Technical Report No. 1198-0001
University of Rhode Island

Department of Electrical and Computer Engineering

Kingston, RI 02881, USA

RAPID-Cache — A Reliable and Inexpensive Write
Cache for High Performance Storage Systems *!

Yiming Hu, Qing Yang and Tycho Nightingale
Department of Electrical and Computer Engineering
The University of Rhode Island
Kingston, RI 02881, USA
e-mail: {hu,qyang,tycho}@ele.uri.edu

September 18, 2001

Abstract

Modern high performance disk I/O systems make extensive
use of non-volatile RAM (NVRAM) write caches to mini-
mize write response times. A single-copy NVRAM cache
creates a single point of failure in a highly reliable disk
system [2] while a dual-copy NVRAM cache [3] is very ex-
pensive because of the high cost of NVRAM. In some disk
systems the cost of NVRAM caches are much higher than
that of disks themselves and dominate the overall system
cost. This paper presents a new cache architecture called
RAPID-Cache for Redundant, Asymmetrically Parallel,
and Inexpensive Disk Cache. A typical RAPID-Cache con-
sists of two redundant write buffers on top of a disk sys-
tem. One of the buffers is a primary cache made of RAM
or NVRAM and the other is a backup cache containing a
two level hierarchy: a small NVRAM buffer on top of a
log disk. The small NVRAM buffer combines small write
data and writes them into the log disk in large sizes. By
exploiting the locality property of I/O accesses and tak-
ing advantage of well-known Log-structured File Systems,
the backup cache has nearly equivalent write performance
as the primary RAM cache. The read performance of the
backup cache is not as critical because normal read op-

*A preliminary work of this research [1] will be presented in
the 5th International Symposium on High Performance Com-
puter Architecture (HPCA-5), January 1999, Orlando, Florida.

TThis research is supported in part by National Science Foun-
dation under Grants MIP-9505601 and MIP-9714370.

erations are performed through the primary RAM cache
and reads from the backup cache happen only during error
recovery periods. The RAPID-Cache presents an asym-
metric architecture with a fast-write-fast-read RAM being
a primary cache and a fast-write-slow-read NVRAM-disk
hierarchy being a backup cache. The asymmetrically par-
allel architecture and an algorithm that separates active
data from inactive data in the cache virtually eliminate the
garbage collection overhead, which are the major problems
associated with previous solutions such as Log-structured
File Systems and Disk Caching Disk. The asymmetric cache
allows cost-effective designs for very large write caches for
high-end disk I/O systems that would otherwise have to
use dual-copy, costly NVRAM caches. It also makes it pos-
sible to implement reliable write caching for low-end disk
I/O systems since the RAPID-Cache makes use of inex-
pensive disks to perform reliable caching. Our analysis and
trace-driven simulation results show that the RAPID-Cache
has significant reliability/cost advantages over conventional
single NVRAM write caches and has great cost advantages
over dual-copy NVRAM caches. The RAPID-Cache archi-
tecture opens a new dimension for disk system designers to
exercise trade-offs among performance, reliability and cost.

1 Introduction

Modern disk I/O systems make extensive use of nonvolatile
RAM (NVRAM) write caches to allow fast write [3, 4, 5],

or asynchronous write, i.e. a write request is acknowledged
before the write goes to disk. Such write caches signifi-
cantly reduce response times of disk I/O systems seen by
users, particularly in RAID systems. Large write caches
can also improve system throughput by taking advantage
of both temporal and spatial localities [3, 6] as well as the
burstiness of write workloads. For example, the IBM Ra-
mac disk array subsystem uses 64 MB of battery-backed
RAM as the NVRAM cache. Treiber and Menon reported
that write caches could reduce disk utilization for writes
by an order of magnitude when compared to basic RAID-5
systems [4]. However, the use of write caches introduces
two problems: poor reliability and high cost.

Disks are impressively reliable today, with a Mean Time
To Failure (MTTF) of up to 1 million hours. Such a low fail-
ure rate, coupled with possible redundancy such as RAID,
gives a Mean Time To Data Loss (MTTDL) of several hun-
dreds of millions of hours in a typical RAID-5 system [2].
Adding a single cache in front of a disk system creates a sin-
gle point of failure, which is vulnerable to data loss. Savage
and Wilkes pointed out in [2] that because typical NVRAM
technology (battery backed RAM) has a quite low MTTF
of 15K hours, a single-copy NVRAM cache suffers signifi-
cantly higher risk of data loss than results from disk fail-
ures. To overcome the reliability problem, some high-end
RAID systems use dual-copy caches so that a failure in one
cache leaves the other cache intact [3]. When a write re-
quest comes, the controller writes two copies of the data
independently into the two caches, a primary cache and a
backup cache.

Besides the reliability problem, NVRAM is also known
to be very costly [2, 7, 8]. For example, Dallas Semicon-
ductor’s NVRAM with embedded lithium-cell batteries has
the published price of about $120/MB at the end of 1997.
The cost of disks, on the other hand, is about 10 cents/MB,
which is a difference of three orders of magnitude. For a disk
system with a reasonably sized write cache, the NVRAM
may dominate the cost of the entire system. For exam-
ple, in a system with 16 disks (4 GB per disk) and an
NVRAM write cache of 64 MB, at $120/MB, the NVRAM
costs about $7680, while the total cost of 16 disks is only
$6400 (assuming each 4-GB disk costs $400). If we use dual-
copy caches to ease the reliability problem of the single-copy
cache, the cost becomes prohibitively high, particularly for
large caches. As a result, it is only suitable for the upper
echelon of the market.

The standard dual-copy write cache system has a sym-
metric structure, where both the primary write cache and
the backup write cache have the same size and the same ac-
cess characteristics — fast read speed and fast write speed.
However, the backup cache does not provide any perfor-
mance benefit to the system during normal operations. There-
fore it is wasteful to use a backup cache identical to the
primary cache. What is needed is only a backup cache that
can be written to very quickly while its read operations are
not as critical, since reads from the backup cache occur only
during error-recovering periods.

Based on these observations, we propose a new disk
cache architecture called Redundant, Asymmetrically Par-
allel, Inezpensive Disk Cache, or RAPID-Cache for short,
to provide fault-tolerant caching for disk I/O systems inex-
pensively. The main idea of the RAPID-Cache is to use

a conventional, fast-write-fast-read primary cache and a
non-volatile, fast-write-slow-read backup cache. The pri-
mary cache is made of normal NVRAM or DRAM, while
the backup cache consists of a small NVRAM cache and a
log disk (cache-disk). In the backup cache, small and ran-
dom writes are first buffered in the small NVRAM buffer
to form large logs that are written into the cache-disk later
in large transfers, similar to log structured file systems
[9, 10, 11, 12]. Because large writes eliminate many expen-
sive small writes, the buffer is quickly made available for
additional requests so that the two level cache appears to
the host as a large NVRAM. As a result, the backup cache
can achieve the same write speed as the primary cache.
The slow-read performance of the backup cache does not
affect the system performance since every data block in the
backup cache has a copy in the primary cache which can be
read at the speed of RAM. The dual cache system here is
asymmetric since the primary cache and the backup cache
have different sizes and structures. The reliability of the
RAPID-Cache is expected to be high since disk is very reli-
able. The system is also inexpensive because the NVRAM
in the backup cache can be very small, ranging from hun-
dreds of KB to several MB and the cost of the disk space
is significantly less than that of a large NVRAM. We will
show that RAPID-Caches provide much higher reliability
compared to single-copy NVRAM caches and much lower
cost compared to dual-copy NVRAM caches, without sac-
rificing performance. On the other hand, because of its
low cost, with the same budget, RAPID-Caches can have
significantly higher performance compared to conventional
NVRAM cache architectures by affording much larger pri-
mary cache sizes, while still maintaining good reliability.

While the idea of RAPID-Cache can be used in any
I/0O system, it is particularly suitable for RAID systems
because RAID systems are most likely to be used in envi-
ronments which require high performance and high reliabil-
ity. We therefore concentrate our study on RAPID-Caches
on top of RAID-5 systems in this paper. We have carried
out trace-driven simulation experiments as well as analyt-
ical studies to evaluate the performance and reliability of
the RAPID-Cache. Using real-world traces as well as syn-
thetic traces generated based on realistic workloads [13, 14],
we analyze the performance of the RAPID-Cache architec-
ture and compare it with existing disk cache architectures.
Numerical results show that the RAPID-Cache has signif-
icant performance/cost and reliability advantages over the
existing architectures.

The paper is organized as follows. The next section
presents the detailed architecture and operations of the
RAPID-Cache. Section 3 presents our experimental method-
ology, Simulation results will be presented in Section 4, fol-
lowed by an approximate reliability and cost analysis in
Section 5. We discuss related work in Section 6 and con-
clude the paper in Section 7.

2 Architecture and Operations

Figure 1 shows the basic structure of a RAPID-Cache. It
consists of a conventional primary RAM cache and a backup
cache. The backup cache is a two-level hierarchy with a
small NVRAM on top of a cache disk, similar to DCD [15].

In a RAPID-Cache, every I/O write operation is sent to
both the primary cache and the backup cache while read
operations are performed using the primary cache only.

