
Evaluating Availability of Networked Storages
Using Commercial Workloads

Ming Zhang and Qing Yang
Dept. of Electrical and Computer Engineering

University of Rhode Island
Kingston, RI 02881 USA�
mingz, qyang � @ele.uri.edu

Abstract—This paper presents an availability study of storage area net-
work (SAN) systems built on TCP/IP networks. We use a new benchmark
tool called N-SPEK (Networked-Storage Performability Evaluation Kernel-
module) to measure performance dynamics under commercial workloads
with various faulty conditions of different parts of a SAN system. By inject-
ing network faults, controller faults, and disk faults into the SAN system,
we observe and analyze system availability in terms of performability (per-
formance + availability). Two specific SAN systems are considered in this
paper: iSCSI-based SAN and STICS (SCSI-To-IP Cache Storage) [1] based
SAN. Experiments are carried out to measure and compare performability
of the two SAN systems under different faulty conditions. It is observed that
STICS-based SAN shows more stable performance and better availability
than iSCSI-based SAN when network faults are injected.

I. INTRODUCTION

It has been widely recognized in the computer architecture
community that system availability is one of the most critically
important areas. This is particularly true for data storages that
are the center of information services. Financial companies such
as brokerage and credit card services may lose as much as 9.1
million dollars for one hour of down time [2]. Yet, there is very
little research work done on availability evaluation of data stor-
age systems.

In networked information services, data storages are gener-
ally connected to servers in three different ways: directly at-
tached (DAS), network attached (NAS) [3], [4], [5], and storage
area network (SAN) [6]. A recent research work done by Brown
and Patterson [7] presented a case study on evaluating availabil-
ity of a software RAID system by injecting disk related faults
into the software RAID system. The RAID system they con-
sidered is a typical DAS storage, i.e. the RAID is connected to
a SCSI interface of a server. NAS storage provides data stor-
age at a file system level through a standard Ethernet connec-
tion to servers or clients. The performance behavior and avail-
ability of a NAS can be considered to be similar to file servers
to some extend. Therefore, the performability study of cluster-
based servers [8] provides a fairly good guideline for availabil-
ity analysis of NAS. SAN system, on the other hands, is a set
of storage devices interconnected through a specialized network
such as a FC fabric or iSCSI over TCP/IP. Servers share storages
through this special network. Data availability of such SAN de-
pends on many factors including network components such as
switches, bridges, and cables, controller cards such as NIC (net-
work interface card) and HBA (host bus adapter), and storage
devices such as disk arrays, tapes, and CD towers etc. Little is
understood about the effects of faults at various parts of a SAN
on its availability in the research community. To the best of our

knowledge, there is no published study on availability analysis
of a SAN under various faulty conditions of different parts of
the system.

In this paper, we present an availability analysis of SAN sys-
tems using commercial workloads. We consider two types of
SAN systems built on TCP/IP network. The first type of SAN is
based on iSCSI [9] technology, an emerging standard for build-
ing SAN over IP. The other SAN is based on STICS (SCSI-To-
Internet Cache Storage) [1], a new technology that enhances the
performance and reliability of iSCSI-based SANs. We first set
up the SAN systems in our laboratory using iSCSI and STICS
technologies for the purpose of availability measurements. Four
types of faults are injected into the SAN systems at three ma-
jor layers of the SAN: network, controllers and storage de-
vices. Some of these faults completely crash the system mak-
ing data completely unavailable for service. Some faults may
result in degraded system performance temporarily while still
having partial data availability. We therefore measure the sys-
tem availability in terms of performance dynamics over time un-
der various faulty conditions. The performance measures we use
here are system throughput in terms of megabytes of data trans-
ferred between a server and storage per second. We compare the
availability of the two SAN systems to show that STICS demon-
strated better availability than standard iSCSI under network
faults because of packet filtering and efficient data caching.

II. SAN ARCHITECTURES STUDIED

We consider two types of SANs in this paper for availability
evaluation, namely iSCSI-based SAN and STICS-based SAN.

