paper in Section 7.

2 ARCHITECTURE AND OPERATIONS

Fig. 1 shows the basic structure of a RAPID-Cache. It
consists of a conventional primary RAM cache and a
backup cache. The backup cache is a two-level hierarchy
with a small NVRAM on top of a cache disk, similar to DCD
[16]. In a RAPID-Cache, every I/O write operation is sent to
both the primary cache and the backup cache while read
operations are performed using the primary cache only.
For very high overall reliability, the primary cache can be
NVRAM to provide redundant protection during a power
failure. On the other hand, for low cost systems, the
primary cache can be DRAM. During normal operations,
the DRAM primary cache and the backup cache contain
redundant data. If any one of the two caches fails, data can
be reconstructed from the other. During a power failure,
data are retained in the backup NVRAM and the cache disk.
If both the read cache and the primary write cache are made
of DRAM, we can use a unified read/write cache structure,
as shown in Fig. 2a, for better cache utilization. A RAPID-
Cache with a large unified DRAM primary cache has higher
throughput, lower cost, and better reliability than that of a
single-copy conventional NVRAM cache. For many appli-
cations that require redundant protection during a power
failure, a Triple RAPID-Cache (shown in Fig. 2b) can be used
to build a highly reliable, very large cache system. The idea
is to use two low-cost backup caches to support one large
primary DRAM cache. During normal operations, the
primary cache and the two backup caches provide triple
redundancy protection. The two backup caches provide
dual-redundancy protection during a power failure. Triple
RAPID-Caches are especially suitable for high-end systems
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Fig. 1. RAPID-Cache on top of a disk system.

that need very large and very reliable write caches. For
large cache sizes, a Triple RAPID-Cache has lower cost and
better reliability than both a RAPID-Cache with a large
NVRAM primary cache and a conventional dual-copy
NVRAM cache.

2.1 Structures of the Backup Cache

Fig. 3 shows the detailed structures of the backup NVRAM
cache and the cache disk. The NVRAM cache consists of an
LRU Cache, two to four Segment Buffers, and a Hash Table.
Another related data structure, called the Disk Segment
Table, is located in a DRAM buffer.

The actively-accessed data in the backup cache reside in
the LRU cache. The less actively-accessed data are kept in
the cache disk. Data in the cache disk are organized in the
format of Segments similar to that in a Log-structured File
System such as the Sprite LFS and the BSD LFS [12], [13]. A
segment contains a number of slots each of which can hold
one data block. Data blocks stored in segments are
addressed by their Segment IDs and Slot IDs. Data blocks
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stored in the LRU cache are addressed by their Logical Block
Addresses (LBAs). The Hash Table contains location informa-
tion for each of the valid data blocks in the backup cache. It
describes whether a block is in the NVRAM LRU cache or in
the cache disk, as well as the data address in the LRU cache
or the cache disk. In our current design, the size of the hash
entry is 16 bytes. Since data in the backup cache is the exact
image of the data in the primary write cache, the total
number of valid data blocks in the backup cache is the same
as in the primary write cache, regardless of the sizes of the
backup NVRAM and the cache disk. If the data block size is
8 KB, then, for a 32 MB write cache, there are 4,096 blocks in
total. Since each valid block has a corresponding hash entry
of 16 bytes, the total hash table size is 64 KB, which is
compact enough to be placed in the NVRAM.

For the purpose of speeding up garbage collection, we
also keep track of a data structure called the Disk Segment
Table. Since this table contains redundant information that
can be quickly and completely reconstructed from the Hash
Table in case of a crash, it is stored in the DRAM. We will
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distributed logical cache disk.

discuss the structure of the Disk Segment Table in detail
later in this section.

The cache disk in the backup cache can be a dedicated
physical disk, as shown in Fig. 4a. It can also be distributed
among the data disks of the RAID system, each data disk
having a small partition acting as a part of a large distributed
logical cache disk, as shown in Fig. 4b. In modern RAID
systems, the physical cache disk can often be implemented
without extra cost since many modern RAID systems
include one or several spare disks that can be put into
service when an active disk fails [17]. However, as pointed
out by Wilkes et al. [17], during normal operations, the
spare disks are not used in many systems' and contribute
nothing to the performance of the system. It is also hard to
tell if the spare disks are still working since they are not in
use. Such a spare disk can therefore be used as a physical
cache disk of a RAPID-Cache. A secondary benefit here is
that now we are aware of whether the spare disk is in
working condition or not, and we are able to replace the

1. In a system using distributed sparing, the spare disk is utilized during
normal operation.

failed one before it is too late. When a spare disk becomes
an active disk to replace a failed one, the RAPID-Cache can
be degraded to the logical cache disk mode by using a
partition residing on the spare disk until the failed disk is
replaced and a new spare disk is put into the system. In the
case of a logical cache disk, the data written into the logical
cache partitions on the RAID disks do not involve in parity
operations. In other words, the logical cache partitions act
as “Just a Bunch of Logical Disks.” The backup cache
provides a reliable, nonvolatile backup of the cached data.

2.2 Write

When a write request comes, the controller first invalidates
any data copy in the read cache. It then sends the data
simultaneously to the primary cache and the LRU cache of
the backup cache. If there is space available in the caches,
the data are then copied to the caches immediately. A hash
entry in the backup cache is also created to indicate that the
data block is located in the backup LRU cache. Once the
data is written into both the primary cache and the NVRAM
buffer of the backup cache, the controller sends an
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acknowledgment to the host signaling that the request is
complete.

If there is no space left in the primary cache, the
controller first tries to discard a clean block from the cache
to make room for the new request. However, if it cannot
find a clean block, the controller chooses the Least-Recently-
Used (LRU) data block and writes it to the RAID. When the
LRU block is safely written into the RAID, the space in the
primary cache is freed for the incoming request. Mean-
while, the copy of the replaced data in the secondary cache,
whether in the LRU cache or in the cache disk, is also
invalidated.

If the LRU cache in the backup cache is full, the RAPID
controller picks an empty segment buffer and sets it as the
“current” segment buffer. An LRU data block is then copied
to the segment buffer and the corresponding entries in the
Hash Table and the Disk Segment Table are modified to
reflect the fact that the data block is now in the current
segment buffer instead of the LRU cache. Since the segment
buffer is also in the NVRAM, the cache space used by the
LRU data block can now be safely freed to accept the
incoming request. The following write requests may
continue to evict LRU blocks to the segment buffer until
the segment buffer is full. The controller then writes the
contents of the segment buffer into a cache disk segment in
one large write. At this point, the controller switches to
another empty segment buffer as the current segment buffer
and continues operation. Since the entire segment buffer is
written in one large write instead of many small writes, the
segment buffer is very quickly made available again when
the write finishes. Therefore, the small NVRAM cache and
the large cache disk appear to the controller as a large
NVRAM write cache.

The dedicated segment buffers allow the data to be
transferred to the cache disk in a single large and
continuous transfer. If the I/O systems can support
scatter/gather I/O transferring (a hardware technique to
assemble data from noncontiguous memory locations), then
the dedicated segment buffers are not needed.