Incoming Requests

Disk Controller

i

Backup Cache

Small
NVRAM

&

Cache-Disk

i

DRAM

DRAM /
NVRAM

Read Cache Primary
Write Cache

nllne J L
=I=J=

Disks

Figure 1: RAPID-Cache on top of a disk system

For very high overall reliability, the primary cache can
be NVRAM to provide redundant protection during a power
failure. On the other hand, for low cost systems, the pri-
mary cache can be DRAM. During normal operations, the
DRAM primary cache and the backup cache contain redun-
dant data. If any one of the two caches fails, data can be
reconstructed from the other. During a power failure, data
are retained in the backup NVRAM and the cache-disk. If
both the read cache and the primary write cache are made
of DRAM, we can use a unified read/write cache structure,
as shown in Figure 2(a), for better cache utilization. A
RAPID-Cache with a large unified DRAM primary cache
has higher throughput, lower cost and better reliability
than that of a single-copy conventional NVRAM cache. For
many applications that require redundant protection dur-
ing a power failure, a Triple RAPID-Cache (shown in Fig-
ure 2(b)) can be used to build a highly reliable, very large
cache system. The idea is to use two low-cost backup caches
to support one large primary DRAM cache. During normal
operations the primary cache and the two backup caches
provide triple redundancy protection. The two backup caches
provide dual-redundancy protection during a power failure.
Triple RAPID-Caches are especially suitable for high-end
systems that need very large and very reliable write caches.
For large cache sizes, a Triple RAPID-Cache has lower cost
and better reliability than both a RAPID-Cache with a
large NVRAM primary cache and a conventional dual-copy
NVRAM cache.

2.1

Figure 3 shows the detailed structures of the backup NVRAM
cache and the cache-disk. The NVRAM cache consists of
an LRU Cache, two to four Segment Buffers and a Hash Ta-
ble. Another related data structure called the Disk Segment
Table is located in a DRAM buffer.

The frequently-accessed data in the backup cache re-
side in the LRU cache. The less frequently-accessed data
are kept in the cache disk. Data in the cache-disk are or-

Structures of the Backup Cache

NVRAM { DRAM
RO
Heh | |
LRU Cache i1 Disk
Table [
1 Segment
L Table
Segment Buffer J Segment Buffer
Cache-Disk Space
Disk Disk Disk Disk Disk
Segment Segment Segment Segment Seg

Figure 3: The detailed structure of the backup cache and
the cache-disk

ganized in the format of Segments similar to that in a
Log-structured File System such as the Sprite LF'S and the
BSD LFS [10, 11]. A segment contains a number of slots
each of which can hold one data block. Data blocks stored
in segments are addressed by their Segment IDs and Slot
IDs. Data blocks stored in the LRU cache are addressed
by their Logical Block Addresses (LBAs). The Hash Ta-
ble contains location information for each of the valid data
blocks in the backup cache. It describes whether a block is
in the NVRAM LRU cache or in the cache-disk, as well as
the data address in the LRU cache or the cache-disk. In our
current design the size of the hash entry is 16 bytes. Since
data in the backup cache is the exact image of the data
in the primary write cache, the total number of valid data
blocks in the backup cache is the same as in the primary
write cache, regardless of the sizes of the backup NVRAM
and the cache-disk. If the data block size is 8 KB, then for
a 32 MB write cache, there are 4096 blocks in total. Since
each valid block has a corresponding hash entry of 16 bytes,
the total hash table size is 64 KB, which is compact enough
to be placed in the NVRAM.

For the purpose of speeding up garbage collection, we
also keep track of a data structure called the Disk Segment
Table. Since this table contains redundant information that
can be quickly and completely reconstructed from the Hash
Table in case of a crash, it is stored in the DRAM. We will
discuss the structure of the Disk Segment Table in detail
later in this section.

The cache-disk in the backup cache can be a dedicated
physical disk, as shown in Figure 4(a). It can also be dis-
tributed among the data disks of the RAID system, each
data disk having a small partition acting as a part of a
large distributed logical cache-disk, as shown in Figure 4(b).
In modern RAID systems, the physical cache-disk can of-
ten be implemented without extra cost since many modern
RAID systems include one or several spare disks that can
be put into service when an active disk fails [16]. However,
as pointed out by Wilkes et al. [16], during normal opera-
tions the spare disks are not used in many systems ' and

In a system using distributed sparing, the spare disk is uti-
lized during normal operation.

Incoming Requests

RAID Controller

)
= L

e By
Read/Write Write Cache
Cache
u u
b J & 1 I 1 ¢ !
— V) V) V] ——
RAID-5 Cache-Disk

(a) A RAPID-Cache with aunified read/write cache

Incoming Requests

RAID Controller

SE

DRAM
Unified

NVRAM
Backup
Write Cache

NVRAM
Backup
Write Cache

Primary

Cache
SIS SIS
— "V "

RAID-5 Cache-Disk Cache-Disk

(b) A Triple RAPID-Cache with two cache-disks

Figure 2: Unified RAPID-Cache and Triple RAPID-Cache

Incoming Requests

=

RAID Controller

4

3

DRAM /
DRAM NVRAM
Read Cache Primary
Write Cache
RAID-5 Cache-Disk

(&) A RAPID-Cache with adedicated physical cache-disk

Incoming Requests

=

RAID Controller

NVRAM
Backup
Write Cache

fj ; Cache-Partitions

DRAM /
NVRAM

Primary
Write Cache

RAID-5
(b) A RAPID-Cache with adistributed logical cache-disk

Figure 4: Physical RAPID-Cache and Logical RAPID-Cache

contribute nothing to the performance of the system. It
is also hard to tell if the spare disks are still working since
they are not in use. Such a spare disk can therefore be used
as a physical cache-disk of a RAPID-Cache. A secondary
benefit here is that now we are aware of whether the spare
disk is in working condition or not, and we are able to re-
place the failed one before it is too late. When a spare disk
becomes an active disk to replace a failed one, the RAPID-
Cache can be degraded to the logical cache-disk mode by
using a partition residing on the spare disk, until the failed
disk is replaced and a new spare disk is put into the system.
In the case of a logical cache-disk, the data written into the
logical cache partitions on the RAID disks do not involve
in parity operations. In other words, the logical cache par-
titions act as “Just a Bunch of Logical Disks”. The backup
cache provides a reliable, non-volatile backup of the cached
data.

2.2 Write

When a write request comes, the controller first invalidates
any data copy in the read cache. It then sends the data
simultaneously to the primary cache and the LRU cache of
the backup cache. If there is space available in the caches,

the data are then copied to the caches immediately. A hash
entry in the backup cache is also created to indicate that
the data block is located in the backup LRU cache. Once
the data is written into both the primary cache and the
NVRAM buffer of the backup cache, the controller sends
an acknowledgment to the host signaling that the request
is complete.

If there is no space left in the primary cache, the con-
troller first tries to discard a clean block from the cache to
make room for the new request. However, if it can not find
a clean block, the controller chooses the Least-Recently-
Used (LRU) data block and writes it to the RAID. When
the LRU block is safely written into the RAID, the space in
the primary cache is freed for the incoming request. Mean-
while, the copy of the replaced data in the secondary cache,
whether in the LRU cache or in the cache-disk, is also in-
validated.

If the LRU cache in the backup cache is full, the RAPID
controller picks an empty segment buffer and sets it as
the “current” segment buffer. An LRU data block is then
copied to the segment buffer and the corresponding entries
in the Hash Table and the Disk Segment Table are modified
to reflect the fact that the data block is now in the current
segment buffer instead of the LRU cache. Since the segment

buffer is also in the NVRAM, the cache space used by the
LRU data block can now be safely freed to accept the in-
coming request. The following write requests may continue
to evict LRU blocks to the segment buffer until the segment
buffer is full. The controller then writes the contents of the
segment buffer into a cache-disk segment in one large write.
At this point, the controller switches to another empty seg-
ment buffer as the current segment buffer and continues
operation. Since the entire segment buffer is written in
one large write instead of many small writes, the segment
buffer is very quickly made available again when the write
finishes. Therefore, the small NVRAM cache and the large
cache-disk appear to the controller as a large NVRAM write
cache.

The dedicated segment buffers allow the data to be
transferred to the cache-disk in a single large and continu-
ous transfer. If the I/O systems can support scatter/gather
I/O transferring (a hardware technique to assemble data
from non-contigous memory locations), then the dedicated
segment buffers are not needed.

The segment buffer size directly affects the write effi-
ciency. For a RAPID-Cache with a dedicated cache-disk,
the larger the segment size, the smaller the write overheads
caused by disk seeking and rotational latencies. On the
other hand, a larger segment size results in a smaller LRU
cache size for a given NVRAM size. Therefore there is
a trade-off between large segment sizes and large backup
LRU cache sizes. During our simulation experiments, we
found that for the workload we used, two to four 256 KB
segment buffers give the best overall performance. For a
RAPID-Cache with a logical cache-disk, the segment size
can not be too large because segment writes must compete
with normal RAID reads in data disks. Large segment sizes
may result in lower read performance. We found that using
four 128 KB segment buffers can achieve good performance
in this case.

