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ABSTRACT

This paper presents an experimental study on cache memory designs for vector computers. We use
an execution-driven simulator to evaluate vector cache performance of a set of application programs
from Perfect Club and SPEC92 benchmark suites. Our simulation results uncover a few important
facts which were unknown before: First of all, the prime-mapped cache that we newly proposed
shows great performance potential in vector processing environment. Because of its conflict-free
property, the prime-mapped cache performs significantly better than conventional cache designs for
all applications considered. Secondly, performance results on the benchmarks indicate that data
locality in vector processing does exist although the effects of line size, associativity, replacement
algorithm and prefetching scheme on cache performance are very different from what has been
commonly believed. A medium size vector cache (e.g. 128Kbytes) eliminates the necessity of a
large number of interleaved memory banks in vector computers. Our experiments show that the
vector computer that has a medium size prime-mapped cache with small cache line size and limited
amount of prefetching provides significant speedup over conventional vector computers without
cache. Performance results reported in this paper can also provide a guidance to general-purpose
computer designers to enhance cache performance for numerical applications.

1 Introduction

The growing speed gap between memories and processing elements makes the memory system design
become a crucial challenge to computer designers. High performance computers need sophisticated
memory hierarchy to bridge the speed disparity between processors and the main memory. In most
existing vector computers, memory hierarchies are implemented by a combination of a large register
file and a system of highly interleaved memory modules. A register file is usually small that can
hardly hold the working set of a program. Register file also requires extra efforts in software to
manage it. Highly interleaved memory may provide enough bandwidth to single stream vector
accesses, but the memory speed has to be extremely fast and the number of interleaved memory
modules has to be excessively large in order to provide enough bandwidth for multiple stream vector
accesses [1, 11]. In addition, the interconnection network between processors and memories adds
additional delay to each memory access.
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Recently, a few researchers [4, 3, 10, 8, 15] have started looking at using cache memories in vector
computers as an enhancement towards a smooth memory hierarchy. All these previous studies
on vector caches concentrated on conventional cache organizations that are for scalar computers.
Because of the difference in data access patterns of numerical applications from that of general
purpose computations, the effectiveness of cache memories for vector computers remains to be
studied. In this paper, we present a simulation study on vector cache performances. An execution
driven simulator has been developed that takes vectorized assembly code programs generated by
the IBM3090 Fortran compiler as inputs. The simulator simulates the execution of each assembly
instruction in a program and produces performance results. Using the simulator, we evaluate
the cache performance of a set of vectorized numerical programs from Perfect Club and SPEC92
benchmarks. Through our experiments, the following observations are in order.

First of all, the major cause of high miss ratio in vector caches is cache line conflicts. All existing
cache designs (conventional cache designs), even with high associativity, suffer from large amount of
line conflicts in vector processing environment. This is because a vector processor usually accesses
data with certain stride which is the difference between addresses associated with consecutive vector
elements. If the stride is not relative prime to the number of sets in a cache, several cache lines may
map to the same set giving rise to cache line conflicts. Our newly proposed prime-mapped cache
minimizes cache line conflicts by allowing a prime number of logical sets in the cache [15]. As a
result, the chance of line conflicts is significantly reduced. It is shown through the experiments that
the new mapping scheme performs constantly better than the conventional caches. In many cases,
it performs several times better than conventional caches.

Secondly, in general purpose computation environment large cache line sizes within a certain
range (e.g. 32 or 64 bytes) usually give better hit ratio [14] because of spatial locality. This is not
true in the vector processing environment. As observed by Fu and Patel [10], cache line sizes have
unpredictable impacts on vector cache performance since the best cache line size for one program
may be the worst for another program. This observation is reproduced by our experiments on
conventional cache designs. In addition, when the prime-mapped cache is considered, the impacts
of cache line size on cache performance are better unveiled because of the reduction in line conflicts
which contribute to the major portion of cache misses. We observed that vector caches prefer
small line sizes to large line sizes provided that prefetching is performed. With limited amount of
stride-directed prefetching [10] on each cache miss, one or two long-words in each cache line result
in optimal performance for almost all application programs considered.