The segment buffer size directly affects the write
efficiency. For a RAPID-Cache with a dedicated cache disk,
the larger the segment size, the smaller the write overheads
caused by disk seeking and rotational latencies. On the
other hand, a larger segment size results in a smaller LRU
cache size for a given NVRAM size. Therefore, there is a
trade-off between large segment sizes and large backup
LRU cache sizes. During our simulation experiments, we
found that for the workload we used, two to four 256 KB
segment buffers give the best overall performance. For a
RAPID-Cache with a logical cache disk, the segment size
cannot be too large because segment writes must compete
with normal RAID reads in data disks. Large segment sizes
may result in lower read performance. We found that using
four 128 KB segment buffers can achieve good performance
in this case.

2.3 Read

Reading is straightforward in RAPID-Cache. When a
request comes, the read cache and the primary write cache

are searched. If there is a cache hit, data can be returned
immediately. In case of a cache miss, the Least Recently
Used (LRU) block in the read cache is discarded and its
buffer space is freed. The requested data is then read from
the RAID system into the freed LRU block before the data is
returned. The backup cache is not involved in read
operations.

2.4 Destage

In a traditional RAID system with an NVRAM write cache,
dirty data in the write cache is written into the RAID system
in a process called destage [5], which normally happens in
the background. A RAID system with a RAPID-Cache also
requires destaging. In our current design, one or several
destaging threads are initiated when the controller detects an
idle period, or when the number of dirty blocks in the
primary write cache exceeds a high water-mark, say
70 percent of the cache capacity. The destaging threads
find a dirty LRU block in the primary cache, read the old
data and parity of that block from disks or the read cache,
compute the new parity, and write the new data and parity
to disks. After the new data and parity are written, the dirty
block in the primary cache is marked as “clean,” and the
same data block in the backup cache, whether it is in the
NVRAM LRU cache or in the cache disk, is invalidated. The
invalidation of the backup cache block involves releasing
the LRU bulffer if the block is in the NVRAM LRU cache,
marking the corresponding segment slot as “invalid” if the
data is in a disk segment or a segment buffer, and deleting
the hash entry from the hash table. The destaging threads
run continuously until the idle period is over, or until the
dirty block count in the primary cache falls below a low
water-mark, say 30 percent of the cache capacity.

Notice that data in the backup cache are never read or
written during a destaging process. Therefore, the slow-
speed of the cache disk will not affect the destaging
performance.

2.5 Garbage Collection

We have shown that in a RAPID-Cache, data in the cache
disk are organized in segments, similar to an LFS system. In
an LFS system, after the system is running for a while, many
disk segments become only partially full because of data
overwrites and invalidations. As a result, LFS must
frequently call the garbage collector that reads several
partially full disk segments into RAM, compacts the data,
and writes the data back to the disk in a new segment. As
mentioned previously, such garbage collection can cause
great performance loss in some cases.

In a RAPID-Cache system, segments in the cache disk
may also become fragmented and require garbage collec-
tion. However, because of the asymmetrically parallel
architecture of the RAPID-Cache, all data in the cache disk
are also in the primary write cache which can be read
quickly. There is no need to read data from the cache disk.
To do garbage collection, the RAPID controller simply
searches the Disk Segment Table to find several fragmented
segments. It then copies the corresponding data from the
primary cache to a segment buffer in RAM. Finally, the
controller writes the whole contents of the segment buffer to
a new disk segment and invalidates the old segments. The
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garbage collection overhead of a RAPID-Cache is only a
small fraction of that of LFS.

To perform garbage collection, the controller must be
able to to quickly identify which disk segments contain
valid data blocks. It also must be able to quickly find the
Logical Block Address (LBA) of a data block cached in a
disk segment slot when given its Segment ID and Slot ID.
The Disk Segment Table has an entry for each segment in the
cache disk. Each entry contains a counter of valid blocks
cached in the segment, a flag indicating if the segment is
cached in a segment buffer or not, a lock for concurrency
control, and a Slot Mapping Table that describes which slots
in the segment contain valid data. The Slot Mapping Table
is an array of integers. Each slot in the segment has an entry
(an integer) in the table. If the slot does not contain a valid
data block, its entry in the Slot Mapping Table is set to —1.
Otherwise, the entry is set to the LBA of the cached data
block. Since each slot in the cache disk has an entry in its
Slot Mapping Table, the total size of the Disk Segment Table
is mainly determined by the number of slots in the cache
disk. If the cache disk size is 256 MB and the cache block
size is 8 KB, then there are 32K slots requiring 32K integers
(128 KB) in the Disk Segment Table. The information in the
Disk Segment Table can be quickly and completely
reconstructed from the Hash Table in case of a crash.

If garbage collection is needed (when the number of
available empty disk segments falls below a threshold), the
garbage collector is activated. The collector searches the
Disk Segment Table for a set of disk segments with the
smallest valid block counters (which have the maximum
amount of garbage). The collector then reads these seg-
ments into RAM in large I/O requests, finds remaining
valid blocks (using the slot mapping table), and merges
them to form a new segment. The new segment is then
written back to the disk. The old disk segments can now be
marked as blank.

In addition to the low-cost garbage collection algorithm,
in simulation experiments, we found that, for the workload
we used, the RAPID controller almost never had to call the
garbage collector, meaning that the garbage collection
overhead has virtually no impact on the overall system
performance. This is due to the following two reasons: First,
because disk spaces are so inexpensive now (about 0.5 cents
per MB as of this writing), we normally choose a cache
space that is 5-10 times larger than the primary write cache
size. For example, for a primary cache size of 32 MB, we can
use a disk space of 160 MB as the cache space,” which costs
only about $0.8. Since the 32 MB of data are spread over a
space of 160 MB, much of the disk space is empty. Second,
unlike an LFS system which writes both actively-accessed
data and inactive data into a segment, in a RAPID-Cache
system, active data and inactive data are separated. Most
active data are kept in the LRU cache, while data in the disk
segments of the cache disk are relatively inactive. Therefore,
entire segments are often invalidated because the back-

2. Almost all modern disks have a minimal capacity of 20 GB or more as
of this writing. Therefore, for a physical cache disk we may be able to use a
quite large cache-space. As addressed before, a physical cache disk may not
introduce extra cost to the system. For a logical cache disk, however, we
may want to use a smaller cache-space size than the one used here, so we
can have more disk space for data disks.

ground destage constantly threads destage inactive data to
disk arrays. As a result, most of time, the controller can find
an empty disk segment without the need for garbage
collection.

2.6 Error Handling and Availability

A RAPID-Cache system has excellent reliability because of
the data redundancy provided by the primary cache and
the backup cache. If data in any one of the caches is lost for
any reason, the other cache is read to rebuild the data.
During a system crash or a power failure, data is retained in
the NVRAM or the cache disk of the backup cache. If the
primary cache is also made of NVRAM, it can provide
additional protection. It takes only several seconds (tens of
seconds at most) to recover all the data from the backup
cache because reading from the cache disk is done in the
large segment size thus is very efficient.