2.3 Read

Reading is straightforward in RAPID-Cache. When a re-
quest comes, the read cache and the primary write cache
are searched. If there is a cache hit, data can be returned
immediately. In case of a cache miss, the Least Recently
Used (LRU) block in the read cache is discarded and its
buffer space is freed. The requested data is then read from
the RAID system into the freed LRU block before the data
is returned. The backup cache is not involved in read op-
erations.

2.4 Destage

In a traditional RAID system with an NVRAM write cache,
dirty data in the write cache is written into the RAID sys-
tem in a process called destage [6] which normally happens
in the background. A RAID system with a RAPID-Cache
also requires destaging. In our current design, one or several
destaging threads are initiated when the controller detects
an idle period, or when the number of dirty blocks in the
primary write cache exceeds a high water-mark, say 70% of
the cache capacity. The destaging threads find a dirty LRU
block in the primary cache, read the old data and parity of
that block from disks or the read cache, compute the new

parity, and write the new data and parity to disks. After the
new data and parity are written, the dirty block in the pri-
mary cache is marked as “clean”, and the same data block
in the backup cache, whether it is in the NVRAM LRU
cache or in the cache-disk, is invalidated. The invalidation
of the backup cache block involves releasing the LRU buffer
if the block is in the NVRAM LRU cache; marking the cor-
responding segment slot as “invalid” if the data is in a disk
segment or a segment buffer; and deleting the hash entry
from the hash table. The destaging threads run continu-
ously until the idle period is over, or until the dirty block
count in the primary cache falls below a low water-mark,
say 30% of the cache capacity.

Notice that data in the backup cache are never read
or written during a destaging process. Therefore the slow-
speed of the cache-disk will not affect the destaging perfor-
mance.

2.5 Garbage Collection

We have shown that in a RAPID-Cache, data in the cache-
disk are organized in segments, similar to an LFS system.
In an LFS system, after the system is running for a while,
many disk segments become only partially full because of
data overwrites and invalidations. As a result, LF'S must
frequently call the garbage collector that reads several par-
tially full disk segments into RAM, compacts the data, and
writes the data back to the disk in a new segment. As men-
tioned previously, such garbage collection can cause great
performance loss in some cases.

In a RAPID-Cache system, segments in the cache-disk
may also become fragmented and require garbage collection.
However, because of the asymmetrically parallel architec-
ture of the RAPID-Cache, all data in the cache-disk are also
in the primary write cache which can be read quickly. There
is no need to read data from the cache-disk. To do garbage
collection, the RAPID controller simply searches the Disk
Segment Table to find several fragmented segments. It then
copies the corresponding data from the primary cache to a
segment buffer in RAM. Finally the controller writes the
whole contents of the segment buffer to a new disk segment
and invalidates the old segments. The garbage collection
overhead of a RAPID-Cache is only a small fraction of that
of LFS.

To perform garbage collection, the controller must be
able to to quickly identify which disk segments contain valid
data blocks. It also must be able to quickly find the Logical
Block Address (LBA) of a data block cached in a disk seg-
ment slot when given its Segment ID and Slot ID. The Disk
Segment Table has an entry for each segment in the cache-
disk. Each entry contains a counter of valid blocks cached
in the segment, a flag indicating if the segment is cached
in a segment buffer or not, a lock for concurrency control,
and a Slot Mapping Table that describes which slots in the
segment contain valid data. The Slot Mapping Table is an
array of integers. Each slot in the segment has an entry (an
integer) in the table. If the slot does not contain a valid
data block, its entry in the Slot Mapping Table is set to
-1. Otherwise the entry is set to the LBA of the cached
data block. Since each slot in the cache-disk has an entry
in its Slot Mapping Table, the total size of the Disk Seg-
ment Table is mainly determined by the number of slots in

the cache-disk. If the cache-disk size is 256 MB and the
cache block size is 8 KB, then there are 32K slots requiring
32K integers (128 KB) in the Disk Segment Table. The
information in the Disk Segment Table can be quickly and
completely reconstructed from the Hash Table in case of a
crash.

In addition to the low-cost garbage collection algorithm,
in simulation experiments, we found that for the workload
we used, the RAPID controller almost never had to call
the garbage collector, meaning that the garbage collection
overhead has virtually no impact on the overall system per-
formance. This is due to the following two reasons. First,
because disk spaces are so inexpensive now (about 10 cents
per MB as of this writing), we normally choose a cache
space that is 5-10 times larger than the primary write cache
size. For example, for a primary cache size of 32 MB, we can
use a disk space of 160 MB as the cache space %, which costs
only about $16. Since the 32 MB of data are spread over a
space of 160 MB, much of the disk space is empty. Second,
unlike an LFS system which writes both active data and
inactive data into a segment, in a RAPID-Cache system,
active data and inactive data are separated. Most active
data are kept in the LRU cache, while data in the disk
segments of the cache-disk are relatively inactive. There-
fore entire segments are often invalidated because the back-
ground destage threads constantly destage inactive data to
disk arrays. As a result, most of time the controller can
find an empty disk segment without the need for garbage
collection.

2.6 Error Handling and Availability

A RAPID-Cache system has excellent reliability because of
the data redundancy provided by the primary cache and
the backup cache. If data in any one of the caches is lost
for any reason, the other cache is read to rebuild the data.
During a system crash or a power failure, data is retained
in the NVRAM or the cache-disk of the backup cache. If
the primary cache is also made of NVRAM, it can provide
additional protection. It takes only several seconds (tens of
seconds at most) to recover all the data from the backup
cache, because reading from the cache-disk is done in the
large segment size thus is very efficient.

In fact, during a power failure period, data cached in
the cache-disk is much safer than in an NVRAM. Disks can
retain their data for a long period of time without doing
anything. On the other hand, data stored in active devices
such as NVRAM or UPS (Uninterrupted Power Supply)
backed DRAM are not as safe as data on disks, because
NVRAM batteries may leak and UPS may run out of power
or fail.

Compared to a single NVRAM write cache, a RAPID-
Cache system has excellent availability. If one cache parti-
tion of a logical cache-disk crashes, the whole system can
operate continuously, since either a spare disk will swap in

2 Almost all modern disks have a minimal capacity of 1 GB or
more. Therefore for a physical cache-disk we may be able to use
a quite large cache-space. As addressed before, a physical cache-
disk may not introduce extra cost to the system. For a logical
cache-disk, however, we may want to use a smaller cache-space
size such as the one used here so we can have more disk space
for data disks.

to replace the failed disk, or the controller can simply skip
the failed disk without affecting the system performance
significantly. If a dedicated cache-disk crashed, the system
can borrow a small partition from each data disk and op-
erate in a logical cache-disk mode. If the NVRAM of the
backup cache fails, a small portion of the primary cache
can be borrowed so the system can continue its operations
until the failed NVRAM is replaced. If the primary write
cache fails, the read cache can be switched to a unified
read/write cache mode to accept write data. In the case
where a RAPID-Cache system uses a unified read/write
primary cache, if the entire unified primary cache fails, the
system may still operate in a degraded mode with lower
performance because of the slow read speed of the backup
cache.

3 Simulation Models

We use trace-driven simulations to evaluate the effective-
ness of RAPID-Cache. In this section we describe the de-
tails of our simulation and workload models.

3.1 The Simulators

The RAPID-Cache simulator is built on top of a general
cached-RAID5 simulator developed by us. The RAID map-
ping function is borrowed from the Berkeley raidsim sim-
ulator. The disk model used in our simulator is developed
by Kotz et al. [17] that models an HP 97560 disk drive de-
scribed in [18]. HP 97560 is a 5.25-inch, 1.26 GB disk with
an average access time of 23 ms for an 8 KB data block. The
disk simulator provides detailed simulation, including SCSI
bus contention, built-in cache read-ahead and write-behind,
head-skewing, etc. The simulator is quite accurate and is
used by several other large scale simulation systems such as
Stanford SimOS and Dartmouth STARFISH. However, HP
97560 is slightly out-dated. We have made the following
changes to make it closer to the performance ranges of cur-
rent disks: increasing the rotation speed from 4002 rpm to
7200 rpm; increasing its capacity by increasing the average
linear density from 72 sectors/track to 288 sectors/track;
increasing the interface bus speed from 10 MB/sec to 40
MB/sec; and decreasing its platter number from 10 to 3.
We also assume that the RAID controller has a high-speed
80 MB/sec fibre-channel bus connected to the host. Re-
quests must reserve the bus before starting data transfer.
The controller can handle up to 32 pending requests. Ad-
ditional requests must wait in a FIFO queue. Requests are
processed in a First-Come-First-Serve basis, but they may
complete out-of-order. The cache block size is 8 KB.

For the RAID-5 simulator, the number of RAID-5 columns
is set to be 8 or 16 disks and the number of RAID-5 rows
to be 1. The stripe unit is 32 KB and the data layout is
Left-Symmetric.

3.2 Workload Models

The purpose of our performance evaluation is to show that
the RAPID-Cache can deliver the same performance as very
expensive NVRAM caches under various workload environ-
ments. In order to provide a fair and unbiased evaluation,

we paid special attention in selecting the workload that
drives our simulators since it plays a critical role in per-
formance evaluation. Our main objective in choosing the
workload models is to make it as close to realistic workloads
as possible and to cover as wide a range of parameters as
possible. With this objective in mind, two sets of trace files
have been selected as discussed below.