Another interesting observation is that the most-recently-used (MRU) replacement algorithm
(i.e. replacing the data that is most recently used when cache is full) performs better than LRU
algorithm on the conventional set-associative cache. The reason to this phenomenon is the following.
Vector access with a stride that is not relative prime to the number of sets may result in several
elements of the vector being mapped to the same set. Therefore, serial access to the vector may
dictate against the LRU algorithm since it may keep replacing the data to be used next. With
the prime-mapped cache, on the other hand, the situation is quite opposite. Because of the prime-
mapping, the chance that data elements in one set are co-related (i.e. belong to a same vector) is
small. As a result, we observed that LRU performs better than MRU in the prime-mapped cache.

We further observed through our experiments that high degree of associativity in conventional
caches does little in reducing cache line conflicts in the vector processing environment, which is
opposite to common believes. For the same cache size, increasing associativity results in decreased
number of sets that data can be mapped to. As a result, we will not see significant reduction
in terms of conflict misses. As an example, consider 2 alternative designs of an eight-line cache
memory: 1-way and 2-way set-associative. Suppose that a vector is loaded into the cache with a



stride that is an even number (in unit of cache lines). No matter which one of the two designs one
wishes to consider, only four or less number of cache lines can be placed in the cache. In other
words, line conflicts occur in either case if the vector has more than 4 elements. While this example
is simple, it demonstrates a potential problem that exists in any existing cache design except for a
fully associative cache. The prime-mapped cache proves to perform better than high associativity
on conventional caches in reducing number of cache line conflicts.

In summary, vector caches can benefit from prime-mapping, small cache lines, moderate set
associativity, limited amount of stride-directed prefetching [10], and LRU replacement algorithm.
Experimental results show that cache miss ratios can be controlled at as low as 0.3% to maximum of
around 5% on a moderate size cache for all applications considered in this paper. It is observed that
the vector computer having a 128K bytes prime-mapped cache and 8 interleaved memory modules
performs better than the uncached vector computers having 256 interleaved memory modules. This
is true even for highly vectorizable programs. The performance gain is getting higher as the speed
gap between processor and memory increases. Therefore, our prime-mapped vector cache is a
cost-effective approach to high performance memory system for vector computers.

The rest of this paper begins with a brief description of the base architecture model upon
which our experiments are carried out. Section 3 presents our performance evaluation methodol-
ogy, namely the execution-driven simulator. Different vectorization schemes and memory reference
characteristics of the benchmarks in the vector processing environment are discussed in Section 4.
Numerical results and performance evaluations are presented in Section 5. Section 6 concludes the

paper.

2 Architecture Model

The base architecture in our simulation consists of a vector processor, a set of registers and a
memory system. The registers are organized in the same way as the IBM3090 Vector Facility.
There are 16 vector registers with each register having maximum length of 128 vector elements.
Vector instructions take operands either from registers or from the main memory. The resultant
vector always goes to a vector register. Strip-mining (Sectioning) is automatically performed when
the vector length of a program exceeds the maximum vector length of the register.

Depending on the memory organization, we define two types of vector computers: cache-based
vector computer and main-memory-only vector computer.

Cache-Based Vector Computer

In the Cache-based vector computer or CC-Model for short, the memory system contains a cache
memory that holds both vector data and scalar data. The cache memory can be implemented in two
different organizations: the conventional cache and the prime-mapped cache. We call them conven-
tional CC-model and prime-mapped CC-model, respectively. In CC-model architectures, memory
references are first issued to the cache memory. If the data element is found in the cache, it will be
ready for ALU operations within one CPU cycle. Otherwise a cache miss occurs and the memory
request goes to the main memory that is interleaved with a small number of memory banks. After
the memory access is complete, the requested data goes directly to the processor for processing.
Meanwhile a copy of the data is made in the cache memory for later reuse. It is assumed here that
the processor stalls after a cache miss and does not continue processing until the missing data item
has been returned to the processor. Multiple outstanding misses are not considered in this paper.
Conventional Cache




The conventional cache is any cache organization that is in existence today. It generally consists
of 2° sets, for some positive integer s. Each set in the cache has a unique identification number
ranging from 0 through 2° — 1 which is called set number. Each set has d cache lines for some d
that is a power of 2. We call d the degree of associativity. Given a line address A, the associated
memory data is mapped into set-number

A mod 2°  for some positive integer s (1)

in the cache.

