
 1

Introducing SCSI-to-IP Cache for Storage Area Networks

Xubin He, Qing Yang, and Ming Zhang
Department of Electrical and Computer Engineering,

University of Rhode Island, Kingston, RI 02881
{hexb, qyang, mingz}@ele.uri.edu

Abstract

Data storage plays an essential role in today’s fast-

growing data-intensive network services. iSCSI is one of
the most recent standards that allow SCSI protocols to be
carried out over IP networks. However, the disparities
between SCSI and IP prevent fast and efficient
deployment of SAN (Storage Area Network) over IP. This
paper introduces STICS (SCSI-To-IP Cache Storage), a
novel storage architecture that couples reliable and high-
speed data caching with low-overhead conversion
between SCSI and IP protocols. Through the efficient
caching algorithm and localization of certain
unnecessary protocol overheads, STICS significantly
improves performance over current iSCSI systems.
Furthermore, STICS can be used as a basic plug-and-play
building block for data storage over IP. We have
implemented software STICS prototype on Linux
operating system. Numerical results using popular
PostMark benchmark program and EMC’s trace have
shown dramatic performance gain over the current iSCSI
implementation.

1. Introduction

As we enter a new era of computing, data storage has

changed its role from “secondary” with respect to CPU
and RAM to primary importance in today’s information
world. Online data storage doubles every 9 months due to
ever-growing demand for networked information services
[8]. In general, networked storage architectures have
evolved from network-attached storage (NAS) [2, 13],
storage area network (SAN) [7], to most recent storage
over IP (iSCSI) [6, 14]. NAS architecture allows a storage
system/device to be directly connected to a standard
network, typically via Ethernet. Clients in the network can
access the NAS directly. A NAS based storage subsystem
has built-in file system to provide clients with file system
functionality. SAN technology, on the other hand,
provides a simple block level interface for manipulating
nonvolatile magnetic media. The basic premise of a SAN
is to replace the “point-to-point” infrastructure of server

to storage communications with one that allows “any-to-
any” communications. A SAN provides high connectivity,
scalability, and availability using a specialized network
protocol: FC-4 protocol. Deploying such a specialized
network usually introduces additional cost for
implementation, maintenance, and management. iSCSI is
the most recently emerging technology with the goal of
implementing the SAN technology over the better-
understood and mature network infrastructure: the
Internet (TCP/IP).

Implementing SAN over IP brings economy and
convenience whereas it also raises performance issues.
Currently, there are basically two existing approaches:
one carries out SCSI and IP protocol conversion at a
specialized switch and the other encapsulates SCSI
protocol in TCP/IP at host bus adapter (HBA) level [14].
Both approaches have severe performance limitations.
Converting protocols at a switch places special burden to
an already-overloaded switch and creates another
specialized networking equipment in a SAN. Such a
specialized switch not only is costly as compared to off-
the-shelf Ethernet switches but also complicates
installation, management, and maintenance. To
encapsulate SCSI protocol over IP requires significant
amount of overhead traffic for SCSI commands transfers
and handshaking over the Internet. In addition, packet
transfer latency exists over the network, particularly over
long distances. Such latency does not reduce linearly with
the increase of network bandwidth.

Protocol disparities and network latencies motivate us
to introduce a new storage architecture: SCSI-To-IP
Cache Storage, or STICS for short. The purpose of
STICS is to bridge the disparities between SCSI and IP so
that efficient SAN can be built over the Internet. It
provides an iSCSI network cache to smooth out the traffic
and improve overall performance. Such a cache or bridge
is not only helpful but also necessary to certain degree
because of the different nature of SCSI and IP such as
speed, data unit size, protocols, and requirements.
Wherever there is a speed disparity, cache helps.
Analogous to “cache memory” used to cache memory
data for CPU, STICS is a “cache storage” used to cache
networked storage data for server host. By localizing part

 2

of SCSI protocol and filtering out some unnecessary
traffic, STICS can reduce the bandwidth requirement of
the Internet to implement SAN.

To quantitatively evaluate the performance potential of
STICS in real world network environment, we have
implemented the STICS under Linux. We have used
PostMark benchmark and EMC’s trace to measure system
performance. PostMark results show that STICS provides
up to 4 times performance improvement over iSCSI
implementation in terms of average system throughput.
For EMC’s trace, our STICS shows up to 6 times as fast
as the iSCSI in terms of average response time.