3.2.1 Real-world Traces

The first set of traces are real-world traces obtained from
EMC Corporation and HP Laboratories. The EMC trace
(referred to as EMC-tel trace hereafter) was collected by an
EMC Symmetrix disk array system installed at a telecom-
munication customer site. The trace file contains more than
200000 requests, with a fixed request size of 2 KB. The trace
is write-dominated with a write ratio of 89%. The average
request rate is about 333 requests/second.

The HP traces were collected from HP-UX systems dur-
ing a 4-month period, and are described in detail in [13].
The name of the trace is called cello-news which is a single
disk holding the Usenet news database. The news database
was updated constantly throughout the day. The trace has
been used by Savage and Wilkes to evaluate their AFRAID
RAID system [2]. We have chosen 10 days of traces start-
ing from May 1, 1992. Each day has several hundreds of
thousand requests.

Careful examination of the HP trace files reveals that
I/O requests are very bursty. The request rate in each
request burst is very high while there usually exists a very
long idle period (up to 30 seconds) between two consecutive
bursts of requests. As a result, the average request rate is
very low at about several requests per second. With such
a low request rate and highly bursty request pattern, the
RAPID-Cache will obviously perform very well since it will
have enough time to move all data in the NVRAM buffer
collected in a burst into the cache disk and to do destaging
and garbage collection during an idle period. In order to
present a conservative evaluation for the RAPID-Cache, we
artificially reduce the idle period to increase the average
request rate. We searched the traces and shortened any
idle period longer than 50 milliseconds to 50 milliseconds
to make the average request rate about 40 requests/second.
To further increase the I/O rate, we also overlaid several
days of cello-news traces into a single trace. The same
approach has been used by Varma et al. in [6] in which up to
6 days of cello traces were overlaid to study the performance
of RAID-5 caches. In this study we overlaid up to 10 days of
traces, giving rise to a request rate of 400 requests/second.
The numbers of requests in the resulting traces vary from
about 200000 requests to about 1 million. The request size
is about 8 KB.

3.2.2 Synthetic Traces

While real-world traces give a realistic evaluation of the per-
formance of the systems, they have a limited view of system
performance considering the fast changing computer world
[19]. In order to observe how the RAPID-Cache performs
under a variety of workloads, we generated a set of syn-
thetic traces. Our synthetic traces were generated based
on I/O access characteristics of the cello-news traces and

the traces presented by Zivkov and Smith [14]. We care-
fully fine-tuned the trace generation parameters such as re-
quest interval times, data access patterns, working-set sizes,
and read/write ratios in such a way that the characteristics
of generated traces are similar to these real-world traces.
Furthermore, in order to provide a fair and comprehensive
evaluation, we also vary the workloads over a wide spec-
trum to cover as many as possible of all possible workload
situations.

The request interval time in the traces is modeled us-
ing exponentially distributed random variables. We chose
the exponential distribution function after our analyses on
cello-news and other traces from HP Laboratories. AnI/O
request may come in a burst which is called a “bursty” re-
quest or outside of a burst which is called a “background”
request. The generator repeatedly inserts clusters of bursty
requests into the “background” requests. The mean request
rate in a burst is 10 times larger than the mean request
rate of background requests, though both have exponen-
tially distributed interval times. The burst length and the
interval length between two consecutive bursts in terms of
the number of requests are exponentially distributed based
on the analysis of real-world traces, with the mean being A
and p, respectively.

The data access pattern is modeled using an approach
similar to the one used by Varma et al. in [6]. Two sepa-
rate history tables are maintained, one for writes, and the
other for reads. A request may be selected either from a
history table or selected uniformly among all possible disk
addresses. If the request is to be selected from a history
table, an entry in the table is selected using a random vari-
able representing the distance of the entry from the top of
the table. While our analysis of the real-world traces shows
that this distance can be approximated by an exponential
distribution most of the time, we intentionally chose three
different distribution functions, namely exponential distri-
bution, normal distribution, and uniform distribution, to
generate traces with different access patterns. The history
tables are in the form of LRU stacks to simulate the tem-
poral locality of I/O accesses. When an entry is selected
from a table, it is removed from the stack and pushed back
on top of the stack.

EMC-tel
cello-news |7
synthetic—A
synthetic-B
synthetic—C

miss ratio (%)

0 L L L L L I L L
64 128 256 512

16 32
cache size (MB)

Figure 5: Miss Ratios of Traces with Various Cache Sizes

Trace Read | Access Working Burstiness Note

Name Ratio | Pattern set(MB)

EMC-tel 11% | N/A 128 N/A Write-dominated

Cello-news 40% N/A 128 N/A Write-dominated, very bursty
Synthetic-A 40% normal 32 A=32, u=1024 Write-dominated, moderate working-set
Synthetic-B 40% uniform 1 A =128, y = 1024 | Write-dominated, very small working-set
Synthetic-C 80% exponential 512 A =64, u=1024 Read-dominated, very large working-set

Table 1: Characteristics of Traces. “Access Pattern” refers to the random function that controls the distance from the
top of history table to a selected entry in the table. X is the mean burst length while p is the mean interval length, both

are in terms of the number of requests.

The working-set size is mainly controlled by the sizes
of the history tables. Larger history tables result in larger
working-sets. In [14], Zivkov and Smith performed an ex-
tensive research on disk caching in large databases and
timesharing systems. They found that traces from differ-
ent systems show significantly different characteristics. The
working-set sizes of our synthetic traces are modeled af-
ter the cello-news traces and traces studied by Zivkov and
Smith. Figure 5 shows the cache miss ratios as a func-
tion of cache sizes for EMC-tel, cello-news and our three
synthetic traces on an LRU cache with an 8 KB block
size. Synthetic-A trace is modeled after cello-news, with a
slightly higher initial miss ratio and a smaller working-set
of 32 MB. Synthetic-B is modeled after the “telecom” trace
in [14], which has a very low initial miss ratio of 17% (hence
a very small first working-set). Its miss ratio decreases very
slowly when the cache size increases. EMC-tel also has a
low initial miss ratio. Finally, Synthetic-C is modeled after
the “bank” trace in [14], with a moderate initial miss ratio
of 60% and a very large working-set of 512 MB. Table 1 lists
the characteristics of all five traces used in this study. The
request sizes of these traces are 8 KB except for EMC-tel,
which has a request size of 2 KB.

We have generated 112 different trace files with the

with much lower cost and much higher reliability. On the
other hand, with the same budget, the RAPID-Cache ar-
chitecture allows a much larger primary cache because of
its low cost to obtain much higher performance compared
to a conventional cache. For this purpose we define a base-
line system as a conventional read/write cache system with
an optional backup NVRAM cache that is of the same size
as the primary write cache. The backup NVRAM size of
RAPID-Caches is chosen to be 2 MB. We found through
our experiments that using a size larger than 2 MB does not
result in significant performance improvement, and using a
size smaller than 1 MB may cause performance degradation
for some traces. The size of cache-disks of RAPID-Caches
is set to 256 MB for all simulation runs. This number was
chosen because it is large enough to avoid garbage collection
most of time.

4.1

In this subsection we will compare the performance of RAPID-
Caches with those of conventional caches in terms of through-
put and response time, using the simulation results. It
should be emphasized that for the same primary cache size,

a RAPID-Cache system will not perform better than a con-

I/O Performance

mean I/O request rates ranging from 100 to 8000 requests/seconehtional cache because the system performance is mainly

Each trace file contains at least 200000 requests. To verify
whether 200000 requests are sufficient to generate reason-
ably accurate results in each simulation run, we selected
several trace files and increased their request numbers to
over 1 million. We then ran simulations under several dif-
ferent configurations using these long traces. We found that
the results of a trace with 200000 requests are within 3-10%
of the same trace with 1 million requests. As a result of the
cold-start effect, the average response times of 200000 re-
quests are always biased 3-101 million requests. However,
the relative performance of different configurations using
the same trace length does not change. For example, a
RAPID-Cache and a standard dual-copy cache have almost
identical performance for traces with 200000 requests. The
two still have almost identical performance for traces with 1
million requests, although their average response times are
slightly faster with the longer trace. Given the time limit,
we ran most our simulations using 200000 requests.

4 Simulation Results

Our objective here is to show that the RAPID-Cache has
the same or similar performance as the conventional cache,

limited by the primary cache size. Rather, we will show that
the RAPID-Cache has the same or similar performance as
the conventional cache, with much lower cost and much
higher reliability. On the other hand, with the same bud-
get, the RAPID-Cache architecture allows a much larger
primary cache because of its low cost to obtain much higher
performance compared to a conventional cache.

4.1.1 Performance of Real-world Traces

Because the real-world traces (EMC-tel and cello-news) have
only a moderate load, we used a relatively small system for
simulation. The number of disks in the RAID-5 system is
set to 8. The read cache size is 8 MB for the EMC-tel trace
and 32 MB for the cello-news trace. We varied the primary
write cache sizes from 4 to 16 MB for the EMC-tel trace
and 16 to 32 MB for the cello-news trace.