A. iSCSI-based SAN

Traditionally, a SAN consists of networked storage devices
interconnected through a dedicated Fiber Channel (FC-4 pro-
tocol) network. The basic premise of a SAN is to replace the
“point-to-point” infrastructure of server to storage communi-
cations with one that allows “any-to-any” communications. A
SAN provides high connectivity, scalability, and availability us-
ing a specialized network protocol: FC-4 protocol. Deploying
such a specialized network usually introduces additional cost for
implementation, maintenance, and management. iSCSI is the
most recently emerging technology with the goal of implement-
ing the SAN technology over the better-understood and mature
network infrastructure: the Internet (TCP/IP). The iSCSI pro-
tocol is a mapping of the SCSI remote procedure invocation
model on top of the TCP protocol. It is a connection oriented



command/response protocol between an iSCSI initiator and an
iSCSI target. An iSCSI session begins with an iSCSI initiator
connecting to an iSCSI target through a TCP connection to set
up a persistent state between the initiator and the target. Once
the initialization process is complete, the iSCSI session contin-
ues in full feature phase by exchanging commands and data that
are encapsulated in the iSCSI protocol over its TCP connection.

Implementing a SAN using iSCSI is fairly straightforward.
Servers that share a pool of storages are connected to the stor-
ages using a standard TCP/IP network. Each server runs as an
iSCSI initiator while each storage device acts as an iSCSI target
with unique WWUI (World-Wide Unique Identifier). Currently,
there are basically two existing approaches for implementing
iSCSI over IP: one carries out SCSI and IP protocol conver-
sion at a specialized switch and the other encapsulates SCSI
protocol in TCP/IP at host bus adapter (HBA) level. Both ap-
proaches have severe performance limitations. Converting pro-
tocols at a switch places special burden to an already-overloaded
switch and creates another specialized networking equipment in
a SAN. Such a specialized switch not only is costly as compared
to off-the-shelf Ethernet switches but also complicates installa-
tion, management, and maintenance. To encapsulate SCSI pro-
tocol over IP requires significant amount of overhead traffic for
SCSI commands transfers and handshaking over the Internet.
On a typical iSCSI implementation, we have measured around
58% of TCP/IP packets being less than 127 bytes long, imply-
ing an overwhelming quantity of small size packets to transfer
SCSI commands and status (most of them are only one byte).
Majority of such small packet traffic over the net is not nec-
essary because of the reliable and connection-oriented services
provided by underlying TCP/IP. Our experiments [1] using Post-
Mark benchmark have shown that efficient caching can reduce
total number of packets transferred over the net from 3,353,821
to 839,100 for same amount of remote storage data, a 4 times
reduction!

B. STICS-Based SAN

Using iSCSI to implement SAN over IP brings economy and
convenience whereas it also raises performance issues. We
have recently proposed a new storage architecture: SCSI-To-IP
Cache Storage, or STICS for short [1]. The purpose of STICS
is to bridge the disparities between SCSI and IP so that efficient
SAN systems can be built over the Internet. Besides caching
storage data, STICS also localizes SCSI commands and hand-
shaking operations to reduce unnecessary traffic over the Inter-
net. In this way, it acts as a storage filter to discard a fraction of
the data that would otherwise move across the Internet, reducing
the bottleneck problem imposed by limited Internet bandwidth
and increasing storage data transfer rate.

A typical STICS box consists of a disk and an intelligent pro-
cessing unit with an embedded processor and sufficient RAM.
It has two standard interfaces: one is a SCSI interface and the
other is a standard Ethernet interface. Via the SCSI interface,
STICS may run under two different modes: initiator mode or
target mode. When a STICS is used to connect to a host, it runs
in target mode receiving requests from the host, carrying out the
IO processing possibly through the network, and sending back
results to the host. In this case, the STICS acts as a directly

NASInternet

STICS 1H 1 STICS 2 S 2

H/S 3 STICS 3 STICS N H/S N

S: StorageSCSI TCP/IP H: Host

Fig. 1. STICS overview. A STICS connects to a host via a SCSI interface and
connects to other STICS or NAS via the Internet or a TCP/IP network

attached storage device to the host. When a STICS is used to
connect to a storage device such as a disk or RAID to extend
storage, it runs in initiator mode, and it sends or forwards SCSI
requests to the extended storage device. For example, in Figure
1, STICS 1 runs in target mode while STICS 2 runs in initia-
tor mode. Via the network interface, a STICS can be connected
to the Internet and share storage with other STICS’s or network
attached storages (NAS). The disk in a STICS box is used as
a nonvolatile cache that caches data coming from possibly two
directions: block data from the SCSI interface and network data
from the Ethernet interface. In addition to standard SCSI and
IP protocols running on the intelligent processing unit, it also
implements a special caching algorithm controlling a two level
cache hierarchy consisting of an NVRAM on top of a log disk.

