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Abstract 

 
Data storage plays an essential role in today’s fast-

growing data-intensive network services. iSCSI is one of 
the most recent standards that allow SCSI protocols to be 
carried out over IP networks. However, the disparities 
between SCSI and IP prevent fast and efficient 
deployment of SAN (Storage Area Network) over IP. This 
paper introduces STICS (SCSI-To-IP Cache Storage), a 
novel storage architecture that couples reliable and high-
speed data caching with low-overhead conversion 
between SCSI and IP protocols. Through the efficient 
caching algorithm and localization of certain 
unnecessary protocol overheads, STICS significantly 
improves performance over current iSCSI systems. 
Furthermore, STICS can be used as a basic plug-and-play 
building block for data storage over IP. We have 
implemented software STICS prototype on Linux 
operating system. Numerical results using popular 
PostMark benchmark program and EMC’s trace have 
shown dramatic performance gain over the current iSCSI 
implementation. 

1. Introduction 
 
As we enter a new era of computing, data storage has 

changed its role from “secondary” with respect to CPU 
and RAM to primary importance in today’s information 
world. Online data storage doubles every 9 months due to 
ever-growing demand for networked information services 
[8]. In general, networked storage architectures have 
evolved from network-attached storage (NAS) [2, 13], 
storage area network (SAN) [7], to most recent storage 
over IP (iSCSI) [6, 14]. NAS architecture allows a storage 
system/device to be directly connected to a standard 
network, typically via Ethernet. Clients in the network can 
access the NAS directly. A NAS based storage subsystem 
has built-in file system to provide clients with file system 
functionality. SAN technology, on the other hand, 
provides a simple block level interface for manipulating 
nonvolatile magnetic media. The basic premise of a SAN 
is to replace the “point-to-point” infrastructure of server 

to storage communications with one that allows “any-to-
any” communications. A SAN provides high connectivity, 
scalability, and availability using a specialized network 
protocol: FC-4 protocol. Deploying such a specialized 
network usually introduces additional cost for 
implementation, maintenance, and management. iSCSI is 
the most recently emerging technology with the goal of 
implementing the SAN technology over the better-
understood and mature network infrastructure: the 
Internet (TCP/IP). 

Implementing SAN over IP brings economy and 
convenience whereas it also raises performance issues. 
Currently, there are basically two existing approaches: 
one carries out SCSI and IP protocol conversion at a 
specialized switch and the other encapsulates SCSI 
protocol in TCP/IP at host bus adapter (HBA) level [14]. 
Both approaches have severe performance limitations. 
Converting protocols at a switch places special burden to 
an already-overloaded switch and creates another 
specialized networking equipment in a SAN. Such a 
specialized switch not only is costly as compared to off-
the-shelf Ethernet switches but also complicates 
installation, management, and maintenance. To 
encapsulate SCSI protocol over IP requires significant 
amount of overhead traffic for SCSI commands transfers 
and handshaking over the Internet. In addition, packet 
transfer latency exists over the network, particularly over 
long distances. Such latency does not reduce linearly with 
the increase of network bandwidth.  

Protocol disparities and network latencies motivate us 
to introduce a new storage architecture: SCSI-To-IP 
Cache Storage, or STICS for short.  The purpose of 
STICS is to bridge the disparities between SCSI and IP so 
that efficient SAN can be built over the Internet. It 
provides an iSCSI network cache to smooth out the traffic 
and improve overall performance. Such a cache or bridge 
is not only helpful but also necessary to certain degree 
because of the different nature of SCSI and IP such as 
speed, data unit size, protocols, and requirements. 
Wherever there is a speed disparity, cache helps. 
Analogous to “cache memory” used to cache memory 
data for CPU, STICS is a “cache storage” used to cache 
networked storage data for server host. By localizing part 
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of SCSI protocol and filtering out some unnecessary 
traffic, STICS can reduce the bandwidth requirement of 
the Internet to implement SAN. 

To quantitatively evaluate the performance potential of 
STICS in real world network environment, we have 
implemented the STICS under Linux. We have used 
PostMark benchmark and EMC’s trace to measure system 
performance. PostMark results show that STICS provides 
up to 4 times performance improvement over iSCSI 
implementation in terms of average system throughput. 
For EMC’s trace, our STICS shows up to 6 times as fast 
as the iSCSI in terms of average response time.  