2. Architecture

The idea of STICS is very simple. It is just a cache that

bridges the protocol and speed disparities between SCSI
and IP. Figure 1 shows a typical SAN implementation
over IP using STICS. Any number of storage devices or
server computers can be connected to the standard
Internet through STICS to form a SAN. Instead of using a
specialized network or specialized switch, STICS
connects a regular host server or a storage device to the
standard IP network. Consider STICS 1 in the diagram. It
is directly connected to the SCSI HBA of Host 1 as a
local storage device. It also acts as a cache and bridge to
allow Host 1 to access, at block level, any storage device
connected to the SAN such as NAS, STICS 2, and STICS
3 etc. In order to allow a smooth data access from Host 1
to the SAN, STICS 1 provides SCSI protocol service,
caching service, naming service, and IP protocol service.

2.1. Cache structure of STICS

Each STICS has a read cache consisting of a large
DRAM and a write cache consisting of a 2 levels
hierarchy with a small NVRAM on top of a log disk.
Frequently accessed data reside in the DRAM that is
organized as LRU cache for read operations. Write data
are first stored in the small NVRAM. Whenever the
newly written data in the NVRAM are sufficiently large
or whenever the log disk is free, a log of data is written
into the log disk sequentially. After the log write, the
NVRAM becomes available to absorb additional write
data. At the same time, a copy of the log is placed in the
DRAM to speed up possible read operations of the data
that have just been written to the log disk. Data in the log
disk are organized in the format of segments similar to
that in a Log-structured File System [15]. A segment
contains a number of slots each of which can hold one
data block. Data blocks in a segment are addressed by
their Segment IDs and Slot IDs.

A Hash table is used to locate data in the RAM buffer
including DRAM and NVRAM. DRAM and NVRAM

can be differentiated through their addresses. A LRU list
and a Free List are used to keep tracks of the most
recently used data and the free slots respectively. Data
blocks stored in the RAM buffer are addressed by their
Logical Block Addresses (LBAs). The Hash Table
contains location information for each of the valid data
blocks in the buffer and uses LBAs of incoming requests
as search keys. The slot size is set to be the size of a block.

2.2. Basic operations

Write. Write requests may come from one of two sources:
the host via SCSI interface and another STICS via the
Ethernet interface.

Write requests from the host via SCSI interface:
After receiving a write request, the STICS first searches
the Hash Table by the LBA address. If an entry is found,
the entry is overwritten by the incoming write, and is
moved to the NVRAM if it is in DRAM. If no entry is
found, a free slot entry in the NVRAM is allocated from
the Free List, the data are copied into the corresponding
slot, and its address is recorded in the Hash table. The
LRU list and Free List are then updated. When enough
data slots (128 in our preliminary implementation) are
accumulated or when the log disk is idle, the data slots are
written into log disk sequentially in one large write. After
the log write completes successfully, STICS signals the
host that the request is complete and the log is moved
from the NVRAM to DRAM.

Write requests from another STICS via Ethernet
interface: A packet coming from the network interface
may turns out to be a write operation from a remote
STICS on the network. After receiving such a write
request, STICS gets a data block with STICS IP and LBA.
It then searches the Hash Table by the LBA and IP. The
same writing process as above is then performed.

Figure 1: System overview. A STICS connects to
the host via SCSI interface and connects to other
STICS’ or NAS via Internet.

SCSI

Host 1

Disks

STICS 2

Internet
SCSI

TCP/IP
STICS 1

TCP/IP

NASSTICS
N

Host M or
Storage

SCSI

TCP/IP

 3

Read. Similar to write operations, read operations may
also come either from the host via SCSI interface or from
another STICS via the Ethernet interface.

Read requests from the host via SCSI interface:
After receiving a read request, the STICS searches the
Hash Table by the LBA to determine the location of the
data. Data requested may be in one of four different
places: the RAM buffer, the log disk(s), the storage
device in the local STICS, or a storage device in another
STICS on the network. If the data is found in the RAM
buffer, the data are copied from the RAM buffer to the
requesting buffer. The STICS then signals the host that
the request is complete. If the data is found in the log disk
or the local storage device, the data are read from the log
disk or storage device into the requesting buffer.
Otherwise, the STICS encapsulates the request including
LBA, current IP, and destination IP address into an IP
packet and forwards it to the corresponding STICS.