Figure 1 shows a typical SAN implementation over IP using
STICS. Any number of storage devices or server computers can
be connected to the standard Internet through STICS to form
a SAN. Instead of using a specialized network or specialized
switch, STICS connects a regular host server or a storage de-
vice to the standard IP network (Ethernet). Consider STICS 1
in the diagram. It is directly connected to a SCSI HBA of Host
1 as a local storage device. It also acts as a cache and bridge
to allow Host 1 to access, at the block level, any storage device
connected to the SAN such as NAS, STICS 2, and STICS 3 etc.
In order to allow a smooth data access from Host 1 to the SAN,
STICS 1 provides SCSI protocol service, caching service, nam-
ing service, and IP protocol service.

III. EXPERIMENTAL SETTINGS

Since we do not have SAN hardware facilities in our lab, we
setup a software iSCSI-based SAN environment for measure-
ment purpose. We choose the iSCSI implementation support-
ing iSCSI draft 18 that is downloaded from University of New
Hampshire [10]. DISKIO mode is used in the iSCSI target al-
lowing it to read/write real or emulated SCSI disks. The iSCSI
initiator exports an emulated SCSI devices for the workload gen-
erator or STICS box that are discussed in more detail later. Our
iSCSI and STICS experimental settings are shown in Figures 2
and 3, respectively. Five PCs are used in our experiments. All
PCs are equipped with one Pentium III 866MHz CPU, 512M
PC133 memory, and one Intel Pro1000 Gigabit NIC except for
the bridge that has two NICs. An Intel NetStructure 470T Giga-
bit Switch is used to interconnect the PCs. The workload gener-



Storage Devices

Disk Drives
iSCSI Initiator

Controller Fault Injector

iSCSI Target

Network Connection SCSI Cable

Storage Controller

Storage Fault Injector

Bridge

Network Fault Injector

Workload

Generator

Fig. 2. Block diagram of iSCSI experiment settings. Each block in this diagram, including workload generator, bridge, storage controller, and storage devices, is a
PC. The workload generator generates I/O requests to the emulated disk exported by the iSCSI initiator. The iSCSI initiator transmits all the requests to the iSCSI
target via IP network and the iSCSI target performs these requests on the disk emulated by the storage fault injector.

Storage Fault Injector

Workload

Generator

iSCSI Initiator

Controller Fault Injector

iSCSI Target

SCSI CableNetwork Connection

Disk Drives

Storage Devices

STICS

Storage Controller

Bridge

Network Fault Injector

Fig. 3. Block diagram of STICS experiment settings. Each block in this diagram, including workload generator, STICS box, bridge, storage controller, and storage
devices, is a PC. The workload generator generates I/O requests to the STICS box. The STICS box performs caching algorithms for these requests and uses the
disk emulated by the iSCSI initiator. Other data flow is similar to the iSCSI environment shown in Figure 2.

ator in Figure 2 and the STICS box in Figure 3 are connected to
the switch through the bridge using a crossover cable. All PCs
run Redhat Linux 7.3 with recompiled standard 2.4.18 kernel
except for the bridge that uses FreeBSD 4.6 and STICS box that
uses recompiled standard 2.4.4 kernel.