In fact, during a power failure period, data cached in the
cache disk is much safer than in an NVRAM. Disks can
retain their data for a long period of time without doing
anything. On the other hand, data stored in active devices
such as NVRAM or UPS (Uninterrupted Power Supply)
backed DRAM are not as safe as data on disks because
NVRAM batteries may leak and UPS may run out of power
or fail.

Compared to a single NVRAM write cache, a RAPID-
Cache system has excellent availability. If one cache partition
of a logical cache disk crashes, the whole system can operate
continuously since either a spare disk will swap in to replace
the failed disk, or the controller can simply skip the failed disk
without affecting the system performance significantly. If a
dedicated cache disk crashed, the system can borrow a small
partition from each data disk and operate in a logical cache
disk mode. If the NVRAM of the backup cache fails, a small
portion of the primary cache can be borrowed so the system
can continue its operations until the failed NVRAM is
replaced. If the primary write cache fails, the read cache can
be switched to a unified read/write cache mode to accept
write data. In the case where a RAPID-Cache system uses a
unified read/write primary cache, if the entire unified
primary cache fails, the system may still operate in a
degraded mode with lower performance because of the slow
read speed of the backup cache.

3 SIMULATION MODELS

We use trace-driven simulations to evaluate the effective-
ness of RAPID-Cache. In this section, we describe the
details of our simulation and workload models.

3.1 The Simulators

The RAPID-Cache simulator is built on top of a general
cached-RAIDS5 simulator developed by us. The RAID map-
ping function is borrowed from the Berkeley raidsim
simulator. The disk model used in our simulator is developed
by Kotz et al. [18] that models an HP 97560 disk drive
described in [19]. HP 97560 is a 5.25-inch, 1.26 GB disk with an
average access time of 23 ms for an 8 KB data block. The disk
simulator provides detailed simulation, including SCSI bus
contention, built-in cache read-ahead and write-behind,
head-skewing, etc. The simulator is quite accurate and is
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used by several other large scale simulation systems such as
Stanford SimOS and Dartmouth STARFISH. However, HP
97560 is slightly out-dated. We have made the following
changes to make it closer to the performance ranges of current
disks: increasing the rotation speed from 4,002 rpm to
7,200 rpm, increasing its capacity by increasing the average
linear density from 72 sectors/track to 288 sectors/track,
increasing the interface bus speed from 10 MB/sec to 40 MB/
sec; and decreasing its platter number from 10 to 3. We also
assume that the RAID controller has a high-speed 80 MB/sec
fibre-channel bus connected to the host. Requests must
reserve the bus before starting data transfer. The bus speed
also limit, the response time of NVRAM/RAM cache hits
since data hit in the RAM cache also need to be read through
the bus. The controller can handle up to 32 pending requests.
Additional requests must wait in a FIFO queue. Requests are
processed in a First-Come-First-Serve basis, but they may
complete out-of-order. The cache block size is 8 KB. The cache
is fully associative and uses a LRU algorithm, which is easy
and efficient to implememnt with software for such a
relatively small cache. For the RAID-5 simulator, the number
of RAID-5 columns is set to be 8 or 16 disks and the number of
RAID-5 rows to be 1. The stripe unit is 32 KB and the data
layout is Left-Symmetric. All results were obtained with the
garbage collector running.

3.2 Workload Models

The purpose of our performance evaluation is to show that
the RAPID-Cache can deliver the same performance as very
expensive NVRAM caches under various workload envir-
onments. In order to provide a fair and unbiased evalua-
tion, we paid special attention in selecting the workload that
drives our simulators since it plays a critical role in
performance evaluation. Our main objective in choosing
the workload models is to make it as close to realistic
workloads as possible and to cover as wide a range of
parameters as possible. With this objective in mind, two sets
of trace files have been selected as discussed below.

3.2.1 Real-World Traces

The first set of traces are real-world traces obtained from
EMC Corporation and HP Laboratories. The EMC trace
(referred to as EMC-tel trace hereafter) was collected by an
EMC Symmetrix disk array system installed at a telecom-
munication customer site. The trace file contains more than
200,000 requests, with a fixed request size of 2 KB. The trace
is write-dominated with a write ratio of 89 percent. The
average request rate is about 333 requests/second.

The HP traces were collected from HP-UX systems during
a4-month period and are described in detail in [6]. The trace is
called cello-news. It is a single disk holding the Usenet news
database. The news database was updated constantly
throughout the day. The trace has been used by Savage and
Wilkes to evaluate their AFRAID RAID system [7]. We have
chosen 10 days of traces starting from May 1, 1992. Each day
has several hundreds of thousand requests.

Careful examination of the HP trace files reveals that I/O
requests are very bursty [6]. The request rate in each request
burst is very high while there usually exists a very long idle
period (up to 30 seconds) between two consecutive bursts of
requests. As a result, the average request rate is very low at

about several requests per second. With such a low request
rate and highly bursty request pattern, the RAPID-Cache will
obviously perform very well since it will have enough time to
move all data in the NVRAM buffer collected in a burst into
the cache disk and to do destaging and garbage collection
during an idle period. In order to present a conservative
evaluation for the RAPID-Cache, we artificially reduce the
idle period to increase the average request rate. We searched
the traces and shortened any idle period longer than
50 milliseconds to 50 milliseconds to make the average
requestrate about 40 requests/second. To further increase the
I/Orate, we also overlaid several days of cello-news traces into
a single trace. The same approach has been used by Varma
and Jacobson in [5] in which up to six days of cello traces were
overlaid to study the performance of RAID-5 caches. In this
study, we overlaid up to 10 days of traces, giving rise to a
request rate of 400 requests/second. The numbers of requests
in the resulting traces vary from about 200,000 requests to
about one million. The request size is about 8 KB.

3.2.2 Synthetic Traces

While real-world traces give a realistic evaluation of the
performance of the systems, they have a limited view of
system performance considering the fast changing compu-
ter world [20]. In order to observe how the RAPID-Cache
performs under a variety of workloads, we generated a set
of synthetic traces. Our synthetic traces were generated
based on I/0O access characteristics of the cello-news traces
and the traces presented by Zivkov and Smith [15]. We
carefully fine-tuned the trace generation parameters such as
request interval times, data access patterns, working-set sizes,
and read/write ratios in such a way that the characteristics of
generated traces are similar to these real-world traces.
Furthermore, in order to provide a fair and comprehensive
evaluation, we also vary the workloads over a wide
spectrum to cover as many as possible of all possible
workload situations.

The request interval time in the traces is modeled using
exponentially distributed random variables. We chose the
exponential distribution function after our analyses on cello-
news and other traces from HP Laboratories. An I/O request
may come in a burst which is called a “bursty” request or
outside of a burst which is called a “background” request.
The generator repeatedly inserts clusters of bursty requests
into the “background” requests. The mean request rate in a
burst is 10 times larger than the mean request rate of
background requests, though both have exponentially
distributed interval times. The burst length and the interval
length between two consecutive bursts in terms of the
number of requests are exponentially distributed based on
the analysis of real-world traces, with the mean being A and
1, respectively.