Read requests from another STICS via Ethernet
interface: When a read request is found after unpacking
an incoming IP packet, the STICS obtains the IP and LBA
from the packet. It then searches the Hash Table by the
LBA and the source IP to determine the location of the
data and sends the data back to the source STICS through
the network.

Destages. The operation of moving data from a higher-
level storage device to a lower level storage device is
defined as destage operation [16]. There are two levels of
destage operations in STICS: destaging data from the
NVRAM buffer to the log disk (Level 1 destage) and
destaging data from log disk to a storage device (Level 2
destage). Level 1 destage activates whenever the log disk
is idle and there are data to be destaged in the NVRAM.
Level 2 destage activates whenever one of the following
events occurs: 1) the STICS detects a CPU idle period; 2)
the size of data in the log disk exceeds a threshold value.
Level 1 destage has higher priority than Level 2 destage.
Once the Level 1 destage starts, it continues until a log of
data in the NVRAM buffer is written to the log disk.
Level 2 destage may be interrupted if a new request
comes in or until the log disk becomes empty. If the
destage process is interrupted, the destage thread would
be suspended until the STICS detects another idle period.
For extreme burst writes, where the log disk is full, Level
1 destage forces subsequent writes to the addressed
network storage to bypass the log disk to avoid cache
overflow [16].

As for Level 1 destage, the data in the NVRAM buffer
are written to the log disk sequentially in large size
(64KB). At the same time, the data are moved from
NVRAM to DRAM. The log disk header and the
corresponding in-memory slot entries are updated. All
data are written to the log disk in “append” mode, which

ensures that every time the data are written to consecutive
log disk blocks.

For Level 2 destage, we use a “first-write-first-
destage” algorithm according to the LRU List. Each time
64KB data are read from the consecutive blocks of the log
disk and written to the addressed network storage. The
LRU list and free list are updated subsequently.

2.3 Cache Coherence

There are three ways to configure a distributed storage
system using STICS, placing STICS near the host, target
storage, or both. If we place a STICS near the host, the
corresponding STICS building block is a private cache. If
we place a STICS near the storage, we have a shared
cache system. There are tradeoffs between shared cache
and private cache configurations. From the point of view
of cache efficiency, we would like to place cache as close
to a host as possible to minimize latency. Such a private
cache system allows multiple copies of a shared storage
data to reside in different caches giving rise to the well-
known cache coherence problem. Shared caches, on the
other hand, do not have such cache coherence problem
because each cache is associated with target storage.
However, each request has to go through the network to
obtain data at the target storage side. We have considered
both private and shared cache configurations. Shared
cache configuration is relatively simple. For private cache
configuration, a coherence protocol is necessary. One
possible way to implement a cache coherence protocol in
private cache system is using the local consistency (LC)
model [1], which helps to minimize meta-data network
traffic pertaining to coherence protocol. The details of the
cache coherence protocol are out of scope of this paper.
Interested readers are referred to [3].

2.4 Implementation

There are several ways to implement STICS. A

software STICS is a device driver or kernel module that
controls and coordinates SCSI host bus adaptor (HBA)
and network interface card (NIC). It uses a part of host’s
system RAM and part of disk to form the cache. STICS
can also be implemented at HBA controller level as a
STICS card. Such a card has sufficient intelligence with
RAM, IDE or SCSI interface, and Ethernet interface. The
IDE or SCSI interface is used to connect to a log disk for
caching. Finally, STICS can be implemented as a
complete cache box with built-in controller, log disks, and
local storage.

Currently we have implemented a software prototype
of STICS on Linux kernel 2.4.2, and it is implemented as
kernel module which can be loaded and unloaded
dynamically. Our implementation uses a part of system
RAM and an additional hard disk for caching function.

There is no local storage and all I/O operations are remote
operations going through the network.

3. Performance Evaluations

3.1. Methodology

For the purpose of performance evaluation, we have
implemented STICS prototype and deployed a software
iSCSI. For a fair performance comparison, both iSCSI
and STICS have exactly the same CPU and RAM size.
This RAM includes read cache and write buffer used in
STICS. All I/O operations in both iSCSI and STICS are
forced to be remote operations to target disks through a
switch.