Table 2 lists the read and write response time of the
baseline systems and RAPID caches under the EMC-tel
workload. Because the use of immediate report and the low
cache miss ratio of this trace, the average response times
are quite low, especially for write requests. The table shows
that the baseline system and the RAPID-caches have very
similar or almost identical performance.

Read Cache = 32 Wile mche =32 MB

Response Tine (ns

o nN_s» o ®

Read Cache = 32 MB, Wite Cache = 16 M8
T T T T T T T T

—e— baselin
thsmal RAPID
logical-RAPID

logical-RAPID

Response Tine (ns

o N s o ®

Read Cache =32 NB Wlle Cache = 24 MB

— - 20 . . - . —

—e— baseline

—— base ine
thsmal RAPID 18r thsmal RAPID
logical-RAPID logical-RAPID

logical-RAPID

physical-RAPID -

logical-RAPID

-

4 5 6 7
Number of trace overlays

=
S)

2

-

3

4 5 6 7
Number of trace overlays

2 3 4 5 6 7 8 9 10
Number of trace overlays

©
=
S)
-

Figure 6: Performance of trace cello-news. Note: A single trace has a request rate of about 40 requests/sec. Ouerlaying

10 traces results in a request rate of about 400 requests/sec.

Cache sizes Response Time (ms)
Read/Write Split R/W Cache Unified R/W Cache
baseline P-RAPID L-RAPID baseline P-RAPID L-RAPID
(MB) read | write | read | write | read | write | read | write | read | write | read | write
8/4 (12) 344 | 0.15 | 3.44 | 0.16 | 3.55 | 0.16 | 3.03 | 0.15 | 3.03 | 0.16 | 3.16 | 0.16
8/8 (16) 2.71 | 015 | 271 | 0.16 | 2.84 | 0.16 | 2.56 | 0.15 | 2.56 | 0.16 | 2.69 | 0.16
8/16 (24) 1.75 | 0.15 1.75 | 0.16 1.87 | 0.16 196 | 0.15 | 1.96 | 0.16 | 2.08 | 0.16

Table 2: Performance of trace EMC-tel. The size of the NVRAM buffer of the RAPID-Cache is 1 MB. L-RAPID means
Logical-RAPID-Cache and P-RAPID means Physical-RAPID-Cache.

Figure 6 compares the performance of RAPID-Caches

with those of conventional caches under the Cello-news trace.

In the figure the average I/O response times (of both read
and write requests) are plotted as functions of numbers of
overlaid traces. Because of the use of large read caches
and the fast write technique, the average response times of
all systems are very low at low throughput. The average
response times steadily increase as the number of overlaid
traces (hence the I/O request rate) goes high because of the
increased disk traffic. Eventually, the I/O request rate in-
creases to a point where the system is saturated and the re-
sponse times increase sharply. At this point the system can
not handle any higher workload. We define the throughput
at this point as the mazimum system throughput.

It is clear from the results that the performance of
RAPID-Caches is very close to that of baseline systems in
terms of maximum system throughput and response time.
This confirms that the backup cache of RAPID-Caches per-
forms very well. The small NVRAM and the cache-disk do
achieve the similar write performance as that of the large
primary write cache.

For a Logical-RAPID-Cache, log writes into disks have
to compete with normal data reads and destages, which
may cause performance degradation. However it is interest-
ing to note that the Logical-RAPID-Cache performs quite
well most of the time. The reason is that the logical cache-
disk space is distributed among many data disks, therefore
the traffic caused by log-writing seen by each individual
data disk is relatively low. In addition, we can use large
read caches in our systems because DRAM is inexpensive
now. The large read caches significantly reduce the disk
read traffic seen by the data disks, thus further reducing

the possibility of bandwidth conflicts.
For EMC-tel, a Physical-RAPID-Cache always performs

better than a Logical-RAPID-Cache. For cello-news, a Physical-

RAPID-Cache performs better than a Logical-RAPID-Cache
at the high workload near the saturation point. However,

for this particular trace, the Physical-RAPID-Cache shows

slightly higher response times than those of the Logical-

RAPID-Cache and the baseline system at low workloads.

This can be attributed to the extreme burstiness of the

cello-news traces as well as the artificially reduced inter-

burst periods. Since we have artificially reduced the length

of all long inter-burst idle periods to 50 ms to stress the

RAPID-Cache system, many large bursts arrive closely, over-
flowing the small (2 MB) backup NVRAM in the RAPID-

Cache. As a result, the contents of the backup NVRAM

in the RAPID-Cache have to be log-written into the cache-

disk several times during a large burst. This may create a

waiting queue in front of the physical cache-disk, result-

ing in a slightly increased write response time therefore

a slightly increased average response time. For Logical-

RAPID-Caches, the log-write traffic is distributed among

multiple disks, so the queuing effect of log-writing is negli-

gible when the workload is low.

We believe that the slightly increased write response
time of Physical-RAPID-Caches under such a highly bursty
workload is not a major performance concern. The main
performance metric here is throughput. As long as the
cache-disk has sufficient bandwidth to keep up with the
write traffic in the long run (We will discuss the perfor-
mance of the cache-disk later in this section), the through-
put of the entire system in the equilibrium state is limited
by the primary cache, not the backup cache. Moreover,

because of its low cost, with the same budget a RAPID-
Cache can use a much larger primary cache to achieve a
much higher throughput and lower response time than a
baseline system. For example, as shown in Figure 6, for
the same backup cache configuration, increasing the size
of primary write cache of the RAPID-Cache from 16 MB
to 32 MB almost doubles its throughput and reduces the
response time.

4.1.2 Performance of Synthetic Traces

Since the synthetic traces have higher I/O rates, we scaled
up the systems by increasing the number of disks in the
RAID-5 systems from 8 to 16 and the read cache size from
32 MB to 64 MB. Figures 7 to 9 compare the performance
of RAPID-Caches with those of conventional caches. In
the figures the average I/O response times are plotted as
functions of I/O request rates (throughput).

It is clear from the simulation results that performance
of Physical-RAPID-Caches is almost identical to that of
baseline systems. Its response-time vs. throughput curves
are almost completely overlapped with that of a baseline
system most of time. Logical-RAPID-Caches also perform
very well. Their performance is similar or close to that of
baseline systems.

It is interesting to note that for read-dominated traces
such as synthetic-C (Figure 9), the performance degrades
gracefully when the workload increases, while for write-
dominated traces such as synthetic-A and synthetic-B (Fig-
ures 7 and 8) the performance changes relatively abruptly.
When the workload increases, the read response times in-
crease rapidly because of the increased disk traffic, while the
write response times increase only gradually because of the
use of the fast write technique. In write-dominated traces
the average response time is largely determined by the write
response time therefore the average response times increase
only gradually until the system write cache saturates. At
this point, the average response times increase abruptly.

4.2 Performance Impacts of the Backup
Cache

To obtain a better picture of how the backup cache affects
the overall system performance, in this subsection we study
the effects of the backup NVRAM size and the maximum
throughput of backup caches.

4.2.1 Effects of the Backup NVRAM Size

To study the effect of the backup NVRAM size on the sys-
tem performance, we varied the backup NVRAM size and
re-ran some simulation experiments. Figure 10 shows the
performance of Physical-RAPID-Caches with three differ-
ent backup NVRAM sizes, 0.5 MB, 1 MB and 2 MB, and
compares them with that of a baseline system. We can
see that when the request rates are low, all three sizes per-
form equally well. However, the performance of the 0.5 MB
case degrades at high workloads. Because of the limited
backup NVRAM size in this case, the system may run out
of segment buffers while all previous log writes are pending.
As a result, if a following write request must evict a block
from the backup LRU cache to a segment buffer, it must

10

wait until a log write finishes so a segment buffer can be
freed. This causes high response times and low through-
put. When we increase the backup cache size to 1 or 2
MB, the system almost never runs out of segment buffers.
Therefore we are able to obtain nearly equivalent write per-
formance as the baseline system. This is demonstrated by
the fact that the response time vs. throughout curve of the
Physical-RAPID-Cache and that of the baseline system are
almost completely overlapped. Similar results are observed
for other traces and configurations.

4.2.2 The Maximum Throughput of the Backup
Cache

In a RAPID-Cache, both the primary cache and the backup
cache may affect the overall performance. Since the goal of
the RAPID-Cache is to provide a low-cost backup cache
that matches the write performance of the primary cache,
we do not want the backup cache to become a potential per-
formance bottleneck. In this subsection we try to isolate the
backup cache from the rest of the system and study its per-
formance limitations. Basically we assume a near-perfect
primary cache that is much larger than the working-set of
the workload. In such a system the overall performance is
only limited by the backup cache. Note here we will only
study the case of the dedicated cache-disk. For the logical
cache-disk, it is difficult to isolate the interaction between
the log writes and normal data reads/writes, and we are
currently studying ways to evaluate the performance limits
of logical cache-disks.

We constructed a new trace called synthetic-D for this
purpose. The trace contains only write requests since we
are only interested in the performance of the backup cache
which is write-only. As shown in Figure 11, the trace has
a working-set of 32 MB. A cache larger than 32 MB can
absorb more than 97% of all requests, eliminating much of
the traffic to the data disks.