A line of memory data can be placed in the cache only in one (for direct-mapped cache) or
d (for d-way set associative cache) cache locations. If more than d blocks of data referenced by
a program are mapped into a same set, cache line interference occurs. As a result, some useful
data may be replaced giving rise to a high miss ratio. Extensive research has been reported in
the literature aiming at minimizing cache line conflicts. The most straightforward approach is to
increase the degree of associativity of a set-associative cache so that a data item can be potentially
placed in a large number of places thereby decreasing the chance of conflicts. However, increasing
the degree of associativity results in complicated hardware for associative data search in the cache
and also possibly large cache access time as compared to direct-mapped cache [5]. In addition, in
many situations, high degree of associativity may not help in reducing cache line conflicts as will
be evidenced later in this paper.

Prime-mapped Cache

In spite of many previous efforts in reducing cache line conflicts, the line conflict problem has yet
to be solved since most of existing approaches were only able to achieve the cache performance close
to that of 2-way set-associative cache [9]. It has been shown in [9, 12] that 2-way set-associativity
does little in reducing cache line conflicts. In order to explore the possibility of eliminating cache
line conflicts, we made an effort to analyze where line conflicts come from.

Consider a cache memory that has the size of S sets. Let b and ¢; be the starting address and
the access stride of a vector, respectively. A vector access stream will issue the following sequence
of addresses: b+ -ty, for i =1,2,3---, to the memory. These addresses will be mapped to cache
locations: (b +i-tq) mod S. Since there are only S possible integers modulo S, there will be
repetitions when i increases. In other word, we have (b+i-t4) mod S = (b+j - tq) mod S for some
integers ¢ and j, or (i — j)tq = 0 mod S. As a result, the jth element of the vector will be mapped
into the same set in the cache as the ith element. For a direct mapped cache, a cache line conflict
occurs. The number of cache line conflicts in a vector access depends on the minimum value of
i — j that satisfies (i — j)tq = 0 mod S. For example, if i — j = 2, then every other element will
be mapped into the same set. If S is the minimum value satisfying (i — j)t; = 0 mod S, then a
sequence of S vector elements will be mapped into S distinct sets, which is the ideal situation for
an S-set cache. We will see next how we can achieve this ideal situation.

From number theory, we know that (i—j)t; = 0 mod S is equivalent to (i—j)t; = kS mod S. Let
th = Gczgi‘@,s) and SP = GC‘+@£)’ respectively, where GC'D(t4,S) is the greatest common divisor
of ty and S. Then, ¢} is relative prime to SP. There is an integer, h, such that (i — j) = h - SP/th.
Because !, and S? are relative prime, to make h - S?P/t} an integer not a fraction, h must be a
multiple of t§. The minimum integer solution for i — j is, therefore, S? when h = t§,. For a vector
access with stride t4, SP(= GCD#@NQ is the number of vector element accesses before an access to
an element that is mapped to the same set again. This number is often called return numober.

The main objective of our prime-mapped cache memory is to maximize the return number. In
order to maximize the return number, m, we want to minimize GCD(t4, S). If S is a prime
number, then GCD(t4, S) is always minimum. Therefore, vector accesses for all strides except for
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multiples of S are conflict-free. The idea behind the prime-mapped cache is simple. Instead of
having 2° sets in the cache, we allow only a prime number of logical sets to reside in the cache. Our
approach here is to utilize the special properties of a class of prime numbers: the Mersenne primes.
A Mersenne prime number is of the form 2° — 1 for some s that makes 2° — 1 a prime. Examples
of such s are 2, 3, 5, 7, 13, 17, and 19 etc.. A cache line with address A is mapped into set number
A mod (2° — 1) in the cache. Since the modulus is a prime, a vector access to the cache with this
mapping scheme can be made conflict-free.

Given a line address A of a memory data and a cache that has 2° — 1 sets, the cache mapping
function is defined as

A mod (2° = 1); for some integer s, s.t. 2° — 1 is a prime, (2)

instead of A mod 2°. Suppose that the binary representation of a data address A contains i s-bit
subfields: Ai,---A;. Then reduction of A modulo 2° — 1 can be done very easily by noting that
2% =1, which is given by

Amod (2° —1) = kffAk. (3)

When two integers I, and Dy, defined modulo 2° — 1, are added together, we obtain an (s + 1)-bit
result, which is reduced to modulo 2° — 1 by simply adding the most significant, carry bit to the least
significant bit position (since 2° = 1). Thus arithmetic operations modulo 2° — 1 are equivalent to
the familiar s-bit one’s complement arithmetic. Therefore, if we know the current index (I;) and the
displacement (Dy), the next cache index can be derived easily by performing a one’s complement
addition operation. It is important to note that such one’s complement address calculation does
not increase the critical path length of a processor since it can be done in parallel to the normal
address calculation. The cache access time also keeps the same as the conventional cache. A detailed
discussion of the design can be found in [15].