Our exp

Three PCs
Cod and S

storage target. Cod serves as a switch console to monitor
the network traffic. For STICS experiment, a software
STICS is loaded as kernel module. All these machines are
interconnected through an 8-port Gigabit switch (Intel
NetStructure 470T) to form an isolated LAN. Each
machine is running Linux kernel 2.4.2 with a Netgear
GA622T Gigabit network interface card (NIC) and an
Adaptec 39160 high performance SCSI adaptor. The
network cards and switch can be tuned to Gigabit and
100Mbit dynamically. The configurations of these
machines are described in Table 2 and the characteristics
of individual disks are summarized in Table 1.

For iSCSI implementation, we compiled and run the
Linux iSCSI developed by Intel Corporation [6]. The
iSCSI is compiled under Linux kernel 2.4.2 and
configured as shown in Figure 2.

Our STICS is running on Linux kernel 2.4.2 with
target mode support and is loaded as a kernel module as
shown in Figure 3. Four MB of the system RAM is used
to simulate STICS NVRAM buffer, another 16MB of the
system RAM is used as the DRAM read cache in our

Trout
Cod

Squid

Disk Model Manufacture Interface

O7N3200 IBM Ultra SCSI
AS010a1 Maxtor Ultra ATA/100

H
(T

Figu

Figure 3
Table 2: Machines configurations
CPU RAM IDE disk SCSI disk

PII-450 128MB 2 AS010a1 N/A
PII-400 128MB AS010a1 N/A
PII-400 128MB 2 AS010a1 O7N3200
erimental settings are shown in Fig
 are involved in our experiments, na
quid. Trout serves as the host and

Target
(Squid

N
IC

Disks

ost
rout)

N
IC

Switch

iSCSI
commands
and data

Cod S

re 2: iSCSI configuration.

: STICS configuration.

Targ
(Squ

ST
IC

S
2

Disks

Host
(Trout)

ST
IC

S1

Switch

Block data

Cod
Table 1: Disk parameters
Capacity Data

buffer
RPM Latency

(ms)
Transfer rate

(MB/s)
Seek time (ms)

36.7G N/A 10000 3.0 29.8 4.9
10.2G 2MB 7200 4.17 16.6 8.5
4

ures 2 and 3.
mely Trout,

Squid as the

STICS, and the log disk is a standalone hard drive. When
requests come from the host, the STICS first processes the
requests locally. For write requests, the STICS writes the
data to its write buffer. Whenever the log disk is idle, the
data will be destaged to the log disk through level 1
destage. After data is written to the log disk, STICS
signals host write complete and moves the data to DRAM
cache. When data in the log disk exceeds a threshold or
the system is idle, the data in log disk will be destaged to
the remote target storage through the network. The hash
table and LRU list are updated. When a read request
comes in, the STICS searches the hash table, locates
where the data are, and accesses the data from RAM
buffer, log disk, or remote disks via network.

3.2. Benchmark and workload characteristics

The benchmark we used to measure system throughput
is PostMark which is a popular file system benchmark
developed by Network Appliance. It measures
performance in terms of transaction rates in an ephemeral
small-file environment by creating a large pool of
continually changing files. PostMark generates an initial
pool of random text files ranging in size from a
configurable low bound to a configurable high bound.
This file pool is of configurable size and can be located
on any accessible file system. Once the pool has been
created, a specified number of transactions occur. Each

)

CSI

et
id)

SCSI

transaction consists of a pair of smaller transactions, i.e.
Create file or Delete file, and Read file or Append file.
Each transaction type and its affected files are chosen
randomly. The read and write block size can be tuned. On
completion of each run, a report is generated showing
some metrics such as elapsed time, transaction rate, total
number of files created and so on.

In addition to PostMark, we also used a real-world
trace obtained from EMC Corporation. The trace, referred
to as EMC-tel trace hereafter, was collected by an EMC
Symmetrix system installed at a telecommunication
consumer site. The trace file contains 230370 requests,
with a fixed request size of 4 blocks. The whole dataset
size is 900M bytes. The trace is write-dominated with a
write ratio of 89%. The average request rate is about 333
requests/second. In order for the trace to be read by our
STICS and the iSCSI implementation, we developed a
program called ReqGenerator to convert the traces to
high-level I/O requests. These requests are then fed to our
STICS and iSCSI system to measure performance.