2. Architecture 
 
The idea of STICS is very simple. It is just a cache that 

bridges the protocol and speed disparities between SCSI 
and IP. Figure 1 shows a typical SAN implementation 
over IP using STICS. Any number of storage devices or 
server computers can be connected to the standard 
Internet through STICS to form a SAN. Instead of using a 
specialized network or specialized switch, STICS 
connects a regular host server or a storage device to the 
standard IP network. Consider STICS 1 in the diagram. It 
is directly connected to the SCSI HBA of Host 1 as a 
local storage device. It also acts as a cache and bridge to 
allow Host 1 to access, at block level, any storage device 
connected to the SAN such as NAS, STICS 2, and STICS 
3 etc. In order to allow a smooth data access from Host 1 
to the SAN, STICS 1 provides SCSI protocol service, 
caching service, naming service, and IP protocol service.  

 
2.1. Cache structure of STICS 
 

Each STICS has a read cache consisting of a large 
DRAM and a write cache consisting of a 2 levels 
hierarchy with a small NVRAM on top of a log disk. 
Frequently accessed data reside in the DRAM that is 
organized as LRU cache for read operations. Write data 
are first stored in the small NVRAM. Whenever the 
newly written data in the NVRAM are sufficiently large 
or whenever the log disk is free, a log of data is written 
into the log disk sequentially. After the log write, the 
NVRAM becomes available to absorb additional write 
data. At the same time, a copy of the log is placed in the 
DRAM to speed up possible read operations of the data 
that have just been written to the log disk. Data in the log 
disk are organized in the format of segments similar to 
that in a Log-structured File System [15]. A segment 
contains a number of slots each of which can hold one 
data block. Data blocks in a segment are addressed by 
their Segment IDs and Slot IDs.  

A Hash table is used to locate data in the RAM buffer 
including DRAM and NVRAM. DRAM and NVRAM 

can be differentiated through their addresses. A LRU list 
and a Free List are used to keep tracks of the most 
recently used data and the free slots respectively. Data 
blocks stored in the RAM buffer are addressed by their 
Logical Block Addresses (LBAs). The Hash Table 
contains location information for each of the valid data 
blocks in the buffer and uses LBAs of incoming requests 
as search keys. The slot size is set to be the size of a block. 

  
2.2. Basic operations 
 
Write. Write requests may come from one of two sources: 
the host via SCSI interface and another STICS via the 
Ethernet interface.  

Write requests from the host via SCSI interface: 
After receiving a write request, the STICS first searches 
the Hash Table by the LBA address. If an entry is found, 
the entry is overwritten by the incoming write, and is 
moved to the NVRAM if it is in DRAM. If no entry is 
found, a free slot entry in the NVRAM is allocated from 
the Free List, the data are copied into the corresponding 
slot, and its address is recorded in the Hash table. The 
LRU list and Free List are then updated. When enough 
data slots (128 in our preliminary implementation) are 
accumulated or when the log disk is idle, the data slots are 
written into log disk sequentially in one large write. After 
the log write completes successfully, STICS signals the 
host that the request is complete and the log is moved 
from the NVRAM to DRAM.  

Write requests from another STICS via Ethernet 
interface: A packet coming from the network interface 
may turns out to be a write operation from a remote 
STICS on the network. After receiving such a write 
request, STICS gets a data block with STICS IP and LBA. 
It then searches the Hash Table by the LBA and IP. The 
same writing process as above is then performed.  

Figure 1: System overview. A STICS connects to 
the host via SCSI interface and connects to other 
STICS’ or NAS via Internet. 
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Read. Similar to write operations, read operations may 
also come either from the host via SCSI interface or from 
another STICS via the Ethernet interface.  

Read requests from the host via SCSI interface: 
After receiving a read request, the STICS searches the 
Hash Table by the LBA to determine the location of the 
data. Data requested may be in one of four different 
places: the RAM buffer, the log disk(s), the storage 
device in the local STICS, or a storage device in another 
STICS on the network. If the data is found in the RAM 
buffer, the data are copied from the RAM buffer to the 
requesting buffer. The STICS then signals the host that 
the request is complete. If the data is found in the log disk 
or the local storage device, the data are read from the log 
disk or storage device into the requesting buffer. 
Otherwise, the STICS encapsulates the request including 
LBA, current IP, and destination IP address into an IP 
packet and forwards it to the corresponding STICS.  

Read requests from another STICS via Ethernet 
interface: When a read request is found after unpacking 
an incoming IP packet, the STICS obtains the IP and LBA 
from the packet. It then searches the Hash Table by the 
LBA and the source IP to determine the location of the 
data and sends the data back to the source STICS through 
the network. 