N-SPEK (Networked-Storage Performability Evaluation
Kernel-module) [11], a new benchmark tool that we developed,
is used to carry out our measurement. N-SPEK consists of a
controller, a worker, one or several probers, and different types
of fault injection modules. An N-SPEK Controller resides on
a controller machine that is used to coordinate N-SPEK Worker
and Probers. It can start/stop N-SPEK Worker and Probers, send
commands and receive responses from them. A Java GUI inter-
face of the Controller allows a user to input configuration pa-
rameters such as workload characteristics and to view measured
results. It also has a data analysis module to analyze measured
data. In our experiment, we run it on the same machine as the
workload generator. The N-SPEK Worker running on a test-
ing client generates storage I/O requests via the low level device
driver and records performance data. It is a Linux kernel mod-
ule running in kernel space with one main thread, one work-
ing thread, and one probe thread. The main thread is responsi-
ble for receiving instructions from N-SPEK Controller and con-
trols the working thread to execute actual I/O operations. The
working thread keeps sending SCSI requests that are eventually
sent to remote targets by a lower level device driver. By using
an event-driven architecture, it can perform several outstanding
SCSI requests concurrently, which is useful and necessary when

testing SCSI tagged commands feature and exploring the max-
imum throughput of a remote SCSI target. The probe thread
records system status data periodically and reports to N-SPEK
Controller once test completes. Comparing with existing file
systems and disk I/O benchmark tools such as PostMark [12],
IoMeter [13], and SPEC SFS [14], N-SPEK bypasses the file
system layer and block device layer. As a result, measured per-
formance data are not skewed by cache effects and processing
overheads from these layers. By running in kernel space, N-
SPEK minimizes overheads brought by system calls and context
switches compared to other benchmark tools running in user
space. On each storage controller, there is an N-SPEK Prober
thread that records system status for post-processing. Its func-
tionality is similar to probe thread in an N-SPEK Worker.

To evaluate system availability, we need to inject faults at
various parts of the system. Fault injection is commonly used
in fault-tolerance community to verify fault tolerant systems or
study system behaviors [15], [16]. There are three types of fault
injection modules in N-SPEK to support availability evaluation.
By using these modules, users can introduce different types of
faults to different parts of a networked storage system under test
and measure the availability of the tested system at degraded
mode. These modules are:

Network fault injector. It resides on a network bridge on the
network path between a worker and the measured storage target.
It injects unexpected events to network traffics traveling through
the bridge by adding excessive delays and dropping packets with
a configurable packet loss rate. Note that TCP provides reliable



transport over the Internet through flow control, time-out and re-
transmission mechanisms. Many network faults including hard-
ware failures and software failures in the network result in ex-
cessive delays at the transport layer. Injecting excessive delays
at TCP layer mimics various network faults. We call this type
of faults delay fault. Packet drops may result from hardware
failures in the network, buffer overflows due to congestions or
inadequate flow control in the SAN. Our fault injector makes use
of a program that controls the existing dummynet [17] package
in FreeBSD, a network traffic control and shaping software that
was previously used by other researchers [18]. Another pack-
age, NIST Net [19] is also an excellent package that accom-
plishes similar functionalities. In our experiments, we only use
fixed packet loss rate or network delay to generate network er-
rors to simplify measurement. More calibrated experiments can
be carried out under complex degraded network conditions with
different packet delay distributions, congestion and background
loss, bandwidth limitation, and packet reordering/duplication.

Storage fault injector. Its main purpose is to emulate a normal
SCSI device that can be used directly by systems. The research
work [7] on software RAID availability shows that a RAID sys-
tem experiences a degraded performance period after one of its
disk drives fails. During this period, the RAID system recon-
structs itself while handling incoming requests as well. Our
storage fault injector simulates the behaviors of such a RAID
system. The storage fault injector finishes incoming requests
at a normal speed at the beginning. At time point A, a disk
is assumed to fail and the storage fault injector performs in a
degraded mode that leads to a longer response time and lower
throughput for incoming requests. At time point B, the simu-
lated RAID is assumed to finish its reconstruction process and
return to a normal status. In our current experiment, the stor-
age fault injector is implemented as a RAM based virtual SCSI
RAID and exports itself as a normal SCSI device to the system
under test.

Controller fault injector. Besides hardware failures of a stor-
age controller, major source of faults of a controller can be at-
tributed to malfunction of CPU and RAM. Normal operations of
a controller can be compromised if CPU and/or RAM resources
are unavailable. Directed by configurable parameters, a con-
troller fault injector can take away most of CPU and/or memory
resources from normal storage controller operations by adding
unrelated CPU loads and memory loads on the controller.