Main-Memory-Only Vector Computer

In the Main-Memory-Only Vector Computer or MM-Model for short, the memory system consists
of a number of interleaved memory modules (banks) to increase bandwidth. No cache memory is
present in the MM-model. All memory references are directed to the interleaved memory system.
We assume for the purpose of simplicity that the vector processor and interleaved memory banks
are connected via a single pipelined bus with one double-word (64 bits) in width. One 8 bytes line
of data can be transferred on the bus in one bus cycle provided that the bus is available. We define
memory cycle time as the time between the start and completion of a memory operation in a memory
module. This memory cycle time is the same for both CC-model and MM-model, and is denoted by
tm. Once a memory operation starts, a memory bank cannot be accessed again for a period called
the memory cycle time which is the same as the bank reservation time in the terminology of Cray
supercomputers. Note that the memory cycle time is different from the memory access time which
is the time between the issue of a memory access request and the arrival of the requested data at the
processor register. A vector access stream to contiguous banks does not encounter memory bank
conflict in which case each requested vector element is available to the vector processor at every
CPU cycle. Due to multiple vector access streams or nonunit stride accesses, element requests for
memory access may go to the same memory bank. If several requests are issued to a particular
bank less than the memory cycle time apart, we have bank conflicts and delays. Similar to CRAY
X-MP and Y-MP, we assume in this paper that all operands have to arrive at CPU in the same



Memory Management CC Model
Simulator | Instruction|
Input
Code -
CPU Timing | Simulator — MM Model
Simulator

Figure 1: Block diagram of the simulator

sequence as they are requested. If the memory access of a single vector element is delayed because
of the bank conflict, all subsequent elements of the vector are delayed by at least that amount. The
executions of consecutive vector instructions including memory operations can be overlapped (i.e.
vector chaining) as long as the dependency and the vector sequence order are preserved.

3 The Simulator

All results presented in this paper are obtained by using an execution-driven simulation at assembly
instruction level of the IBM3090 VF. The instruction level simulator simulates the IBM S/370 scalar
and vector instructions including actual ALU operations, flag settings, instruction fetchings, and
main memory accesses. The overall structure of our simulator is depicted in Figure 1, which consists
of three major parts: (1) an instruction-level simulator, (2) a memory simulator, and (3) a machine
timing simulator. The simulator takes the assembly code of an application program generated by the
IBM3090 FORTRAN Version 2.5 compiler with vectorization and optimization options, simulates
the execution of each instruction of the input code, and finally produces cache miss ratio, total
execution time and memory traffic for simulated programs.

Instruction-Level Simulator : It executes each assembly instruction according to the IBM3090
vector architecture. The instruction-level simulator contains functions and procedures for all instruc-
tion simulations, such as identifying opcode, generating the effective addresses, fetching operands,
executing operations, resetting and checking condition codes and so on. In the instruction-level sim-
ulator, we collect all instruction-level statistics, including memory reference type, memory access
format, the distributions of vector stride and vector length etc..

Memory Simulator: The memory simulator consists of two independent components which
simulate the CC-model and the MM-model, respectively. For the CC-model, the memory system
consists of a cache memory and a small set of interleaved memory banks. The cache memory in
the CC-model can be either a conventional cache or the prime-mapped cache [7]. The cache design
parameters can be specified directly in the CC-model. For the MM-model, the memory system
consists of a number of low-order-bit interleaved memory banks. A memory access at a memory
bank can start only if the bank is idle. Otherwise, the memory request waits in a queue for all
earlier requests to finish. All memory banks act independently and concurrently so that memory
accesses at different banks can be carried out in parallel across the memory banks.

Timing Controller: The timing controller maintains a global clock to keep track of all in-
structions executed and all memory references. In case of a cache miss or a memory bank conflict,
the CPU stalls waiting for operands. The number of stall cycles depends on cache miss ratio, the
number of memory bank conflicts, and memory cycle time. Cache miss penalty consists of bus
transaction time, bus busy waiting time, write-back delays of dirty cache lines, memory stall time
for bank conflict, and memory cycle time ¢,,. The total execution time is defined as the total elapsed



vectori- | ‘oo | ridedistribution
zations rate unit stride | 1024bytes
Cachesize: 16K bytes, Cacheline size: 128 bytes; Set size: 1;
V(1 87.55% 0 100%
V(2 96.67% 14.28% 85.72% Matrix Size: Z(128,128)=X(128,128)* Y (128,128)
V (3) 94.30% 84.96% 15.04%
V (4) 98.70% 100% 0

time to simulate a program in terms of CPU cycles.