We chose a primary cache consisting of a 128 MB read
cache and a 128 MB write cache, which is much larger
than the working-set of the trace. The NVRAM in the
backup cache is 2 MB. In addition to the default segment
size of 128 KB, we also used a larger segment size of 256
KB to study the effect of larger segments. Figure 12 shows
the simulation results. In the case of the 128 KB segment
size, the maximum throughput of the backup cache is about
1400 write-requests/second. For this pure-write trace, the
backup cache with a 256 KB segment size has a higher
throughput of 1600 write-requests/second, because larger
segments utilizate the disk bandwidth more efficiently. How-
ever, we found that for read-dominated traces, there is no
noticable performance difference between the cases of 128
KB and 256 KB segment sizes.

Notice however that the maximum throughput of 1400—
1600 requests/second is only for this pure-write trace. On
the other hand, most transaction-processing workloads are
read-dominated. If a workload contains 60% of reads and

40% of writes, the write throughput of 1400-1600 requests/second

will translate to a read/write throughput of 3500-4000 re-
quests/second (because read traffic does not consume the
backup cache bandwidth).

There are several possible ways to further improve the
performance of the physical RAPID-Cache at very high

Read Cache = 64 IvB Wlte Cache = 16 MB

F!ead Cache = 64 IvB Wlte Cache = 32 MB

F!ead Cache = 64 IvB Wlte Cache = 64 MB

20 20 i 20— T T
o——o baseline o——o baselin o——o baselin
18 thsncal RAPID 18 thsncal RAPID 18 thsncal RAPID
logical-RAPID logical-RAPID logical-RAPID
16 16 16
~14 ~14 ~14
E E baseline E baseling
12 12 12
? ? physical-RAPID -, ? physical-RAPID
10 10 =
b b b
S8 58 §
@ @ @
& s & s &
! AM
2 2!
° =200 400 800 1000 1200 1400 1600 200 400 800 1000 1200 1400 1600 ° =200 400 800 1000 1200 1400 1600
'rmoughpm (r equest s/ second) 'rmoughpm (r equest s/ second) 'rmoughpm (r equest s/ second)
Figure 7: Performance of trace Synthetic-A
20 Read Cache = 64 MB, Wite Cache = 16 MB 20 Read Cache = 64 MB, Wite Cache = 32 MB 20 Read Cache = 64 MB, Wite Cache = 64 MB
T i
o——o baseline e——o baseline o——o baseline
18 thsmal RAPID |1 18 thsmal RAPID |1 18 thsmal RAPID
ogical-RAPID ogical-RAPID ogical-RAPID
16 16 16
—~14 —~14 =14
baseline - 3 baseline . 3 baseline
g12r g l2r g l2r
= physical-RAPID -.| = physical-RAPID .| = physical-RAPID!
1ot 1ot 1ot
2 logical-RAPID - 2 logical-RAPID - 2
S 8 S 8 S 8
2 2 2
o @ @
& of & of & of
4 4 ab
2t 2 2
o — e ———e— b i ———— OO0 60¢
0 500 0 2500 0 500 2500 0 500 2500

1000 1500 2000
Throughput (requests/second)

1000 1500 2000
Throughput (requests/second)

1000 1500 2000
Throughput (requests/second)

Figure 8: Performance of trace Synthetic-B

workloads:

1. Use a faster disk with a higher read-channel band-
width. Many new disk drives offer a higher bandwidth
than the one we used in our simulations.

2. Use multiple physical cache-disks to obtain a higher
aggregated bandwidth. For example, In our simula-
tion we use only one physical cache-disk for 16 data
disks. We can easily double the cache-disk band-
width by using two physical cache-disks. Since many
RAID products contain several spare disks, we can
use multiple spare disks as multiple cache-disks for
free. Moreover, a disk costs only several hundreds
dollars. Compared to expensive NVRAM, a RAPID-
Cache with two or more physical cache-disks is still a
low cost solution, even when we have to use an extra
dedicated cache-disk instead of a “free” spare disk.

3. Use a low cost solution that combines a physical cache-
disk with a logical cache-disk. In such a scheme, logs
are normally written into a dedicated cache-disk so
that log writes will not affect the read performance.
Once the load becomes so high that the dedicated
cache-disk saturates, the controller distributes a part
of the log write traffic to the logical cache distributed
among data disks, resulting in a higher combined log-
writing bandwidth.

5 Reliability and Costs
5.1 Reliability Model

In this subsection, we analyze the reliability of the cache
system based on exponentially distributed failures and re-
pairs for both RAM and disks. We will consider four dif-
ferent cache configurations, namely RAPID-Cache with an
NVRAM primary cache, RAPID-Cache with a DRAM pri-
mary cache, Single NVRAM cache, and Dual NVRAM caches.
Consider a RAPID-Cache with an NVRAM primary
cache. Assume that the primary cache consists of a num-
ber of NVRAM memory modules. Let MTTFyyvranm and
MTT Fy;,p, represent the mean time to failure of an NVRAM
module and the mean time to failure of a disk, respectively.
In case of a failure, a repair process can start by replacing
a failed memory module or a failed disk. It is reasonable
to assume that the mean repair time for both RAM and
disk is same denoted by MTTR. Recall that each write
operation in the RAPID-Cache is performed in both the
primary cache and the backup cache. If a memory mod-
ule in the primary cache fails, the data are lost only if the
component containing the same data copy in the backup
cache also fails before the repair for the failed module is
done. Similarly, if a component in the backup cache fails
first, that data is lost if the copy in the primary cache also
fails before repair. Let Sprimec,; and Sekupram be the
size, in terms of memory modules, of primary cache and
the size of the NVRAM in the backup cache, respectively.

11

Read Cache = 64 MB, Wite Cache = 16 MB

Read Cache = 64 MB, Wite Cache = 32 MB

Read Cache = 64 MB, Wite Cache = 64 MB

Response Tine (ns.

Response Tine (
o N & o ®

oe——o baseline
thsmal RAPID
logical-RAPID

Response Tine (ns.

oe——o baseline
thsmal RAPID
logical-RAPID

oe——o baselin
thsmal RAPID
logical-RAPID

o N & @ ®

200 400 800 1000 1200 1400 1600 1800 200 400
Thr bughput_ (1 8quest &7 Second)

800 1000 1200 1400 1600 1800 200 400 800
Thr bughput_ (1 8quest 7 Second)

10001200 1400 1600 1800
Thr bughput_ (1 8quest 7 Second)

Figure 9: Performance of trace Synthetic-C

The mean failure rate caused by both a primary cache
failure and a failure of the NVRAM of the backup cache
is SprimecSokupramt MTTR/(MTTFnyvram)?. And the
mean failure rate caused by both a primary cache failure

and a disk failure is Spm'mecMTTR/(MTTFNVRAMMTTFdiSk).

The probability that the mirror copy of a primary cache

data resides in the NVRAM of the backup cache is S’bkupRAM/Spgimec,

and the probability that the mirror copy resides in the disk
of the backup cache is 1 — Sekuprar /SPrimec. Therefore,
the mean failure rate of the entire cache system is given by

A = SprimeC SokupRAMMTTR , SopupraM

(MT"I’.FNVRAM)2 SPrimeC
+ SP'rimeCMTTR (1 _ SbkupRAM
MTTFnvram MTT Fisk Sprimec

It reduces to

(Svkupram)’ MTTR (Sprimec — Svkupram) MTTR

A =
! (MTTFnvram)? MTTFNyvrRAMMTT Fy;s1,

The mean time to data loss (MTTDL) of the RAPID-
Cache system with an NVRAM primary cache is therefore
given by
MTTDLaario: = 5

As mentioned previously, NVRAM is orders of magnitude
more expensive than regular DRAM. With the new RAPID-
Cache architecture, it is possible to implement the pri-
mary cache using DRAM instead of NVRAM. Using DRAM
as a primary write cache, on the other hand, may com-
promise the reliability of the cache. In addition to RAM
failures, data may get lost due to several other reasons
such as a power failure, hardware failures such as CPU
failures, and environment failures etc. To cope with fre-
quent power failures, most systems use an UPS to pre-
vent data loss from sudden power failures. In this case,
data loss occurs in the DRAM only when the power fails
and the UPS also fails. If a hardware failure such as a
CPU failure occurs, replacing the failed hardware usually
requires a system shutdown. As a result, all data in a
DRAM will be lost and they have to be recovered from the
backup cache. The data failure rate at the backup cache
is SbkupRAM/MTTFNVRAM + I/MTTFdiSk. Let MTTPF,
MTTFyps, and MTTHF be the mean time to power fail-
ure, mean time to failure for the UPS, and the mean time to

12

hardware failure, respectively. Assume that the mean time
to repair is same for all types of failures (MTTR). Then
the mean failure rate is given by

Ao = (SbkupRAM 1)
? MTTFnvrRam MTT Fysp,
PrimecMTTR MTTR MTTR?