All these fault injectors are user configurable. One or more
types of faults can be injected into and removed from the system
at certain time points decided by users. For example, injecting a
network delay fault during a certain period will result in delays
of all packets that travel through the bridge during that period
while packets traveling at other time are unaffected.

IV. WORKLOADS USED IN THE EXPERIMENTS

Two commercial workloads are used in our experiments,
EMC trace and TPC-C. The EMC trace was collected by an
EMC Symmetrix disk array system installed at a telecommu-
nication customer site. The trace file contains more than 230k
storage requests with a fixed request size of 2KB. The trace is
write-dominated with 89% of operations being write operations.
The average request rate is about 333 requests/second.

TPC-C trace is downloaded from the Trace Distribution Cen-
ter of Performance Evaluation laboratory at Brigham Young
University. They have run TPC-C benchmark with 20 data ware-
houses using Postgres database on Redhat Linux 7.1. The trace
was collected using their kernel level disk trace tool, DTB [20],
and was time stamped using jiffie [21] as a timer. On most
Linux systems, the granularity of jiffie is only 1/100 second that
is too coarse for timing purpose. Many requests are invoked
with same jiffie values. We therefore change the granularity to
1/1000 second and distribute requests that have same jiffie val-
ues evenly during that jiffie. The trace file contains more than 3
million requests with size ranging from 4KB to 124KB. The av-
erage request size is about 92.4 KB. The trace is read-dominated
with 99% of its operations being read operations. The aver-
age request rate of the modified TPC-C trace is about 282 re-
quests/second.

V. MEASUREMENT RESULTS

Our measurement results for the iSCSI-based SAN are shown
in Figure 4 through Figure 12 and those for the STICS-based
SAN are shown in Figures 13 and 14. Curves marked with tri-
angles in these figures represent normal throughputs in terms of
Mbyte per second without fault, those marked with “x” repre-
sent system throughputs under transient fault conditions, and
those marked with circles represent throughputs under sticky
fault conditions. Time point “A” marks the start of one or more
types of transient faults being injected, and time point “B” marks
the removal (or recovery) of the transient faults.

Figures 4, 5, 13, and 14 show throughputs variations over
time when network faults were injected for EMC trace work-
loads and Figures 8 and 9 show the same for TPC-C workloads.
For network delay faults, we added 4 ms delay to every packet
going through the network bridge and for packet loss faults we
set the packet drop rate to 1%. We noticed in Figures 4, 5,
and 8 that when a network fault is injected, available system
throughputs of the EMC trace dropped by 50%, whereas avail-
able throughput of the TCP-C trace dropped to 1/6 of the normal
performance values. This observation indicates that network de-
lay faults have significant impact on available throughputs when
traffic intensity is high. Note that the traffic intensity of the TPC-
C trace is much higher than the EMC trace in our experiments.

Figures 6 and 10 show available throughputs when transient
controller faults were injected. A storage controller card hosts
many codes such as RAID control code, iSCSI protocol stack,
TCP/IP stack, and so on in addition to on-board OS. A soft-
ware bug may result in CPU temporarily unavailable to normal
processes. We use our controller fault injector to emulate such
faults by taking away 98% of CPU resources. At point A of Fig-
ure 6, such a CPU fault is injected and results in throughput drop
to about half. Similarly, significant throughput drop is observed
in Figure 10 for the TPC-C trace. The available throughputs
gradually go back to normal after the faults are removed (after
time point “B”) in both figures.

Impacts of disk faults are shown in Figure 7 for the EMC
trace and Figure 11 for the TPC-C trace. When a disk failure
occurs, the simulated RAID system is assumed to automatically
replace the faulty disk with a hot spare. The recovery process is
done on-line, which leads to a degraded throughput before the



recovery ends. Because the traffic intensity of the EMC trace
is not as high, the recovery process is fairly quick as shown in
Figure 7. For high traffic workloads such as the TPC-C, we
noticed a lengthy recovery process as shown in Figure 11 since
the RAID system is loaded with both normal disk requests and
background recovery process.