The data access pattern is modeled using an approach
similar to the one used by Varma and Jacobson in [5]. Two
separate history tables are maintained, one for writes, and
the other for reads. A request may be selected either from a
history table or selected uniformly among all possible disk
addresses. If the request is to be selected from a history
table, an entry in the table is selected using a random
variable representing the distance of the entry from the top
of the table. While our analysis of the real-world traces
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shows that this distance can be approximated by an
exponential distribution most of the time, we intentionally
chose three different distribution functions, namely expo-
nential distribution, normal distribution, and uniform
distribution, to generate traces with different access
patterns. The history tables are in the form of LRU stacks
to simulate the temporal locality of I/O accesses. When an
entry is selected from a table, it is removed from the stack
and pushed back on top of the stack.

The working-set size is mainly controlled by the sizes of
the history tables. Larger history tables result in larger
working-sets. In [15], Zivkov and Smith performed ex-
tensive research on disk caching in large databases and
timesharing systems. They found that traces from different
systems show significantly different characteristics. The
working-set sizes of our synthetic traces are modeled after
the cello-news traces and traces studied by Zivkov and
Smith. Fig. 5 shows the cache miss ratios as a function of
cache sizes for EMC-tel, cello-news, and our three synthetic
traces on an LRU cache with an 8 KB block size. Synthetic-A
trace is modeled after cello-news with a slightly higher initial
miss ratio and a smaller working-set of 32 MB. Synthetic-B is
modeled after the “telecom” trace in [15], which has a very
low initial miss ratio of 17 percent (hence, a very small first
working-set). Its miss ratio decreases very slowly when the
cache size increases. EMC-tel also has a low initial miss
ratio. Finally, Synthetic-C is modeled after the “bank” trace
in [15] with a moderate initial miss ratio of 60 percent and a

I
32 64 128 256 512

very large working-set of 512 MB. Table 1 lists the
characteristics of all five traces used in this study. The
request sizes of these traces are 8 KB except for EMC-tel,

which has a request size of 2 KB.
We have generated 112 different trace files with the mean

I/O request rates ranging from 100 to 8,000 requests/second.
Each trace file contains at least 200,000 requests. To verify
whether 200,000 requests are sufficient to generate reason-
ably accurate results in each simulation run, we selected
several trace files and increased their request numbers to over
one million. We then ran simulations under several different
configurations using these long traces. We found that the
results of a trace with 200,000 requests are within 3-10 percent
of the same trace with one million requests. As a result of the
cold-start effect, the average response times of 200,000
requests are always biased 3-10 percent slower than those of
one million requests. However, the relative performance of
different configurations using the same trace length does not
change. For example, a RAPID-Cache and a standard dual-
copy cache have almost identical performance for traces with
200,000 requests. The two still have almost identical
performance for traces with one million requests, although
their average response times are slightly faster with the
longer trace. Given the time limit, we ran most our
simulations using 200,000 requests.

TABLE 1

Characteristics of Traces
Trace Read | Access Working Burstiness Note
Name Ratio | Pattern sct(MB) | of synthetic traces
EMC-tel 11% | N/A 128 N/A Write-dominated
Cello-news | 40% | N/A 128 N/A Write-dominated, very bursty
Synthetic-A | 40% | normal 32 A=32,4=1024 | Write-dominaled, moderale working-set
Synthetic-B | 40% | uniform 1 A =128, p = 1024 | Write-dominated, very small working-set
Synthetic-C | 80% | exponential 512 A=64, p=1024 | Read-dominated, very large working-set

“Access Pattern” refers to the random function that controls the distance from the top of history table to a selected entry in the table. \ is the mean
burst length, while 1. is the mean interval length; both are in terms of the number of requests.
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TABLE 2
Performance of Trace EMC-tel
Cache sizes Response Time (ms)
Read/Write Split R/W Cache Unified R/W Cache
baseline P-RAPID L-RAPID baseline P-RAPID L-RAPID
(MB) read | write | read | write | read | write | read | write | read | write | read | write
8/4 (12) 344 | 0.15 | 3.44 | 0.16 | 3.55| 0.16 | 3.03 | 0.15 | 3.03| 0.16 | 3.16| 0.16
8/8 (16) 271 | 0.15 | 271 | 0.16 | 2.84 | 0.16 | 256 | 0.15 | 2.56| 0.16 | 2.69 | 0.16
8/16 (24) 1751 015 | 1.75| 0.16 | 1.87| 0.16 | 1.96| 0.15| 1.96| 0.16 | 2.08| 0.16

The size of the NVRAM buffer of the RAPID-Cache is 1 MB. L-RAPID means Logical-RAPID-Cache and P-RAPID means Physical-RAPID-Cache.

4 SIMULATION RESULTS

Our objective here is to show that the RAPID-Cache has the
same or similar performance as the conventional cache,
with much lower cost and much higher reliability. On the
other hand, with the same budget, the RAPID-Cache
architecture allows a much larger primary cache because
of its low cost to obtain much higher performance
compared to a conventional cache. For this purpose, we
define a baseline system as a conventional read /write cache
system with an optional backup NVRAM cache that is of
the same size as the primary write cache. The backup
NVRAM size of RAPID-Caches is chosen to be 2 MB. We
found through our experiments that using a size larger than
2 MB does not result in significant performance improve-
ment and using a size smaller than 1 MB may cause
performance degradation for some traces. Section 4.2.1
discusses the impact of the backup cache size in more detail.
The size of cache disks of RAPID-Caches is set to 256 MB for
all simulation runs. This number was chosen because it is
large enough to avoid garbage collection most of time.

4.1 1/O Performance

In this section, we will compare the performance of RAPID-
Caches with those of conventional caches in terms of
throughput and response time using the simulation results.
Itshould be emphasized, that for the same primary cachesize,
a RAPID-Cache system will not perform better than a

Read Cache = 32 MB, Write Cache = 16 MB

Read Cache = 32 MB, Write Cache = 24 MB

conventional cache because the system performance is
mainly limited by the primary cache size. Rather, we will
show that the RAPID-Cache has the same or similar
performance as the conventional cache with much lower cost
and much higher reliability. On the other hand, with the same
budget, the RAPID-Cache architecture allows a much larger
primary cache because of its low cost to obtain much higher
performance compared to a conventional cache.

4.1.1 Performance of Real-World Traces

Because the real-world traces (EMC-tel and cello-news) have
only a moderate load, we used a relatively small system for
simulation. The number of disks in the RAID-5 system is set
to 8. The read cache size is 8 MB for the EMC-tel trace and
32 MB for the cello-news trace. We varied the primary write
cache sizes from 4 to 16 MB for the EMC-tel trace and 16 to 32
MB for the cello-news trace.

Table 2 lists the read and write response time of the
baseline systems and RAPID caches under the EMC-tel
workload. Because of the use of immediate report and the
low cache miss ratio of this trace, the average response
times are quite low, especially for write requests. The table
shows that the baseline system and the RAPID-Caches have
very similar or almost identical performance.