 
Destages. The operation of moving data from a higher-
level storage device to a lower level storage device is 
defined as destage operation [16]. There are two levels of 
destage operations in STICS: destaging data from the 
NVRAM buffer to the log disk (Level 1 destage) and 
destaging data from log disk to a storage device (Level 2 
destage). Level 1 destage activates whenever the log disk 
is idle and there are data to be destaged in the NVRAM. 
Level 2 destage activates whenever one of the following 
events occurs: 1) the STICS detects a CPU idle period; 2) 
the size of data in the log disk exceeds a threshold value. 
Level 1 destage has higher priority than Level 2 destage. 
Once the Level 1 destage starts, it continues until a log of 
data in the NVRAM buffer is written to the log disk. 
Level 2 destage may be interrupted if a new request 
comes in or until the log disk becomes empty. If the 
destage process is interrupted, the destage thread would 
be suspended until the STICS detects another idle period. 
For extreme burst writes, where the log disk is full, Level 
1 destage forces subsequent writes to the addressed 
network storage to bypass the log disk to avoid cache 
overflow [16].  

As for Level 1 destage, the data in the NVRAM buffer 
are written to the log disk sequentially in large size 
(64KB). At the same time, the data are moved from 
NVRAM to DRAM. The log disk header and the 
corresponding in-memory slot entries are updated. All 
data are written to the log disk in “append” mode, which 

ensures that every time the data are written to consecutive 
log disk blocks. 

For Level 2 destage, we use a “first-write-first-
destage” algorithm according to the LRU List. Each time 
64KB data are read from the consecutive blocks of the log 
disk and written to the addressed network storage. The 
LRU list and free list are updated subsequently. 

 
2.3 Cache Coherence 

There are three ways to configure a distributed storage 
system using STICS, placing STICS near the host, target 
storage, or both. If we place a STICS near the host, the 
corresponding STICS building block is a private cache. If 
we place a STICS near the storage, we have a shared 
cache system. There are tradeoffs between shared cache 
and private cache configurations. From the point of view 
of cache efficiency, we would like to place cache as close 
to a host as possible to minimize latency. Such a private 
cache system allows multiple copies of a shared storage 
data to reside in different caches giving rise to the well-
known cache coherence problem. Shared caches, on the 
other hand, do not have such cache coherence problem 
because each cache is associated with target storage. 
However, each request has to go through the network to 
obtain data at the target storage side. We have considered 
both private and shared cache configurations. Shared 
cache configuration is relatively simple. For private cache 
configuration, a coherence protocol is necessary. One 
possible way to implement a cache coherence protocol in 
private cache system is using the local consistency (LC) 
model [1], which helps to minimize meta-data network 
traffic pertaining to coherence protocol. The details of the 
cache coherence protocol are out of scope of this paper. 
Interested readers are referred to [3]. 

 
2.4 Implementation  

 
There are several ways to implement STICS. A 

software STICS is a device driver or kernel module that 
controls and coordinates SCSI host bus adaptor (HBA) 
and network interface card (NIC). It uses a part of host’s 
system RAM and part of disk to form the cache. STICS 
can also be implemented at HBA controller level as a 
STICS card. Such a card has sufficient intelligence with 
RAM, IDE or SCSI interface, and Ethernet interface. The 
IDE or SCSI interface is used to connect to a log disk for 
caching. Finally, STICS can be implemented as a 
complete cache box with built-in controller, log disks, and 
local storage. 

Currently we have implemented a software prototype 
of STICS on Linux kernel 2.4.2, and it is implemented as 
kernel module which can be loaded and unloaded 
dynamically. Our implementation uses a part of system 
RAM and an additional hard disk for caching function. 



 

There is no local storage and all I/O operations are remote 
operations going through the network. 

3. Performance Evaluations 
 
3.1. Methodology 
 

For the purpose of performance evaluation, we have 
implemented STICS prototype and deployed a software 
iSCSI. For a fair performance comparison, both iSCSI 
and STICS have exactly the same CPU and RAM size. 
This RAM includes read cache and write buffer used in 
STICS. All I/O operations in both iSCSI and STICS are 
forced to be remote operations to target disks through a 
switch. 
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network cards and switch can be tuned to Gigabit and 
100Mbit dynamically. The configurations of these 
machines are described in Table 2 and the characteristics 
of individual disks are summarized in Table 1. 