3.3. Measured results and discussions

Throughput
(1000 intial files and 50000 transactions)

0
100
200
300
400
500
600

512 1024 2048 4096

Block size (bytes)

Tr
an

sa
ct

io
ns

/s
ec

STICS iSCSI STICS-Imm

Throughput

 (20000 initial files and 100000 transactions)

0

100

200

300

400

512 1024 2048 4096

Block size (bytes)

Tr
an

sa
ct

io
ns

/s
ec

STICS iSCSI STICS-Imm

Figure 4: PostMark measurements (100Mbit network).

Throughput. Our first experiment is to use PostMark to
measure the I/O throughput in terms of transactions per
second. In our tests, PostMark was configured in two
different ways. First, a small pool of 1,000 initial files and
50,000 transactions; and second a large pool of 20,000
initial files and 100,000 transactions. The total sizes of
accessed data are 436MB (151.05MB read and 285.08MB
write) and 740MB (303.46 MB read and 436.18MB write)
respectively. They are much larger than host system RAM

(128MB). We left all other PostMark parameters at their
default settings. The network is configured as a 100Mbit
network.

In Figure 4, we plotted two separate bar graphs
corresponding to the small file pool case and the large one,
respectively. Each group of bars represents the system
throughputs of STICS with report after complete (STICS),
iSCSI (iSCSI) and STICS with immediate report (STICS-
Imm: host is acknowledged immediately after a write data
is in RAM) for a specific data block size. It is clear from
this figure that STICS shows obvious better system
throughput than the iSCSI. The performance
improvement of STICS over iSCSI is consistent across
different block sizes and for both small pool and large
pool cases. The performance gains of STICS with report
after complete over iSCSI range from 60% to 110%.
STICS with immediate report outperforms iSCSI by a
factor of 2.69 to 4.18.

Table 3: packet distribution

Of packets with different sizes
<64

Bytes
65-127 128-

255
256-
511

512-
1023

>1024

iSCSI 7 1,937,724 91 60 27 1,415,912
STICS 4 431,216 16 30 7 607,827

To understa
performance g
network activi
console mach
implementation
data from the h
dramatically le
does. Tables
activities for
analysis of th
performance g
to the followin
RAM buffer fo
small writes q
because many
As shown in T
over the netw
980,963,821 a
storage is the
remote handsh
reduce the netw

Total Pac

Full/Partial Pac
Bytes Trans

Average Byte
Table 4: Network traffic
iSCSI STICS

kets 3,353,821 839,100
ket Ratio 0.73 1.41
ferred 1,914,566,504 980,963,821
s/Packet 571 944
5

nd why STICS provides such impressive
ains over the iSCSI, we monitored the
ties at the Ethernet Switch through the
ine cod for both STICS and iSCSI
s. While both implementations write all
ost to the remote storage, STICS transfers
ss packets over the network than iSCSI
3 and 4 show the measured network
both STICS and iSCSI. Based on our
e numerical results, we believe that the
ain of STICS over iSCSI can be attributed
g facts. First, the log disk along with the
rms a large cache for the host and absorbs
uickly, which reduces the network traffic
data are overwritten in the local log disk.
able 4, the number of total bytes transferred
ork is reduced from 1,914,566,504 to

lthough the total data stored in the target
same. Secondly, STICS eliminates many
aking caused by iSCSI, which in turn
ork traffic. We noticed in Table 3 that the

 6

small size packets which are mainly used to transfer
iSCSI handshaking messages are dramatically reduced
from 1,937,724 to 431,216. Thirdly, by combining small
writes into large ones, STICS increases the network
bandwidth utilization. If we define full packet as the
packet with size larger than 1024 bytes of payload data,
and other packets are defined as partial packets. As shown
in Table 4, STICS improves the ratio of full packets to
partial packets from 0.73 to 1.41, and average bytes per
packet is increased from 571 in iSCSI to 944 in STICS.

Above results are measured under 100Mbit network,
when we configured the switch and network cards as
Gigabit network, we observed similar results as shown in
figure 5. The performance gains of STICS with report
after complete over iSCSI range from 51% to 80%.
STICS with immediate report outperforms iSCSI by a
factor of 2.49 to 3.07. The reason is as follows. When the
network is improved from 100Mbit to 1 Gigabit, the
network latency is not decreased linearly. In our test, we
found the average latencies for 100Mbit and 1Gigabit
network are 128.99 and 106.78 microseconds. The
network performance is improved less than 20% in terms
of latency from 100Mbit to Gigabit network.