Fig. 6 compares the performance of RAPID-Caches with
those of conventional caches under the Cello-news trace. In
the figure, the average I/O response times (of both read and

Read Cache = 32, Write Cache = 32 MB
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write requests) are plotted as functions of numbers of
overlaid traces. Because of the use of large read caches and
the fast write technique, the average response times of all
systems are very low at low throughput. The average
response times steadily increase as the number of overlaid
traces (hence, the I/O request rate) goes high because of the
increased disk traffic. Eventually, the I/O request rate
increases to a point where the system is saturated and the
response times increase sharply. At this point the system
cannot handle any higher workload. We define the
throughput at this point as the maximum system throughput.

It is clear from the results that the performance of
RAPID-Caches is very close to that of baseline systems in
terms of maximum system throughput and response time
most of time. This confirms that the backup cache of
RAPID-Caches performs very well. The small NVRAM and
the cache disk do achieve the similar write performance as
that of the large primary write cache.

For a Logical-RAPID-Cache, log writes onto disks have
to compete with normal data reads and destages, which
may cause performance degradation. However it is inter-
esting to note that the Logical-RAPID-Cache performs quite
well most of the time. The reason is that the logical cache
disk space is distributed among many data disks; therefore,
the traffic caused by log writing, seen by each individual
data disk is relatively low. In addition, we can use large
read caches in our systems because DRAM is inexpensive
now. The large read caches significantly reduce the disk
read traffic seen by the data disks, thus further reducing the
possibility of bandwidth conflicts.

For EMC-tel, a Physical-RAPID-Cache always performs
better than a Logical-RAPID-Cache. For cello-news, a
Physical-RAPID-Cache performs better than a Logical-
RAPID-Cache at the high workload near the saturation
point. However, for this particular trace, the Physical-
RAPID-Cache shows slightly higher response times than
those of the Logical-RAPID-Cache and the baseline system
at low workloads. This can be attributed to the extreme
burstiness of the cello-news traces as well as the artificially
reduced interburst periods. Since we have artificially
reduced the length of all long interburst idle periods to 50
ms to stress the RAPID-Cache system, many large bursts
arrive closely, overflowing the small (2 MB) backup
NVRAM in the RAPID-Cache. As a result, the contents of
the backup NVRAM in the RAPID-Cache have to be log-
written into the cache disk several times during a large
burst. This may create a waiting queue in front of the
physical cache disk, resulting in a slightly increased write
response time therefore a slightly increased average
response time. For Logical-RAPID-Caches, the log-write
traffic is distributed among multiple disks, so the queuing
effect of log writing, is negligible when the workload is low.

We believe that the slightly increased write response time
of Physical-RAPID-Caches under such a highly bursty
workload is not a major performance concern. The main
performance metric here is throughput. As long as the cache
disk has sufficient bandwidth to keep up with the write traffic
in the long run (we will discuss the performance of the cache
disk later in this section), the throughput of the entire system
in the equilibrium state is limited by the primary cache, not

the backup cache. Moreover, because of its low cost, with the
same budget a RAPID-Cache can use a much larger primary
cache to achieve a much higher throughput and lower
response time than a baseline system. For example, as shown
in Fig. 6, for the same backup cache configuration, increasing
the size of primary write cache of the RAPID-Cache from
16 MB to 32 MB almost doubles its throughput and reduces
the response time.

4.1.2 Performance of Synthetic Traces

Since the synthetic traces have higher I/O rates, we
scaled up the systems by increasing the number of disks
in the RAID-5 systems from 8 to 16 and the read cache
size from 32 MB to 64 MB. Figs. 7, 8, and 9 compare the
performance of RAPID-Caches with those of conventional
caches. In each of these figures, the top three subplots
show the average I/O response times plotted as functions
of I/O request rates (throughput).

It is clear from the simulation results that the maximum
throughputs of Physical-RAPID-Caches are almost identical
to that of baseline systems. Logical-RAPID-Caches also
perform very well. Their performance is similar or close to
that of baseline systems.

The response-time versus throughput curves of RAPID-
Caches and baseline systems are almost completely over-
lapped together most of time. To make it easier to compare, in
the botton subplots of Figs. 7, 8, and 9, we show the relative
differences of response times vesus throughput before
saturation points (data after saturation points are mean-
ingless, as the systems are not in a workable state). These
subplots show that the response times of Physical-RAPID-
Caches are very similar to that of the baseline system (within
1.5 percent most of time). Even in the worst case, which occurs
for Synthetic-C trace under very high load, the Physical-
RAPID-Caches have response-times only 2-4 percent higher
than the baseline systems. The Logical-RAPID-Caches have
slightly higher response times (1-10 percent higher) than the
baseline systems. As discussed in the last section, such sightly
increased response times should not be a major concern since
the most important performance metrics here is throughput.

Itis interesting to note that, for read-dominated traces such
as synthetic-C (Fig. 9), the performance degrades gracefully
when the workload increases, while for write-dominated
traces such as synthetic-A and synthetic-B (Figs. 7 and 8) the
performance changes relatively abruptly. When the work-
load increases, the read response times increase rapidly
because of the increased disk traffic, while the write response
times increase only gradually because of the use of the fast
write technique. In write-dominated traces, the average
response time is largely determined by the write response
time; therefore, the average response times increase only
gradually until the system write cache saturates. At this point,
the average response times increase abruptly.

4.2 Performance Impacts of the Backup Cache

To obtain a better picture of how the backup cache affects
the overall system performance, in this section, we study
the effects of the backup NVRAM size and the maximum
throughput of backup caches.
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4.2.1 Effects of the Backup NVRAM Size
To study the effect of the backup NVRAM size on the

system performance, we varied the backup NVRAM size

11

and reran some simulation experiments. Fig. 10 shows the
performance of Physical-RAPID-Caches with three different
backup NVRAM sizes, 0.5 MB, 1 MB, and 2 MB and
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compares them with that of a baseline system. We can see
that, when the request rates are low, all three sizes perform
equally well. However, the performance of the 0.5 MB case
degrades at high workloads. Because of the limited backup
NVRAM size in this case, the system may run out of
segment buffers while all previous log writes are pending.
As a result, if a following write request must evict a block
from the backup LRU cache to a segment buffer, it must

wait until a log write finishes so a segment buffer can be
freed. This causes high response times and low throughput.
When we increase the backup cache size to 1 or 2 MB, the
system almost never runs out of segment buffers. Therefore,
we are able to obtain nearly equivalent write performance
as the baseline system. This is demonstrated by the fact that
the response time versus throughout curve of the Physical-
RAPID-Cache and that of the baseline system are almost

Read Cache = 64 MB, Write Cache = 64 MB
20 T T T T T T I lll
18l o——o Dbaseline |
— physical-RAPID 2.0 MB
o—— physical-RAPID 1.0 MB
ler =——= physical-RAPID 0.5 MB| |

)

(ms

Response Time

600
Throughput

200 400

Fig. 10. Effects of Backup NVRAM Sizes on trace Synthetic-A.