For iSCSI implementation, we compiled and run the 
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iSCSI is compiled under Linux kernel 2.4.2 and 
configured as shown in Figure 2. 

Our STICS is running on Linux kernel 2.4.2 with 
target mode support and is loaded as a kernel module as 
shown in Figure 3. Four MB of the system RAM is used 
to simulate STICS NVRAM buffer, another 16MB of the 
system RAM is used as the DRAM read cache in our 
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STICS, and the log disk is a standalone hard drive. When 
requests come from the host, the STICS first processes the 
requests locally. For write requests, the STICS writes the 
data to its write buffer.  Whenever the log disk is idle, the 
data will be destaged to the log disk through level 1 
destage. After data is written to the log disk, STICS 
signals host write complete and moves the data to DRAM 
cache. When data in the log disk exceeds a threshold or 
the system is idle, the data in log disk will be destaged to 
the remote target storage through the network. The hash 
table and LRU list are updated. When a read request 
comes in, the STICS searches the hash table, locates 
where the data are, and accesses the data from RAM 
buffer, log disk, or remote disks via network. 

 
3.2. Benchmark and workload characteristics 
 

The benchmark we used to measure system throughput 
is PostMark which is a popular file system benchmark 
developed by Network Appliance. It measures 
performance in terms of transaction rates in an ephemeral 
small-file environment by creating a large pool of 
continually changing files. PostMark generates an initial 
pool of random text files ranging in size from a 
configurable low bound to a configurable high bound. 
This file pool is of configurable size and can be located 
on any accessible file system. Once the pool has been 
created, a specified number of transactions occur. Each 
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transaction consists of a pair of smaller transactions, i.e. 
Create file or Delete file, and Read file or Append file. 
Each transaction type and its affected files are chosen 
randomly. The read and write block size can be tuned. On 
completion of each run, a report is generated showing 
some metrics such as elapsed time, transaction rate, total 
number of files created and so on.  

In addition to PostMark, we also used a real-world 
trace obtained from EMC Corporation. The trace, referred 
to as EMC-tel trace hereafter, was collected by an EMC 
Symmetrix system installed at a telecommunication 
consumer site. The trace file contains 230370 requests, 
with a fixed request size of 4 blocks. The whole dataset 
size is 900M bytes. The trace is write-dominated with a 
write ratio of 89%. The average request rate is about 333 
requests/second. In order for the trace to be read by our 
STICS and the iSCSI implementation, we developed a 
program called ReqGenerator to convert the traces to 
high-level I/O requests. These requests are then fed to our 
STICS and iSCSI system to measure performance. 

 
3.3. Measured results and discussions 
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Figure 4: PostMark measurements (100Mbit network). 

Throughput. Our first experiment is to use PostMark to 
measure the I/O throughput in terms of transactions per 
second.  In our tests, PostMark was configured in two 
different ways. First, a small pool of 1,000 initial files and 
50,000 transactions; and second a large pool of 20,000 
initial files and 100,000 transactions. The total sizes of 
accessed data are 436MB (151.05MB read and 285.08MB 
write) and 740MB (303.46 MB read and 436.18MB write) 
respectively. They are much larger than host system RAM 

(128MB). We left all other PostMark parameters at their 
default settings. The network is configured as a 100Mbit 
network.  

In Figure 4, we plotted two separate bar graphs 
corresponding to the small file pool case and the large one, 
respectively. Each group of bars represents the system 
throughputs of STICS with report after complete (STICS), 
iSCSI (iSCSI) and STICS with immediate report (STICS-
Imm: host is acknowledged immediately after a write data 
is in RAM) for a specific data block size. It is clear from 
this figure that STICS shows obvious better system 
throughput than the iSCSI. The performance 
improvement of STICS over iSCSI is consistent across 
different block sizes and for both small pool and large 
pool cases. The performance gains of STICS with report 
after complete over iSCSI range from 60% to 110%. 
STICS with immediate report outperforms iSCSI by a 
factor of 2.69 to 4.18. 
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small size packets which are mainly used to transfer 
iSCSI handshaking messages are dramatically reduced 
from 1,937,724 to 431,216. Thirdly, by combining small 
writes into large ones, STICS increases the network 
bandwidth utilization. If we define full packet as the 
packet with size larger than 1024 bytes of payload data, 
and other packets are defined as partial packets. As shown 
in Table 4, STICS improves the ratio of full packets to 
partial packets from 0.73 to 1.41, and average bytes per 
packet is increased from 571 in iSCSI to 944 in STICS. 