Response times. Our next experiment is to measure and
compare the response times of STICS and iSCSI under
EMC trace. The network is configured as a Gigabit
network. Response times of all individual I/O requests are
plotted in Figure 6 for STICS with immediate report
(Figure 6a), STICS with report after complete (Figure 6b)
and iSCSI (Figure 6c). Each dot in a figure represents the
response time of an individual I/O request. It can be seen
from the figures that overall response times of STICS are
much smaller than that of iSCSI. In Figure 6b, we noticed
4 requests take up to 300ms. These few peak points drag
down the average performance of STICS. These excessive
large response times can be attributed to the destaging
process. In our current implementation, we allow the level
2 destaging process to continue until the entire log
segment is empty before serving a new storage request. It
takes a long time to move data in a full log segment to the
remote data disk. We are still working on the optimization
of the destage algorithm. We believe there is sufficient
room to improve the destaging process to avoid the few
peak response times of STICS.

We also plotted histogram of request numbers against
response times in Figure 7. In this figure, X-axis
represents response time and Y-axis represents the
number of storage requests finished at a particular
response time. For example, a point (X, Y)=(10, 2500)
means that there are 2,500 requests finished within 10 ms.
As shown in Figure 7a, for the STICS with immediate
report, most requests are finished within 2 ms, because
STICS signals the complete of requests when the data are
transferred to NVRAM buffer for write requests. The

average response time is 2.7 ms. For the STICS with
report after complete as shown in Figure 7b, the response
times of the majority of requests fall within the range of
2-5 ms. The rest of requests take longer time to finish but
very few of them take longer than 40ms. The average
response time is 5.71 ms.

Throughput
(1000 intial files and 50000 transactions)

0

200

400

600

512 1024 2048 4096

Block size (bytes)

Tr
an

sa
ct

io
ns

/s
ec

STICS iSCSI STICS-Imm

Throughput

 (20000 initial files and 100000 transactions)

0

100

200

300

400

512 1024 2048 4096

Block size (bytes)
Tr

an
sa

ct
io

ns
/s

ec

STICS iSCSI STICS-Imm

Figure 5: PostMark measurements (Gigabit network).

The iSCSI, on the other hand, has obvious larger

response time. The response times of the majority of
requests fall within the range of 6-28 milliseconds as
shown in Figure 7c. No requests are finished within 5
milliseconds. Some of them even take up to 400ms. The
average response time is 16.73ms, which is 2.9 times as
much as STICS with report after complete and 6.2 times
as much as STICS with immediate report. Such a long
responses time can be mainly attributed to the excessive
network traffic of iSCSI.

3.4. Costs Analysis

As shown in the last subsection, STICS presents
significant performance gains over the standard iSCSI
implementation. One obvious question to ask is whether
such performance improvement comes at extra hardware
cost. To answer this question, we have carried out cost
analysis as compared to iSCSI. In our experimental
implementations, all hardware components such as CPU,
RAM, cabling and switches are exactly the same for both
iSCSI and STICS except for an additional disk in STICS
for caching. With rapid dropping of disk prices, such an
additional disk is easily justifiable. Typical cost of a 10
GB disk is well under $100 while a typical SAN costs
over tens of thousands dollars, implying a very small

a) STICS with immediate report b) STICS with report after complete. c) iSCSI.

Figure 6: Response times for EMC-tel trace. Each dot shows the response time of an individual I/O request.

a) STICS with immediate report b) STICS with report after complete. c) iSCSI.
Figure 7: Histograms of I/O response times for trace EMC-tel.
 7

fraction of additional cost of STICS. Table 5 lists the
practical cost of building a minimum SAN configuration
with 6 servers and 200 GB using iSCSI and STICS,
respectively (all the list prices are as of January 2001). As
shown in this table, the cost difference between the two is
well under 7%. Considering software cost ($22,059) and
maintenance cost ($8,676) for the same SAN system [10],
the cost difference between the two is much less than 3%.
We believe trading 3% of additional cost for 6 folds
performance gain is certainly worthwhile.