800
(requests/second)

1000 1200 1400 1600



HU ET AL.: RAPID-CACHE—A RELIABLE AND INEXPENSIVE WRITE CACHE FOR HIGH PERFORMANCE STROAGE SYSTEMS 13

100 T ? T
90
i

80

70

(%)

60

50

40

miss ratio

30

20

10

O 1 I |

Fig. 11. Miss ratios versus cache sizes of trace Synthetic-D.

completely overlapped and it is often difficult to tell which
line corresponds to which system. Similar results are
observed for other traces and configurations.

4.2.2 The Maximum Throughput of the Backup Cache
In a RAPID-Cache, both the primary cache and the backup
cache may affect the overall performance. Since the goal of
the RAPID-Cache is to provide a low-cost backup cache that
matches the write performance of the primary cache, we do
not want the backup cache to become a potential perfor-
mance bottleneck. In this section, we try to isolate the
backup cache from the rest of the system and study its
performance limitations. Basically, we assume a near-
perfect primary cache that is much larger than the work-
ing-set of the workload. In such a system, the overall
performance is only limited by the backup cache. Note here,
we will only study the case of the dedicated cache disk. For
the logical cache disk, it is difficult to isolate the interaction
between the log writes and normal data reads/writes and
we are currently studying ways to evaluate the performance
limits of logical cache disks.

We constructed a new trace called synthetic-D for this
purpose. The trace contains only write requests since we are
only interested in the performance of the backup cache
which is write only. As shown in Fig. 11, the trace has a
working set of 32 MB. A cache larger than 32 MB can absorb
more than 97 percent of all requests, eliminating much of
the traffic to the data disks.

We chose a primary cache consisting of a 128 MB read
cache and a 128 MB write cache, which is much larger than
the working-set of the trace. The NVRAM in the backup
cache is 2 MB. In addition to the default segment size of
128 KB, we also used a larger segment size of 256 KB to
study the effect of larger segments. Fig. 12 shows the
simulation results. In the case of the 128 KB segment size,

1
1 2 4 8 16
cache size

1
32 64
(MB)

the maximum throughput of the backup cache is about
1,400 write requests/second. For this pure-write trace, the
backup cache with a 256 KB segment size has a higher
throughput of 1,600 write requests/second because larger
segments utilizes the disk bandwidth more efficiently.
However, we found that for read-dominated traces, there
is no noticeable performance difference between the cases
of 128 KB and 256 KB segment sizes.

Notice however, that, the maximum throughput of 1,400-
1,600 requests/second is only for this pure-write trace. On
the other hand, most transaction-processing workloads are
read-dominated. If a workload contains 60 percent of reads
and 40 percent of writes, the write throughput of 1,400-1,600
requests/second will translate to a read/write throughput
of 3,500-4,000 requests/second (because read traffic does
not consume the backup cache bandwidth).

There are several possible ways to further improve the
performance of the physical RAPID-Cache at very high
workloads:

1. Use a faster disk with a higher read-channel bandwidth.
Many new disk drives offer a higher bandwidth than
the one we used in our simulations.

2. Use multiple physical cache disks to obtain a higher
aggregated bandwidth. For example, in our simulation
we use only one physical cache disk for 16 data
disks. We can easily double the cache disk band-
width by using two physical cache disks. Since many
RAID products contain several spare disks, we can
use multiple spare disks as multiple cache disks for
free. Moreover, a disk costs only several hundreds
dollars. Compared to expensive NVRAM, a RAPID-
Cache with two or more physical cache disks is still a
low cost solution, even when we have to use an extra
dedicated cache disk instead of a “free” spare disk.
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Fig. 12 Maximum throughput of the backup cache for trace Synthetic-D.

3. Use a low cost solution that combines a physical cache
disk with a logical cache disk. In such a scheme, logs are
normally written into a dedicated cache disk so that
log writes will not affect the read performance. Once
the load becomes so high that the dedicated cache
disk saturates, the controller distributes a part of the
log write traffic to the logical cache distributed
among data disks, resulting in a higher combined
log writing, bandwidth.

5 RELIABILITY AND COSTS
5.1 Reliability Model

In this section, we analyze the reliability of the cache system
based on exponentially distributed failures and repairs for
both RAM and disks. We will consider four different cache
configurations, namely, RAPID-Cache with an NVRAM
primary cache, RAPID-Cache with a DRAM primary cache,
Single NVRAM cache, and Dual NVRAM caches.

Consider a RAPID-Cache with an NVRAM primary
cache. Assume that the primary cache consists of a number
of NVRAM memory modules. Let MTTFyyran and
MTT Fy;q, represent the mean time to failure of an NVRAM
module and the mean time to failure of a disk, respectively.
In case of a failure, a repair process can start by replacing a
failed memory module or a failed disk. It is reasonable to
assume that the mean repair time for both RAM and disk is
same denoted by MTTR. Recall that each write operation in
the RAPID-Cache is performed in both the primary cache
and the backup cache. If a memory module in the primary
cache fails, the data are lost only if the component
containing the same data copy in the backup cache also
fails before the repair for the failed module is done.
Similarly, if a component in the backup cache fails first,
that data is lost if the copy in the primary cache also fails
before repair. Let Spyimec and Sprupran be the size, in terms

(requests/second)

of memory modules, of primary cache and the size of the
NVRAM in the backup cache, respectively. The mean
failure rate caused by both a primary cache failure and a
failure of the NVRAM of the backup cache is

SprimecSthuprart MTT R/ (MTT Fxypan )’

And the mean failure rate caused by both a primary cache
failure and a disk failure is

Sprimec MTTR/(MTTEny papy MTT Fyig).

The probability that the mirror copy of a primary cache data
resides in the NVRAM of the backup cache is
Sbkupran [ Sprimec, and the probability that the mirror copy
resides in the disk of the backup cache is
1 — Spruprant/Sprimec. Therefore, the mean failure rate of the
entire cache system is given by

_ SPrimeCShkuprAMMTTR (Sbku,pRAM)
(MTTFyvran)’
SprimecMTTR
MTTFyyran MTT Fyig, (

1
S PrimeC

B SbkupRAM)

+
SP'rimeC

It reduces to

 (Shuprant)’MTTR
(MTTFxvranm)?

(SPrimeC - Sl)k‘upRAJ\f[)MTTR
MTTFEnypam MTT Fyisi
(1)
The mean time to data loss (MTTDL) of the RAPID-Cache
system with an NVRAM Primary cache is therefore given
by

MTTDLRapip-NP :A—ll

N (2)
(MTTFyy pan)? MTTEy; .

= n 21 o n .
MTTRMTTF il (SpruprAn)“+MTTENY RAM (SPrimeC —SbkupRAM))
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TABLE 3
Reliability and Costs Comparison of the Different Write Cache Architectures

Cache sizes Reliability (MTTDL in hours) Cost (US Dollars)

Rcad/Write Single Dual-copy | RAPID RAPID Single | Dual-copy | RAPID RAPID
(MB/MB) | NVRAM | NVRAM | Cache-DP | Cache-NP | NVRAM | NVRAM | Cache-DP | Cache-NP
64/16 1.25%¥101 | 5.21%#107 | 6.70%¥10° | 4.53%107 $912 $1,792 $151 $1,023
64/32 6.25%10% | 2.60%107 | 6.36%10° | 3.86%107 $1,792 $3,552 $159 $1,903
64/64 3.13¥10% | 1.30¥107 | 5.77%10% | 2.98%107 $3,552 $7,072 $175 $3,603

The size of the NVRAM buffer of the RAPID-Cache is 2 MB. Note: RAPID Cache-DP refers to a RAPID-Cache with a DRAM primary write cache.
RAPID Cache-NP refers to a RAPID-Cache with an NVRAM primary write cache.