Above results are measured under 100Mbit network, 
when we configured the switch and network cards as 
Gigabit network, we observed similar results as shown in 
figure 5. The performance gains of STICS with report 
after complete over iSCSI range from 51% to 80%. 
STICS with immediate report outperforms iSCSI by a 
factor of 2.49 to 3.07. The reason is as follows. When the 
network is improved from 100Mbit to 1 Gigabit, the 
network latency is not decreased linearly. In our test, we 
found the average latencies for 100Mbit and 1Gigabit 
network are 128.99 and 106.78 microseconds. The 
network performance is improved less than 20% in terms 
of latency from 100Mbit to Gigabit network.  

Response times.  Our next experiment is to measure and 
compare the response times of STICS and iSCSI under 
EMC trace. The network is configured as a Gigabit 
network. Response times of all individual I/O requests are 
plotted in Figure 6 for STICS with immediate report 
(Figure 6a), STICS with report after complete (Figure 6b) 
and iSCSI (Figure 6c). Each dot in a figure represents the 
response time of an individual I/O request. It can be seen 
from the figures that overall response times of STICS are 
much smaller than that of iSCSI. In Figure 6b, we noticed 
4 requests take up to 300ms. These few peak points drag 
down the average performance of STICS. These excessive 
large response times can be attributed to the destaging 
process. In our current implementation, we allow the level 
2 destaging process to continue until the entire log 
segment is empty before serving a new storage request. It 
takes a long time to move data in a full log segment to the 
remote data disk. We are still working on the optimization 
of the destage algorithm. We believe there is sufficient 
room to improve the destaging process to avoid the few 
peak response times of STICS. 

We also plotted histogram of request numbers against 
response times in Figure 7. In this figure, X-axis 
represents response time and Y-axis represents the 
number of storage requests finished at a particular 
response time. For example, a point (X, Y)=(10, 2500) 
means that there are 2,500 requests finished within 10 ms. 
As shown in Figure 7a, for the STICS with immediate 
report, most requests are finished within 2 ms, because 
STICS signals the complete of requests when the data are 
transferred to NVRAM buffer for write requests. The 

average response time is 2.7 ms. For the STICS with 
report after complete as shown in Figure 7b, the response 
times of the majority of requests fall within the range of 
2-5 ms. The rest of requests take longer time to finish but 
very few of them take longer than 40ms. The average 
response time is 5.71 ms.  
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Figure 5: PostMark measurements (Gigabit network). 

 
The iSCSI, on the other hand, has obvious larger 

response time. The response times of the majority of 
requests fall within the range of 6-28 milliseconds as 
shown in Figure 7c. No requests are finished within 5 
milliseconds. Some of them even take up to 400ms. The 
average response time is 16.73ms, which is 2.9 times as 
much as STICS with report after complete and 6.2 times 
as much as STICS with immediate report. Such a long 
responses time can be mainly attributed to the excessive 
network traffic of iSCSI. 
 
3.4. Costs Analysis  
 

As shown in the last subsection, STICS presents 
significant performance gains over the standard iSCSI 
implementation. One obvious question to ask is whether 
such performance improvement comes at extra hardware 
cost. To answer this question, we have carried out cost 
analysis as compared to iSCSI. In our experimental 
implementations, all hardware components such as CPU, 
RAM, cabling and switches are exactly the same for both 
iSCSI and STICS except for an additional disk in STICS 
for caching. With rapid dropping of disk prices, such an 
additional disk is easily justifiable. Typical cost of a 10 
GB disk is well under $100 while a typical SAN costs 
over tens of thousands dollars, implying a very small 



 
a) STICS with immediate report b) STICS with report after complete. c) iSCSI. 

Figure 6: Response times for EMC-tel trace. Each dot shows the response time of an individual I/O request. 
 

a) STICS with immediate report b) STICS with report after complete. c) iSCSI. 
Figure 7: Histograms of I/O response times for trace EMC-tel. 
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fraction of additional cost of STICS. Table 5 lists the 
practical cost of building a minimum SAN configuration 
with 6 servers and 200 GB using iSCSI and STICS, 
respectively (all the list prices are as of January 2001). As 
shown in this table, the cost difference between the two is 
well under 7%.  Considering software cost ($22,059) and 
maintenance cost ($8,676) for the same SAN system [10], 
the cost difference between the two is much less than 3%. 
We believe trading 3% of additional cost for 6 folds 
performance gain is certainly worthwhile. 