Table 5: Hardware costs comparison

 iSCSI STICS
 Qty Cost Total Qty Cost Total
HBA 12 $339 $4,068 12 $339 $4,068
Switch 1 $1,229 $1,229 1 $1,229 $1,229
GB NIC 12 $319 $3,828 12 $319 $3,828
OS HDD 12 $85 $1,020 12 $85 $1,020
SCSI HDD 6 $799 $4,794 6 $799 $4,794
Log Disks 12 $85 $1,020
Total $14,939 $15,959

We have also considered the cost of implementing

iSCSI and STICS in hardware. For the same SAN
configuration with 6 servers, iSCSI would need an iSCSI
to SCSI converter costing $5,083 [10] or iSCSI cards. The
additional hardware for each STICS would include an I/O
processor with 4-MB NVRAM. We can conservatively

estimate the total cost in addition to Table 5 for 12 STICS
to be under $5,000.

4. Related Work

Existing research that is most closely related to STICS
is network attached storage (NAS)[2]. The NAS
technology provides direct network connection for hosts
to access through network interfaces at file system level.
STICS provides a direct SCSI connection to a server host
to allow the server to access at block level a SAN
implemented over the Internet. In addition to being a
storage component of the SAN, a STICS performs
network cache functions for a smooth and efficient SAN
implementation over IP network.

Another important work related to our research is Petal
[9], a research project of Compaq’s Systems Research
Center. Petal uses a collection of NAS-like storage
servers interconnected using specially customized LAN to
form a unified virtual disk space to clients at block level.
iSCSI (Internet SCSI) [6,14] emerged very recently
provides an ideal alternative to Petal’s customized LAN-
based SAN protocol. Taking advantage of existing
Internet protocols and media, it is a nature way for storage
to make use of TCP/IP as demonstrated by earlier
research work of Meter et al of USC, VISA [12] to transfer
SCSI commands and data using IP protocol. iSCSI

 8

protocol is a mapping of the SCSI remote procedure
invocation model over the TCP/IP protocol [14]. STICS
architecture attempts to localize some of SCSI protocol
traffic by accepting SCSI commands and data from the
host. Filtered data block is sent to the storage target using
Internet. This SCSI-in Block-out mechanism provides an
immediate and transparent solution both to the host and
the storage eliminating some unnecessary remote
synchronization. Furthermore, STICS provides a
nonvolatile cache exclusively for SCSI commands and
data that are supposed to be transferred through the
network. This cache reduces latency from the host point
of view as well as avoids many unnecessary data transfer
over the network, because many data are frequently
overwritten.

The idea of using a disk-based log to improve system
performance or to improve the reliability of RAM has
been used in both file system and database systems for a
long time. For example, the Log-structured File System
(LFS [15]), Disk Caching Disk (DCD [4]), and other
similar systems all use disk-based data/metadata logging
to improve file system performance and speed-up crash
recovery. Several RAID systems have implemented the
LFS algorithm at the RAID controller level [5,11,17].
LFS collects writes in a RAM buffer to form large logs
and writes large logs to data disks. While many
implementation techniques are borrowed from existing
work, the novelty of STICS is the new concept of caching
between SCSI and IP.

5. Conclusions

In this paper, we have introduced a new concept
STICS to bridge the disparities between SCSI and IP in
order to facilitate implementation of SAN over the
Internet. STICS adds a new dimension to networked
storage architectures allowing any server host to
efficiently access a SAN on Internet through a standard
SCSI interface. Using a nonvolatile “cache storage”,
STICS smoothes out the storage data traffic between
SCSI and IP very much like the way “cache memory”
smoothes out CPU-memory traffic. We have
implemented a prototype STICS under Linux operating
system. We measured the performance of STICS as
compared to a typical iSCSI implementation using a
popular benchmark (PostMark) and a real world I/O
workload (EMC’s trace). PostMark results have shown
that STICS outperforms iSCSI by up to 4 times in terms
of average system throughput. Numerical results under
EMC’s trace show a factor of 3 to 6 performance gain in
terms of average response time. Furthermore, STICS is a
plug-and-play building block for storage networks.

Acknowledgements

This research is sponsored in part by National Science
Foundation under grants MIP-9714370 and CCR-
0073377. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the National Science Foundation. The authors would like
to thank the anonymous reviewers for their many helpful
comments and suggestions. We would like to thank EMC
Corporation for providing trace files to us. We would like
to thank Jian Li for his assistance in the experiments and
Yinan Liu for his suggestions on graph editing.