We have also carried out experiments on injecting multiple
faults simultaneously to the iSCSI system. Figure 12 shows the
available throughput changes when the multiple faults are in-
jected with the TPC-C trace. At the 20th second, network delay
fault, CPU fault, and disk fault are injected. At the 40th second,
network delay fault is recovered; at the 60th second, CPU fault
is recovered; and disk fault is recovered at the 80th second. As
shown in Figure 12, when multiple faults are injected, the sys-
tem is approaching totally unavailable. After both CPU fault and
network fault are removed, the available throughput slowly in-
creases. After all faults are removed, the system gradually goes
back to normal status.

Figure 15 shows the availability comparison between iSCSI-
based SAN and STICS-based SAN. The dash line gives the
average throughput of STICS-based SAN with no fault as a
reference. The curve marked with circles represents available
throughput of the STICS-based SAN when sticky network de-
lay faults are injected and the curve marked with “x” represent
the same of the iSCSI-based SAN. It is observed in this fig-
ure that with the same faulty conditions, the STICS-based SAN
gives much better throughput than the iSCSI-based SAN. Such
a stable and better availability can be attributed to the fact that
STICS combines many fragmented packets into good size ones
reducing the network requirements. This observation is further
evidenced in Figure 16 that shows the availability under tran-
sient network delay faults. Similar results are also observed for
network packet loss faults as shown in Figures 17 and 18.

VI. CONCLUSIONS

In this paper, we have presented an availability measurement
of two types of SAN systems, iSCSI-based SAN and STICS-
based SAN, using commercial workloads. Fault injections are
used to measure system availability under various failure con-
ditions. Comparing with iSCSI, STICS improves system avail-
ability by efficient caching algorithms and localization of un-
necessary protocol overheads. Currently, we are pursuing more
adaptive caching, pre-fetching, and destaging algorithms for
STICS to further improve the performability of STICS-based
SAN systems. And we are also working on proposing compre-
hensive performability metrics and performability comparison
methodology in the near future.

ACKNOWLEDGMENTS

This research is sponsored in part by National Science Foun-
dation under grants MIP-9714370 and CCR-0073377. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Founda-
tion.

REFERENCES

[1] X. He, Q. Yang, and M. Zhang, “Introducing SCSI-To-IP cache for storage
area networks,” in Proceedings of the 2002 International Conference on
Parallel Processing, Vancouver, Canada, Aug. 2002, pp. 203–210.

[2] D. A. Patterson, “Availability and maintainability � performance: New
focus for a new century,” keynote speech at Conference on File and Storage
Technologies (FAST), Monterey, CA, Jan. 2002.

[3] G. Gibson and R. Meter, “Network attached storage architecture,” in Com-
munications of the ACM, vol. 43, Nov. 2000, pp. 37–45.

[4] E. L. Miller, W. E. Freeman, D. D. E. Long, and B. C. Reed, “Strong
security for network-attached storage,” in Proc. of the Conference on Fast
and Storage Technologies, Monterey, CA, Jan. 2002, pp. 1–14.

[5] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase, A. Gallatin,
R. Kisley, R. Wickremesinghe, and E. Gabber, “Structure and performance
of the direct access file system(DAFS),” in Proceedings of USENIX 2002
Annual Technical Conference, Monterey, CA, June 2002, pp. 1–14.

[6] G. T. R. Khattar, M. Murphy and K. Nystrom, “Introduction to storage
area network,” Redbooks Publications (IBM), Tech. Rep. SG24-5470-00,
Sept. 1999.

[7] A. Brown and D. A. Patterson, “Towards availability benchmarks: A case
study of software RAID systems,” in Proceedings of the 2000 USENIX
Annual Technical Conference, San Diego, CA, June 2000.

[8] K. Nagaraja, N. Krishnan, R. Bianchini, R. Martin, and T. Nguyen, “Eval-
uating the impact of communication architecture on the performability of
cluster-based services,” in Proceedings of the 9th International Sympo-
sium on High-Performance Computer Architecture (HPCA 9), Anaheim,
CA, Feb. 2003.

[9] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner.
(2002) iSCSI draft standard. http://www.ietf.org/internet-drafts/draft-ietf-
ips-iscsi-18.txt.