4 Benchmark Characteristics

The sixteen programs chosen in this paper for performance evaluation represent a wide variety of
applications in scientific computation. They have diversed memory reference characteristics. In
this section, we will take a close look at these benchmark programs. In particular, we take the
well-understood matrix multiplication algorithm as an example to show how different vectoriza-
tion schemes affect the memory access behavior. We then classify all other benchmark programs
according to their memory access characteristics.

4.1 Vectorization schemes on matrix multiplication program

In the vector processing environment, different ways of vectorizing a program may result in quite
different memory reference patterns even for the same program. Matrix multiplication is a particular
interesting case study for cache memories because data locality is carried in three different loops by
three different variables. Different vectorization schemes can be realized depending on which one of
these loops to be vectorized giving rise to different vector access patterns (i.e. different vectorization
rates and vector stride distributions). By inserting vector directives at different loop levels, four
vectorization schemes (i.e. V(1), V(2), V(3) and V(4) ) of the matrix multiplication ( Z[N1,N3| =
X[Ny, N] * Y[N, Ny]) are shown as below.

As shown in Table 1, memory reference characteristics of these four vectorization schemes are
considerably different. The vectorization rate is defined as the ratio of vector data references to
total data references of a program.

To show how the different memory reference characteristics resulting from different vectoriza-
tion schemes affect the overall vector processing performance of cache-based vector computers, we
collected cache miss ratios of these four vectorization schemes of the matrix multiplication for two
different cache organizations: the conventional cache and the prime-mapped cache, as shown in Fig-
ure 2. Cache performance varies drastically with different vectorization schemes in the conventional
cache. The difference in cache miss ratio can be as high as a factor of five. This observation indi-
cates that the proper vectorization of a program is essential to the performance of the conventional
cache. Such a proper vectorization, however, is not always straightforward. For this particular
algorithm, for example, the vectorization scheme V(4) that has maximum amount of vectorization
rate and unit stride accesses does not necessarily give the optimal performance. This is because the
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Vectorization Schemes on Matrix Multiplication

for i=1,N1 for i=1,N1
V() —> (for=1N2| forj=iN2
for k=1,N V(2) —= | for k=1,N !
Z[i,j1+=X[i,k]1*Y[kj] Z[i,j1+=X[i,k]1*Y[kj]
end all for loops end all for loops
(8 V(1): vectorized on loop j (b) V(2): vectorized on loop k
forj=1,N2 forj=1,N2
for i =1, N1 V(4) —= |for i=1,N1 |
V@) —=> lfor k=L N Chor k=1N
Z[i,j1+=X[i,k]1*Y[kj] Z[i,j1+=X[i,k]1*Y[kj]
end all for loops end all for loops
(c) V(3): vectorized on loop Kk, interchangeii,j. (d) V(4): vectorized onloopi.

"—= " denotes avector directive which points to a vectorized loop

capacity misses rather than conflict misses dominate the cache misses in V(4). The vectorization
scheme V' (3) gives the best performance among the four vectorization schemes. To compare the
performance differences between the conventional cache and the prime-mapped cache, we listed in
Figure 2 the speedup that is the ratio of the total execution time of the conventional cache orga-
nization to that of the prime-mapped cache organization. The speedup due to the prime-mapped
cache organization ranges from 1.16 to 3.98 times (for split-cache) and from 1.29 to 2.89 times (for
unified-cache).

4.2 Benchmarks’ Characteristics

The memory reference characteristics of selected programs are listed in Table 2. From this table,
we observe that most benchmark programs issue up to hundreds of millions of memory references
and have data set sizes greater than 1Mbytes. The data set sizes of two programs from Perfect
Club suite are larger than 100 Mbytes, and one program from SPEC92 is close to 65 Mbytes. The
distribution of vector stride and the average vector length are shown in Table 3 in terms of bytes.
Stride-0 accesses are scatter/gather operations that read or write to vector elements. A unit stride
means that vector elements are located in consecutive memory locations. In terms of bytes, unit
stride actually equals 4 bytes for single precision data accesses and 8 bytes for double precision
data accesses. Vector length is a measure of the number of elements accessed by a single vector
instruction rather than the length of vectors in the data set.