References
[1] M. Ahamad and R. Kordale, “Scalable Consistency Protocols for
Distributed Services,” IEEE Transactions on Parallel and Distributed
Systems, vol. 10, pp. 888, 1999.
[2] G. Gibson, R. Meter, “Network Attached Storage Architecture,”
Communications of the ACM, Vol. 43, No 11, pp.37-45, 2000.
[3] X. He, Q. Yang, and M Zhang, “Introducing SCSI-To-IP Cache for
Storage Area Networks”, Technical Report, URL:
http://ele.uri.edu/~hexb/publications/STICS-Tech-200112.pdf.
[4] Y. Hu and Q. Yang, “DCD-disk caching disk: A New Approach
for Boosting I/O Performance,” ISCA’96, pp.169-178, 1996.
[5] Y. Hu, Q. Yang, and T. Nightingale, “RAPID-Cache --- A Reliable
and Inexpensive Write Cache for Disk I/O Systems,” HPCA5, Jan. 1999.
[6] Intel iSCSI project, URL: http://sourceforge.net/projects/intel-iscsi.
[7] R. Khattar, M. Murphy, G. Tarella and K. Nystrom, “Introduction
to Storage Area Network,” Redbooks Publications (IBM), SG24-5470-
00, September 1999.
[8] J. Kubiatowicz, et al. “OceanStore: An Architecture for Global-
Scale Persistent Storage,” Proceedings of the international conference
on Architectural support for programming languages and operating
systems (ASPLOS’2000), 2000.
[9] E. Lee and C. Thekkath, “Petal: Distributed Virtual Disks,”
Proceedings of the international conference on Architectural support for
programming languages and operating systems, pp.84-92, 1996.
[10] B. Mackin, “A Study of iSCSI Total Cost of Ownership (TCO) vs.
Fibre Channel and SCSI,” URL: http://www.adaptec.com, Oct. 2001.
[11] J. Menon, “A Performance Comparison of RAID-5 and Log-
Structured Arrays,” Proc. Of 4th IEEE Int’l Symp. High Performance
Distributed Computing, pp. 167-178, 1995.
[12] R. Meter, G. Finn, S. Hotz, “VISA: Netstation's Virtual Internet
SCSI Adapter,” Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp.71-80, 1998.
[13] E. Miller, D. Long, W. Freeman, and B. Reed, “Strong Security for
Network-Attached Storage,” Proc. of the Conference on Fast and
Storage Technologies (FAST’2002), 2002.
[14] J. Satran, et al. “iSCSI draft standard,” URL:
http://www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-12.txt, 2002.
[15] M. Seltzer, K. Bostic, M. McKusick, C. Staelin, “An
Implementation of a Log-Structured File System for UNIX,” Winter
USENIX Proceedings, pp. 201-220, Jan. 1993.
[16] A. Varma and Q. Jacobson, “Destage algorithms for disk arrays
with non-volatile caches,” Proceedings of the 22nd annual international
symposium on Computer architecture (ISCA’95), pp. 83-95, 1995.
[17] J. Wilkes, R. Golding, C. Staelin, T. Sullivan, “The HP AutoRAID
Hierarchical Storage System,” Proc. Of the Fifteenth ACM Symposium
on Operating System Principles, pp. 96-108, 1995.
[18] Y. Zhou, J.F. Philbin, and K. Li, “Multi-Queue Replacement
Algorithm for Second Level Buffer Caches,” USENIX Annual Technical
Conference, 2001.

http://sourceforge.net/projects/intel-iscsi

	Introduction
	Architecture
	
	
	
	
	
	Write. Write requests may come from one of two sources: the host via SCSI interface and another STICS via the Ethernet interface.
	Read. Similar to write operations, read operations may also come either from the host via SCSI interface or from another STICS via the Ethernet interface.
	Destages. The operation of moving data from a higher-level storage device to a lower level storage device is defined as destage operation [16]. There are two levels of destage operations in STICS: destaging data from the NVRAM buffer to the log disk (Lev

	Performance Evaluations
	
	
	
	
	Throughput. Our first experiment is to use PostMark to measure the I/O throughput in terms of transactions per second. In our tests, PostMark was configured in two different ways. First, a small pool of 1,000 initial files and 50,000 transactions; and s
	Response times. Our next experiment is to measure and compare the response times of STICS and iSCSI under EMC trace. The network is configured as a Gigabit network. Response times of all individual I/O requests are plotted in Figure 6 for STICS with imm

	Related Work
	Conclusions
	Acknowledgements
	References