(MTTFpram MTTHF + MTTPF*MTTFUPS)’

and the mean time to data loss of the RAPID-Cache with
a DRAM primary cache is

MTTDLgapPiD2 = i
A2
The reliability analysis of the other two cache architec-
tures is straightforward. For the single NVRAM cache case,
the mean time to data loss is simply MTT FnvrAM /SPrimec.
The mean time to data loss for the dual NVRAM case is

- (MTTFnvram)?/(SPrimec MTTR)

5.2 Reliability and Costs Comparison

One important factor that determines the reliability of the
write cache is the mean time to failure of NVRAM. Un-
fortunately, remarkably little data is available from liter-
ature or data sheets of various RAM products. Savage
and Wilkes [2] cited 25-87K hours of data retention life-
times of Integral Lithium-cell-backed static RAM that are
extremely expensive and 15K hours of predicted MTTF for
the popular PrestoServe card. With the lack of published
data for MTTF, we assume optimistically an MTTF of
RAM to be 200k hours, which favors conventional NVRAM
cache architectures and represents a conservative evalua-
tion for RAPID-Cache. Our analysis also assumes that the
NVRAM cache consists of a number of 2MB modules [20].
Some existing disk systems such as the RAIDs from Stor-
age Computer Co. use independent modules to constitute
a write cache. Power failures and UPS failure are another
source of possible data loss if DRAM is used. We assume
that all the systems considered are backed up by UPS sys-
tems. We chose the mean time to power failure (MTTPF)
of 4300 hours [21] and the MTTF of UPS (MTTFyps) of
200k hours [2] in our analysis. The mean time to hardware
failures and environment failures etc. is assumed to be one
month or 720 hours [5]. The MTTF for disks, M MT Fy;sy,

is assumed to be 1 million hours. The mean time to repair
for all types of failures here is assumed to be 48 hours.

Cost figures for semiconductor devices and disks change
very rapidly. It is difficult to give an accurate and up-
to-date cost evaluation. In order to give a general idea
for the cost of the different cache architectures, we made
the following assumptions. The cost of DRAM is $5/MB
and the cost of NVRAM is $120/MB which was quoted by
Dallas Semiconductor recently. The cost of disk space is 10
cents/MB. For a logical cache-disk, it is quite reasonable
to use this cost number since the cache space of a logical
cache-disk is located in partitions of data disks. In the
case of a physical cache-disk the cache space is located in
a partition of a hot standby disk as explained previously.
Therefore, it is also reasonable to use the per MB cost figure
since no additional disk drive is needed. If no spare disk
were available in a RAID, a dedicated cache disk would be
required that will add to the cost an additional $200 for a
minimum size disk drive available in the market.

Table 3 lists the reliability and cost comparison between
the baseline cache and our RAPID-Cache for 3 typical con-
figurations. For easy comparison, we also summarize the
performance of different cache architectures under different
traces in Table 4.

It is clear from the table that the difference between
the baseline cache and the RAPID-Cache in terms of reli-
ability and cost is significant. Compared to a single copy
NVRAM write cache, the reliability of the RAPID-Cache
with an NVRAM write cache is 5 orders of magnitudes
higher than that of the baseline cache system while the
additional cost introduced by the RAPID-Cache is only be-
tween 3% and 12%. Compared to the dual copy NVRAM
caches, the RAPID-Caches with an NVRAM primary cache
still have higher reliability than the baseline cache system
(because disks are more reliable than NVRAM) with ap-
proximately half of the cost. For the RAPID-Cache with
a DRAM write primary cache, its reliability is 3 orders of
magnitude better than a single-copy NVRAM cache. More
importantly, the cost of the RAPID-Cache is dramatically
lower than both single-copy NVRAM caches and dual-copy
NVRAM caches. In some cases, the cost of the RAPID-
Cache is only 11% of the single-copy NVRAM caches and
6% of the dual-copy NVRAM caches. In other words, the
RAPID-Cache comes almost free to provide similar reliabil-
ity to that of the baseline cache costing over ten thousand
dollars can provide. Moreover, a RAPID-Cache can use a
much larger primary cache to improve its performance while
still maintaining its low cost. For example, a RAPID-Cache
with a 64 MB DRAM read cache and a 64 MB DRAM write
cache costs only $905. Yet it provides more than 2 times
higher throughput and 3 orders of magnitude better reli-
ability than a single-copy NVRAM write cache of the 16
MB, which costs $2,240.

6 Related Work

The idea of using a disk-based log to improve system perfor-
mance or to improve the reliability of RAM has been used in
both file systems and database systems for a long time. For
example, the Log-structured File System (LFS) [9, 10, 11],
the Journal File System (JFS) and other similar systems all

13

Read Cache = 64 MB, Wite Cache = 64 MB
T T T T —T T

baseline

physical-RAPID 2.0 MB
physical-RAPID 1.0 MB
physical-RAPID 0.5 MB

baseline

physical-RAPID 2.0 MB -

physical-RAPID 1.0 MB -

Response Tine

o N . » O ®

200 400__ 600 800 1000 1200 1400 1600
Throughput (request s/ second)

Figure 10:
Synthetic-A

Effects of Backup NVRAM Sizes on trace

=
o
S}

mss ratio (%
N w b o @ N @ ©
S &8 5 & 3 & & o

=
1)

=)

64 128 256

-

512

8 16 32
cache size (MB)

Figure 11: Miss Ratios vs. Cache Sizes of Trace Synthetic-
D

use disk-based data/metadata logging to improve file sys-
tem performance and speed-up crash recovery. Database
systems have long been using elaborate logging techniques
to improve the reliability of the RAM buffer and to imple-
ment the transaction semantics. NVRAM has been used by
many database systems to reduce the overhead of logging.

Several RAID systems have implemented the LFS algo-
rithm at the RAID controller level [22, 16]. LFS collects
writes in a RAM buffer to form large logs and writes large
logs to data disks. While LFS has demonstrated superior
performance for many workloads, studies have shown that
the garbage collection overhead of LFS can become a ma-
jor performance bottleneck in transaction-processing envi-
ronments, decreasing the system performance by 34-40%
[11, 23]. The garbage collection overhead becomes very
high when the disk utilization reaches 80% of the total disk
capacity [11, 22].

Disk Caching Disks (DCD) proposed in [15] shows that
it is possible to implement a large non-volatile write cache
inexpensively. DCD uses a small NVRAM cache and a
small cache-disk to form a two-level cache. Write data are
first assembled in the small NVRAM cache and logged into
the cache-disk later. Data in the cache-disk is destaged to
the data disk during idle periods. The two-level hierarchical
structure acts as a large non-volatile cache, but its cost is
much lower than that of a large NVRAM cache. While
DCD has excellent performance for low to medium traffic

Cache sizes Reliability (MTTDL in hours) Cost (US Dollars)

Read/Write Single Dual-copy RAPID RAPID Single Dual-copy RAPID RAPID

(MB/MB) NVRAM | NVRAM | Cache-DP | Cache-NP | NVRAM | NVRAM | Cache-DP | Cache-NP
64/16 1.25%10% 5.21%107 6.70%10° 4.53%107 $2,240 $4,160 $905 $2,746
64/32 6.25%10% 2.60*107 6.36*105 3.86*107 $4,160 $8,000 $986 $4,666
64/64 3.13*103 1.30*107 5.77%105 2.98*107 $8,000 $15,680 $1146 $8,506

Table 3: Reliability and Costs comparison of the different write cache architectures. The size of the NVRAM buffer
of the RAPID-Cache is 2 MB. Note: RAPID Cache-DP refers to a RAPID-Cache with a DRAM primary write cache.
RAPID Cache-NP refers to a RAPID-Cache with an NVRAM primary write cache.

Cache sizes Logical RAPID-Cache

Baseline and Physical RAPID-Cache

Read/Write Throughput (Req./Sec.) Throughput (Req./Sec.)
(MB) Synthetic-A | Synthetic-B | Synthetic-C | Synthetic-A | Synthetic-B | Synthetic-C
64/16 710 1130 1040 740 1130 1040
64/32 1220 1420 1300 1300 1420 1300
64/64 1380 2470 1400 1440 2520 1440

Table 4: Performance of Different Cache Architectures Under Synthetic Traces

Read Cache = 128 MB, Wite Cache = 128 MB
o

—e— 256 KB Segnent Size
—— 512 KB Segnent Size

s
=
1)

Response Tine (ns)

@

60 — 10b0 1500 2000

Throughput (T equest s/ second)

Figure 12: Maximum Throughput of the Backup Cache for
Trace Synthetic-D

workloads, directly applying DCD to high I/O workloads
may face the following problems. DCD requires destaging
which involves reading dirty data from the cache-disk and
writing them into the data disk. The destaging process may
become a performance bottleneck at high loads because the
destage reads and the log writes will compete for the cache-
disk bandwidth. Moreover, the read speed of DCD is also
slow because data may have to be read from the cache-disk.

eNVy [7] is a large nonvolatile main memory storage
system based on flash EPROM. Flash EPROM has some
disk-like characteristics, i.e, data must be erased in blocks
and the write speed is slow. eNVy solved the write prob-
lem by using a battery-backed SRAM in front of the flash-
EPROM. Data are first written into the SRAM and then
parallelly transferred into the flash EPROM in large blocks.
The whole system appears to users as a large high-speed
NVRAM.

While the idea of RAPID-Cache is inspired by the pre-
vious research, especially LFS and DCD, there are several
important differences as highlighted below.

e In both LFS and DCD, data are collected in a RAM
buffer and logged into disks when the buffer is full.