 
Table 5: Hardware costs comparison 

 iSCSI STICS 
 Qty Cost Total Qty Cost Total 
HBA  12 $339 $4,068 12 $339 $4,068 
Switch 1 $1,229 $1,229 1 $1,229 $1,229 
GB NIC 12 $319 $3,828 12 $319 $3,828 
OS HDD 12 $85 $1,020 12 $85 $1,020 
SCSI HDD 6 $799 $4,794 6 $799 $4,794 
Log Disks    12 $85 $1,020 
Total $14,939 $15,959 

 
We have also considered the cost of implementing 

iSCSI and STICS in hardware. For the same SAN 
configuration with 6 servers, iSCSI would need an iSCSI 
to SCSI converter costing $5,083 [10] or iSCSI cards. The 
additional hardware for each STICS would include an I/O 
processor with 4-MB NVRAM. We can conservatively 

estimate the total cost in addition to Table 5 for 12 STICS 
to be under $5,000. 

4. Related Work 
 

Existing research that is most closely related to STICS 
is network attached storage (NAS)[2]. The NAS 
technology provides direct network connection for hosts 
to access through network interfaces at file system level. 
STICS provides a direct SCSI connection to a server host 
to allow the server to access at block level a SAN 
implemented over the Internet. In addition to being a 
storage component of the SAN, a STICS performs 
network cache functions for a smooth and efficient SAN 
implementation over IP network.  

Another important work related to our research is Petal 
[9], a research project of Compaq’s Systems Research 
Center. Petal uses a collection of NAS-like storage 
servers interconnected using specially customized LAN to 
form a unified virtual disk space to clients at block level. 
iSCSI (Internet SCSI) [6,14] emerged very recently 
provides an ideal alternative to Petal’s customized LAN-
based SAN protocol. Taking advantage of existing 
Internet protocols and media, it is a nature way for storage 
to make use of TCP/IP as demonstrated by earlier 
research work of Meter et al of USC, VISA [12] to transfer 
SCSI commands and data using IP protocol. iSCSI 
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protocol is a mapping of the SCSI remote procedure 
invocation model over the TCP/IP protocol [14]. STICS 
architecture attempts to localize some of SCSI protocol 
traffic by accepting SCSI commands and data from the 
host. Filtered data block is sent to the storage target using 
Internet. This SCSI-in Block-out mechanism provides an 
immediate and transparent solution both to the host and 
the storage eliminating some unnecessary remote 
synchronization. Furthermore, STICS provides a 
nonvolatile cache exclusively for SCSI commands and 
data that are supposed to be transferred through the 
network. This cache reduces latency from the host point 
of view as well as avoids many unnecessary data transfer 
over the network, because many data are frequently 
overwritten. 

The idea of using a disk-based log to improve system 
performance or to improve the reliability of RAM has 
been used in both file system and database systems for a 
long time. For example, the Log-structured File System 
(LFS [15]), Disk Caching Disk (DCD [4]), and other 
similar systems all use disk-based data/metadata logging 
to improve file system performance and speed-up crash 
recovery. Several RAID systems have implemented the 
LFS algorithm at the RAID controller level [5,11,17]. 
LFS collects writes in a RAM buffer to form large logs 
and writes large logs to data disks. While many 
implementation techniques are borrowed from existing 
work, the novelty of STICS is the new concept of caching 
between SCSI and IP. 

5. Conclusions 
 

In this paper, we have introduced a new concept 
STICS to bridge the disparities between SCSI and IP in 
order to facilitate implementation of SAN over the 
Internet. STICS adds a new dimension to networked 
storage architectures allowing any server host to 
efficiently access a SAN on Internet through a standard 
SCSI interface. Using a nonvolatile “cache storage”, 
STICS smoothes out the storage data traffic between 
SCSI and IP very much like the way  “cache memory” 
smoothes out CPU-memory traffic.  We have 
implemented a prototype STICS under Linux operating 
system. We measured the performance of STICS as 
compared to a typical iSCSI implementation using a 
popular benchmark (PostMark) and a real world I/O 
workload (EMC’s trace). PostMark results have shown 
that STICS outperforms iSCSI by up to 4 times in terms 
of average system throughput. Numerical results under 
EMC’s trace show a factor of 3 to 6 performance gain in 
terms of average response time. Furthermore, STICS is a 
plug-and-play building block for storage networks. 
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