As mentioned previously, NVRAM is orders of magni-
tude more expensive than regular DRAM. With the new
RAPID-Cache architecture, it is possible to implement the
primary cache using DRAM instead of NVRAM. Using
DRAM as a primary write cache, on the other hand, may
compromise the reliability of the cache. In addition to RAM
failures, data may get lost due to several other reasons such
as a power failure, hardware failures such as CPU failures,
environment failures, etc. To cope with frequent power
failures, most systems use an UPS to prevent data loss from
sudden power failures. In this case, data loss occurs in the
DRAM only when the power fails and the UPS also fails. If a
hardware failure such as a CPU failure occurs, replacing the
failed hardware usually requires a system shutdown. As a
result, all data in a DRAM will be lost and they have to be
recovered from the backup cache. The data failure rate at
the backup cache is Syeuprant/ MTTFyyran + 1/ MTTFyg.
Let MTTPF, MTTFyps, and MTTHF be the mean time to
power failure, mean time to failure for the UPS, and the
mean time to hardware failure, respectively. Assume that
the mean time to repair is the same for all types of failures
(MTTR). Then, the mean failure rate is given by

Ny = ( ShiupRAM n 1 >
MTTExvram  MTT g
(S PrimecMTTR MTTR MTTR? >

MTTFopan |~ MTTHE | MTTPF « MTTFypg
(3)

and the mean time to data loss of the RAPID-Cache with a
DRAM Primary cache is
1
MTTDLgapip-pp = . (4)
2.

The reliability analysis of the other two cache architec-
tures is straightforward. For the single NVRAM cache case,
the mean time to data loss is simply MTT Fnvran/Sprimec-
The mean time to data loss for the dual NVRAM case is
(MTTFyvran)’/(Sprimec MTTR)

5.2 Reliability and Costs Comparison

One important factor that determines the reliability of the
write cache is the mean time to failure of NVRAM.
Unfortunately, remarkably little data is available from
literature or data sheets of various RAM products. Savage
and Wilkes [7] cited 25-87K hours of data retention lifetimes
of Integral Lithium-cell-backed static RAM that are ex-
tremely expensive and 15K hours of predicted MTTF for the

popular PrestoServe card. With the lack of published data
for MTTF, we assume optimistically an MTTF of RAM to be
200k hours, which favors conventional NVRAM cache
architectures and represents a conservative evaluation for
RAPID-Cache. Our analysis also assumes that the NVRAM
cache consists of a number of 2MB modules [21]. Some
existing disk systems such as the RAIDs from Storage
Computer Co. use independent modules to constitute a
write cache. Power failures and UPS failure are another
source of possible data loss if DRAM is used. We assume
that all the systems considered are backed up by UPS
systems. We chose the mean time to power failure (MTTPF)
of 4,300 hours [22] and the MTTF of UPS (MTT Fyps) of
200k hours [7] in our analysis. The mean time to hardware
failures and environment failures etc. is assumed to be one
month or 720 hours [4]. The MTTF for disks, M MT Fy., is
assumed to be one million hours. The mean time to repair
for all types of failures here is assumed to be 48 hours.

Cost figures for semiconductor devices and disks change
very rapidly. It is difficult to give an accurate and up-to-
date cost evaluation. In order to give a general idea for the
cost of the different cache architectures, we made the
following assumptions: The cost of DRAM is $0.5/MB and
the cost of NVRAM is $55/MB which was quoted by a
major NVRAM manufacturer as of December 2000. The cost
of disk space is 0.5 cents/MB. For a logical cache disk, it is
quite reasonable to use this cost number since the cache
space of a logical cache disk is located in partitions of data
disks. In the case of a physical cache disk, the cache space is
located in a partition of a hot standby disk as explained
previously. Therefore, it is also reasonable to use the per MB
cost figure since no additional disk drive is needed. If no
spare disk were available in a RAID, a dedicated cache disk
would be required that will add to the cost an additional
$100 for a minimum size disk drive available in the market.

Table 3 lists the reliability and cost comparison between
the baseline cache and our RAPID-Cache for three typical
configurations. For easy comparison, we also summarize
the performance of different cache architectures under
different traces in Table 4.

It is clear from the table that the difference between the
baseline cache and the RAPID-Cache in terms of reliability
and cost is significant. Compared to a single copy NVRAM
write cache, the reliability of the RAPID-Cache with an
NVRAM write cache is five orders of magnitudes higher
than that of the baseline cache system while the additional
cost introduced by the RAPID-Cache is only between
3 percent and 11 percent. Compared to the dual copy
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TABLE 4
Performance of Different Cache Architectures Under Synthetic Traces
Cache sizes Logical RAPID-Cache Baseline and Physical RAPID-Cache
Recad/Writc Max. Throughput (Req./Scc.) Max. Throughput (Req./Sec.)
(MB) Synthetic-A | Synthetic-B | Synthetic-C | Synthetic-A | Synthetic-B | Synthetic-C
64/16 710 1130 1040 740 1130 1040
64/32 1220 1420 1300 1300 1420 1300
64/64 1380 2470 1400 1440 2520 1440

NVRAM caches, the RAPID-Caches with an NVRAM
primary cache still have higher reliability than the baseline
cache system (because disks are more reliable than
NVRAM) with approximately half of the cost. For the
RAPID-Cache with a DRAM write primary cache, its
reliability is three orders of magnitude better than a
single-copy NVRAM cache. More importantly, the cost of
the RAPID-Cache is dramatically lower than both single-
copy NVRAM caches and dual-copy NVRAM caches. In
some cases, the cost of the RAPID-Cache is only 5 percent of
the single-copy NVRAM caches and 3 percent of the dual-
copy NVRAM caches. In other words, the RAPID-Cache
provides similar reliability to that of the baseline cache
which costs over 1,000 dollars. Moreover, a RAPID-Cache
can use a much larger primary cache to improve its
performance while still maintaining its low cost. For
example, a RAPID-Cache with a 64 MB DRAM read cache
and a 64 MB DRAM write cache costs only $175. Yet it
provides more than two times higher throughput and three
orders of magnitude better reliability than a single-copy
NVRAM write cache of the 16 MB, which costs $912.

As we pointed out, cost figures for semiconductor devices
and disks change very rapidly. In the past three years, the
costs of DRAM and disk have dropped by 10 times. The cost of
NVRAM, on the contrary, has dropped by less than
50 percent. It is very likely that this trend will continue. As a
result, the cost difference between our schemes and the
traditional NVRAM Cache systems will only increase in the
future. Moreover, I/O systems are using larger and larger
write caches to accommodate the increasing I/O demands.
The larger the caches, the bigger the savings our scheme will
provide.