14

In the backup cache of RAPID-Cache, data are writ-
ten into an LRU cache made of NVRAM. Active
data may be overwritten in the LRU cache frequently.
Only the inactive data evicted from the LRU cache
are collected in a segment buffer and logged into the
cache-disk. The separation of active data from inac-
tive data significantly reduces the cache-disk traffic
and garbage collection cost.

In DCD, data in the cache-disk must be destaged into
the data disk, which may become a performance bot-
tleneck at high workloads. In RAPID-Cache, there is
no need to read the cache-disk during destaging, since
all dirty data can be accessed from the primary cache.
Therefore the destage overhead of RAPID-Cache is
the same as that of a conventional system with a
single-copy or a dual-copy NVRAM write cache.

LFS needs garbage collection which significantly lim-
its the system performance in some cases. The asym-
metrically parallel architecture of RAPID-Cache and
the separation of active data from inactive data in
the backup cache enable us to design a garbage col-
lection algorithm that is much more efficient than
the one used by LFS. Moreover, RAPID-Cache sel-
dom requires garbage collection. In fact, the garbage
collection overhead of RAPID-Cache is so low that it
has virtually no impact on system performance.

7

Using NVRAM caches can significantly improve the write
performance of disk systems. However, because of the high
cost of NVRAM, in some disk systems the cost of NVRAM
caches is much higher than that of disks themselves and
dominates the overall system cost. In addition, a single-
copy NVRAM cache creates a single point of failure in
a highly reliable disk system while a dual-copy NVRAM
cache is even more expensive.

In this paper, we have presented a new disk cache ar-
chitecture called RAPID-Cache. The main feature of the

Conclusions

RAPID-Cache is its asymmetrically parallel architecture Acknowledgments

that consists of a fast-write-fast-read primary cache and an

inexpensive, fast-write-slow-read hierarchical backup cache. We thank Dr. David Kotz of Dartmouth College for letting
We trade the read performance of the backup cache for us use his disk simulator. We also thank HP Laboratories
economy and reliability. Fortunately, the compromise in and EMC Corporation for providing us with disk traces.
read performance of the backup cache does not affect the We benefited from discussions with Dr. Jien-Chung Lo of
system performance in any way because read operations University of Rhode Island on rehablllty issues of NVRAM.
from the backup cache are necessary only during error re- Some algorithms of the synthetic trace generator were ini-
covery periods. On the other hand, the economy, reliability ~tially designed by Qi Zhang.

and performance gained have been shown to be dramatic.

Such win-win trading is made possible by exploiting the

locality of disk accesses and efficiency of large disk trans- References

fers. We have shown through simulation experiments and
analysis that it is possible to configure the RAPID-Cache
in a number of ways to optimize throughput, reliability, or
system cost:

[1] Y. Hu, Q. Yang, and T. Nightingale, “RAPID-Cache
— a reliable and inexpensive write cache for disk I/O
systems.” to be presented in the 5th International Sym-
posium on High Performance Computer Architecture

e Compared to a single-copy NVRAM cache, a RAPID- (HPCA-5), Orlando, Florida, Jan. 1999.

Cache with a DRAM primary cache has much higher 1) ¢ g, 0700 and J. Wilkes, “AFRAID — A frequently re-
reliability and similar performance, with only a frac-

tion of the cost dundant array of independent disks,” in Proceedings of

the 1996 USENIX Technical Conference, (San Diego,
e Compared to a single-copy NVRAM cache, a RAPID- CA), Jan. 1996.
Cache with an NVRAM primary cache has much [3]
better reliability and similar performance, with only
slightly higher cost.

J. Menon and J. Cortney, “The architecture of a fault-
tolerant cached RAID controller,” in Proceedings of the
20th Annual International Symposium on Computer
e Compared to a dual-copy NVRAM cache, a RAPID- Architecture, (San Diego, California), pp. 76-86, May
Cache with an NVRAM primary cache has similar or 16-19, 1993.
better reliability and similar performance, with only [4]

half of the cost. K. Treiber and J. Menon, “Simulation study of cached

RAID5 designs,” in Proceedings of Int’l Symposium on

e Because its low cost, with the same budget, RAPID- High Performance Computer Architectures, (Raleigh,
Caches can have significantly higher performance com- North Carolina), pp. 186-197, Jan. 1995.
pared to conventional NVRAM cache architectures [5] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
by affor.ding. a much large'r p'r?mary cache size, while D. A. Patterson, “RAID : High-performance, reliable
still maintaining good reliability. secondary storage,” ACM Computing Surveys, vol. 26,
e The asymmetrically parallel architecture of RAPID- pp. 145-188, June 1994.

Caches and its algorithm that separates active data 6]
from inactive data virtually eliminate the garbage
collection overhead, which are the major problems
associated with previous solutions such as LFS and

A. Varma and Q. Jacobson, “Destage algorithms for
disk arrays with non-volatile caches,” in Proceedings
of the 22nd Annual International Symposium on Com-
puter Architecture, (Santa Margherita Ligure, Italy),

DCD. pp. 83-95, June 22-24, 1995.

Furthermore, using DRAM for the primary cache makes [7] M. Wu and W. Zwaenepoel, “eNVy, a non-volatile,
it economically feasible to combine the read cache with main memory storage system,” in Proceedings of the
write cache resulting in a unified cache that has signiﬁ— 6th Symposzum on Architectural Support for Program_
cant performance advantages. Such a unified cache would ming Languages and Operating Systems, pp. 86-97,
be very expensive to implement with the existing dual-copy Oct. 1994.

cache architectures because of the requirement of the large 8]
read cache that would have to be NVRAM if combined
with a write cache. While we have not presented the re-
sults of unified RAPID-Cache in this paper because of the

S. Akyiirek and K. Salem, “Management of par-
tially safe buffers,” IEEE Transactions on Computers,
vol. 44, pp. 394-407, Mar. 1995.

space limitation, our simulation results show that a uni- [9] J. Ousterhout and F. Douglis, “Beating the I/O bot-
fied RAPID-Cache can achieve 2-4 times higher through- tleneck: A case for log-structured file systems,” tech.
put than a split cache with the same total cache size. The rep., Computer Science Division, Electrical Engineer-
low cost feature of the RAPID-Cache also makes it possi- ing and Computer Sciences, University of California at
ble to use a very large primary cache to achieve very high Berkeley, Oct. 1988.

performance for high-end systems. Therefore, a wide range [10] M. Rosenblum and J. Ousterhout, “The design and
Olfl'(iiSI; I/0 systems can benefit from the RAPID-Cache ar- implementation of a log-structured file system,” ACM
chitecture.

Transactions on Computer Systems, pp. 26 — 52, Feb.
1992.

[11] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin,
“An implementation of a log-structured file system for

15

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

(22]

(23]

UNIX,” in Proceedings of Winter 1993 USENIX, (San
Diego, CA), pp. 307326, Jan. 1993.

D. Stodolsky, M. Holland, W. V. Courtright II, and
G. A. Gibson, “Parity logging disk arrays,” in ACM
Transactions of Computer Systems, pp. 206-235, Aug.
1994.

C. Ruemmler and J. Wilkes, “UNIX disk access pat-
terns,” in Proceedings of Winter 1993 USENIX, (San
Diego, CA), pp. 405—420, Jan. 1993.

B. T. Zivkov and A. J. Smith, “Disk caching in large
databases and timeshared systems,” Tech. Rep. CSD-
96-913, Computer Science Division, University of Cal-
ifornia, Berkeley, Sept. 1996.

Y. Hu and Q. Yang, “DCD—disk caching disk: A new
approach for boosting I/O performance,” in Proceed-
ings of the 28rd International Symposium on Computer
Architecture, (Philadelphia, Pennsylvania), pp. 169—
178, May 1996.

J. Wilkes, R. Golding, C. Staelin, and T. Sullivan,
“The HP AutoRaid hierarchical storage system,” ACM
Transactions on Computer Systems, vol. 14, pp. 108-
136, Feb. 1996.

D. Kotz, S. B. Toh, and S. Radhakrishnan, “A de-
tailed simulation model of the HP 97560 disk drive,”
Tech. Rep. PCS-TR94-220, Department of Computer
Science, Dartmouth College, July 1994.

C. Ruemmler and J. Wilkes, “An introduction to disk
drive modeling,” IEEE Computer, pp. 17-28, Mar.
1994.

G. R. Ganger, “Generating representative synthetic
workloads — an unsolved problem,” in Proceedings of
the Computer Measurement Group (CMG) Confer-
ence, pp. 1263-1269, Dec. 1995.

Dallas Semiconductor, “DS1270Y/AB 16M Non-
volatile SRAM data sheet.”

G. A. Gibson and D. A. Patterson, “Designing disk
arrays for high data reliability,” Journal of Parallel
and Distributed Computing, vol. 17, pp. 4-27, Jan.-
Feb. 1993.

J. Menon, “A performance comparison of RAID-5 and
log-structured arrays,” in Proceedings of the Fourth
IEEE International Symposium on High Performance
Distributed Computing, pp. 167-178, Aug. 1995.

M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. Padmanabhan, “File system log-
ging versus clustering: A performance comparison,”
in Proceedings of 1995 USENIX, (New Orleans, LA),
pp. 249-264, Jan. 1995.

16