[10] UNH. iSCSI reference implementation. [Online]. Available:
http://www.iol.unh.edu/consortiums/iscsi/

[11] M. Zhang and Q. Yang, “N-SPEK: a performability bench-
mark tool for networked storage systems,” Dept. ECE, Univ.
of Rhode Island, Tech. Rep., Dec. 2002. [Online]. Available:
http://www.ele.uri.edu/research/hpcl/nspek/

[12] J. Katcher, “PostMark: A new file system benchmark,” Network Appli-
ance, Tech. Rep. 3022, 1997.

[13] Intel. Iometer, performance analysis tool. [Online]. Available:
http://www.intel.com/design/servers/devtools/iometer/

[14] SPEC. SPEC SFS benchmark. http://www.spec.org/osg/sfs97/.
[15] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, “Fault injec-

tion and dependability evaluation of fault-tolerant systems,” IEEE Trans-
actions on Computers, vol. 42, no. 8, pp. 913–923, 1993.

[16] S. Dawson, F. Jahanian, and T. Mitton, “ORCHESTRA: A fault injection
environment for distributed systems,” University of Michigan, Tech. Rep.
CSE-TR-318-96, 1996.

[17] L. Rizzo, “Dummynet: a simple approach to the evaluation of network
protocols,” ACM Computer Communication Review, vol. 27, no. 1, pp.
31–41, 1997.

[18] W. T. Ng, B. Hillyer, E. Shriver, E. Gabber, and B. Ozden, “Obtaining high
performance for storage outsourcing,” in Proceedings of the Conference
on File and Storage Technologies (FAST), Monterey, CA, Jan. 2002, pp.
145–158.

[19] NIST. NIST Net, network emulation package. [Online]. Available:
http://snad.ncsl.nist.gov/itg/nistnet/

[20] Performance Evaluation Laboratory, Brigham Young Univer-
sity. DTB: Linux Disk Trace Buffer. [Online]. Available:
http://traces.byu.edu/new/Tools/

[21] A. Rubini and J. Corbet, Linux Device Drivers (2nd Edition). O’Reilly
& Associates, 2001.



0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
sticky delay fault
transient delay fault

Fig. 4. iSCSI throughput with the EMC trace under network delay faults.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
sticky packet loss
transient packet loss

Fig. 5. iSCSI throughput with the EMC trace under network packet loss faults.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B
normal
transient CPU fault

Fig. 6. iSCSI throughput with the EMC trace under transient CPU faults.



0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B
normal
disk fault

Fig. 7. iSCSI throughput with the EMC trace under disk faults in RAID.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
sticky delay fault
transient delay fault

Fig. 8. iSCSI throughput with the TPC-C trace under network delay faults.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
sticky packet loss
transient packet loss

Fig. 9. iSCSI throughput with the TPC-C trace under network packet loss faults.



0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
transient CPU fault

Fig. 10. iSCSI throughput with the TPC-C trace under transient CPU faults.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B
normal
disk fault

Fig. 11. iSCSI throughput with the TPC-C trace under disk faults in RAID

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
multiple faults

Fig. 12. iSCSI throughput with the TPC-C trace under multiple faults injected. At the 20th second, network delay faults, CPU faults, and disk faults are injected.
At the 40th second, the network delay faults are recovered; at the 60th second, the CPU faults are recovered; and the disk faults are recovered at the 80th second.



0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
sticky delay fault
transient delay fault

Fig. 13. STICS throughput with the EMC trace under network delay faults.

0 10 20 30 40 50 60 70 80 90 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

A B

normal
sticky packet loss
transient packet loss

Fig. 14. STICS throughput with the EMC trace under network packet loss faults.

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

STICS
iSCSI

Fig. 15. STICS and iSCSI comparison with the EMC trace under sticky network delay faults.



0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

STICS
iSCSI

Fig. 16. STICS and iSCSI comparison with the EMC trace under transient network delay faults.

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

STICS
iSCSI

Fig. 17. STICS and iSCSI comparison with the EMC trace under sticky network packet loss faults.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (Seconds)

Th
ro

ug
hp

ut
 (M

B
/s

)

STICS
iSCSI

Fig. 18. STICS and iSCSI comparison with the EMC trace under transient network packet loss faults.