6 RELATED WORK

Ng and Chen [23], [24] proposed Rio (RAM I/0) to
implement reliable RAM. Rio is a software system that
makes RAM to survive operating system crashes. The goals
of RAPID-Caches and RIOs are very different. RAPID-
Caches are hardware soultions that tolerate hardware
failures, power outages, and software crashes. Rio focuses
on surviving software crashes only.

The idea of using a disk-based log to improve system
performance or to improve the reliability of RAM has been
used in both file systems and database systems for a long
time. For example, the Log-structured File System (LFS)
[11], [12], [13], the Journal File System (JFS), and other
similar systems all use disk-based data/metadata logging to
improve file system performance and speed-up crash

recovery. Database systems have long been using elaborate
logging techniques to improve the reliability of the RAM
buffer and to implement the transaction semantics.
NVRAM has been used by many database systems to
reduce the overhead of logging.

Several RAID systems have implemented the LFS
algorithm at the RAID controller level [25], [17]. LFS collects
writes in a RAM buffer to form large logs and writes large
logs to data disks. While LFS has demonstrated superior
performance for many workloads, studies have shown that
the garbage collection overhead of LFS can become a major
performance bottleneck in transaction-processing environ-
ments, decreasing the system performance by 34-40 percent
[13], [26]. The garbage collection overhead becomes very
high when the disk utilization reaches 80 percent of the total
disk capacity [13], [25].

Disk Caching Disks (DCD) proposed in [16] shows that it
is possible to implement a large nonvolatile write cache
inexpensively. DCD uses a small NVRAM cache and a
small cache disk to form a two-level cache. Write data are
first assembled in the small NVRAM cache and logged into
the cache disk later. Data in the cache disk is destaged to the
data disk during idle periods. The two-level hierarchical
structure acts as a large nonvolatile cache, but its cost is
much lower than that of a large NVRAM cache. While DCD
has excellent performance for low to medium traffic
workloads, directly applying DCD to high I/O workloads
may face the following problems. DCD requires destaging
which involves reading dirty data from the cache disk and
writing them into the data disk. The destaging process may
become a performance bottleneck at high loads because the
destage reads and the log writes will compete for the cache
disk bandwidth. Moreover, the read speed of DCD is also
slow because data may have to be read from the cache disk.

eNVy [8] is a large nonvolatile main memory storage
system based on flash EPROM. Flash EPROM has some
disk-like characteristics, i.e, data must be erased in blocks
and the write speed is slow. eNVy solved the write problem
by using a battery-backed SRAM in front of the flash-
EPROM. Data are first written into the SRAM and then
parallelly transferred into the flash EPROM in large blocks.
The whole system appears to users as a large high-speed
NVRAM.

While the idea of RAPID-Cache is inspired by the
previous research, especially LFS and DCD, there are
several important differences as highlighted below.

e LFS and DCD do not address the reliability problem
of single copy caches.
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e In both LFS and DCD, data are collected in a RAM
buffer and logged into disks when the bulffer is full.
In the backup cache of RAPID-Cache, data are
written into an LRU cache made of NVRAM. Active
data may be overwritten in the LRU cache fre-
quently. Only the inactive data evicted from the LRU
cache are collected in a segment buffer and logged
into the cache disk. The separation of active data
from inactive data significantly reduces the cache
disk traffic and garbage collection cost.

e In DCD, data in the cache disk must be destaged into
the data disk, which may become a performance
bottleneck at high workloads. In RAPID-Cache,
there is no need to read the cache disk during
destaging since all dirty data can be accessed from
the primary cache. Therefore, the destage overhead
of RAPID-Cache is the same as that of a conventional
system with a single-copy or a dual-copy NVRAM
write cache.

e LFS needs garbage collection which significantly
limits the system performance in some cases. The
asymmetrically parallel architecture of RAPID-
Cache and the separation of active data from inactive
data in the backup cache enable us to design a
garbage collection algorithm that is much more
efficient than the one used by LFS. Moreover,
RAPID-Cache seldom requires garbage collection.
In fact, the garbage collection overhead of RAPID-
Cache is so low that it has virtually no impact on
system performance.

7 CONCLUSIONS

Using NVRAM caches can significantly improve the write
performance of disk systems. However, because of the high
cost of NVRAM, in some disk systems the cost of NVRAM
caches is much higher than that of disks themselves and
dominates the overall system cost. In addition, a single-
copy NVRAM cache creates a single point of failure in a
highly reliable disk system while a dual-copy NVRAM
cache is even more expensive.

In this paper, we have presented a new disk cache
architecture called RAPID-Cache. While RAPID-Caches can
be used for any I/O systems, it is particularly useful for
improving the performance and reliability of large, parallel
disk systems such as RAIDs. The main feature of the
RAPID-Cache is its asymmetrically parallel architecture
that consists of a fast-write-fast-read primary cache and an
inexpensive, fast-write-slow-read hierarchical backup
cache. We trade the read performance of the backup cache
for economy and reliability. Fortunately, the compromise in
read performance of the backup cache does not affect the
system performance in any way because read operations
from the backup cache are necessary only during error
recovery periods. On the other hand, the economy,
reliability and performance gained have been shown to be
dramatic. Such win-win trading is made possible by
exploiting the locality of disk accesses and efficiency of
large disk transfers. We have shown through simulation
experiments and analysis that it is possible to configure the
RAPID-Cache in a number of ways to optimize throughput,
reliability, or system cost:

e Compared to a single-copy NVRAM cache, a
RAPID-Cache with a DRAM primary cache has
much higher reliability and similar performance
with only a fraction of the cost.

e Compared to a single-copy NVRAM cache, a
RAPID-Cache with an NVRAM primary cache has
much better reliability and similar performance with
only slightly higher cost.

e Compared to a dual-copy NVRAM cache, a RAPID-
Cache with an NVRAM primary cache has similar or
better reliability and similar performance with only
half of the cost.

e Because its low cost, with the same budget, RAPID-
Caches can have significantly higher performance
compared to conventional NVRAM cache architec-
tures by affording a much larger primary cache size,
while still maintaining good reliability.

e The asymmetrically parallel architecture of RAPID-
Caches and its algorithm that separates active data
from inactive data virtually eliminate the garbage
collection overhead, which are the major problems
associated with previous solutions such as LFS and
DCD.

Furthermore, using DRAM for the primary cache makes
it economically feasible to combine the read cache with
write cache, resulting in a unified cache that has significant
performance advantages. Such a unified cache would be
very expensive to implement with the existing dual-copy
cache architectures because of the requirement of the large
read cache that would have to be NVRAM if combined with
a write cache. While we have not presented the results of
unified RAPID-Cache in this paper because of the space
limitation, our simulation results show that a unified
RAPID-Cache can achieve 2-4 times higher throughput
than a split cache with the same total cache size. The low
cost feature of the RAPID-Cache also makes it possible to
use a very large primary cache to achieve very high
performance for high-end systems. Therefore, a wide range
of disk I/O systems can benefit from the RAPID-Cache
architecture.
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