Based on Tables 2 and 3, we classify these sixteen programs into five groups. Group A is
a collection of programs with high vectorization rate ( > 90% ) and good spatial locality, large
percentage of unit stride, such as FLO52, HYDRO2D, SU2COR and SWM256. Group B includes
programs with high vectorization rate( > 90% ) and a wide range of stride distributions, such as
ARC2D, BDNA and MATRIX. Group C contains programs with vectorization rate less than 90%
and good spatial locality, such as ADM, DYFESM, QCD, TRFD and TOMCATYV. Group D is a
collection of programs with vectorization rate less than 90% and a wide range of stride distributions,
such as NASA7 and TRACK. Group E has programs with a very low vectorization rate or even no
vector references, such as CFFT2D and VPENTA. We expect programs from the same group to
have similar performance characteristics, which helps in directing our simulation experiments.
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Figure 2: Cache Performance of different vectorization schemes on matrix multiplication

5 Performance Results

In this section, we present performance results obtained from our simulation experiments. We first
evaluate and compare the performance of the cache-based vector computers (CC-model) with that
of the main-memory-only vector computers (MM-model). For this purpose, we measure the total
execution time and memory traffic of the simulated programs since cache hit/miss ratios have no
significance. After comparing the CC-models and the MM-model, we concentrate on the effects of
cache design parameters such as mapping function, cache size, degree of associativity, cache line
size, prefetching scheme, and replacement algorithm on cache performance of vector computers.
Both cache miss ratio and execution-time speedup are used as performance measures in comparing
different cache configurations.

5.1 Is Vector Cache Profitable?

It is commonly believed that the cache memory may not be beneficial to vector computers because
the memory latency in such computers is amortized over pipelined streams of data references. To
clarify this, we carried out experiments by adding a typical cache organization with two different
mapping schemes: the conventional cache and the prime-mapped cache, into a vector computer to
evaluate the potential performance. A 128K bytes, 2-way set associative cache with line size of



Data Set Size

o Vectorization . # of references
Program Application Type Rate Read% Write% M) Input Data Size (Mbytes)
MATRIX  matrix multiplication ~ 94.3% 60.77%  39.23% 1106 128*128 0.393
(Perfect Club)
ADM Air Pollution 62% 66.51% 33.49% 4283 64*1*16 size, 720 steps 2.76
ARC2D Finite difference 97% 69.24% 30.76% 395.6 X=385, ETZ=145, 1000 its 106.3
BDNA Molecular dynamics 91% 66.81% 33.19% 637.7 635 modules, 20 counter ions 477
DYFESM  Structurd dynamics 72.3% 63.97%  36.03% 272.8 4 elements, 1000 time steps 0.73
FLO52 CFD, transonic flow 95.3% 70.4% 29.6% 108.35 NX=40 NY=8 Mesh=3 242
QCD Quantum chromodynamics 75.6% 64.3% 35.7% 93.47 16*16* 16* 16 lattice 115.2
TRACK Signal Processing 68.3% 62.51% 37.49% 213.6 480 targets 159
TRFD Molecular dynamics 87.1% 67.8% 32.2% 64.51 40 iteration times 12.88
(SPEC92)
HYDRO2D  Hydrodynamics 96.10% 68.33% 31.67% 1402.3 400 timesteps 121
NASA7  SevenKernels 71.20% 72.17% 27.83% 1767.6 100 iterations 18.11
SU2COR  Quantum physics 94.52% 65.82% 34.18% 1242.2 8*8¢8*16 dims 4.89
SWM256  Weather prediction 96.90% 69.01% 30.99% 1082.5 grid size=256* 256 413
TOMCATY ~ Meshgeneration 82.01% 61.17%  38.85% 666.0 1200 iterations , N=1024 61.58
CFFT2D NASA Kernel 8.15% 52.42% 47.58% 12.91 100 iterations 0.34
VPENTA NASA Kernel 0% 75.40% 24.60% 1054 100 iterations 1.87

32 bytes is added between the vector processor and the interleaved memory system with 8 banks.
Vector register files keep the same as those of IBM3090 VF in all the models considered. We intend
to compare the performance of the CC-models with that of the MM-model which has 256 banks.

In Table 4, we show the speedups of the two CC-models, the conventional CC-Model (Conv.) and
the prime-mapped CC-Model (New), over the MM-model for the sixteen benchmark programs as a
function of memory cycle time ¢,,,. The memory cycle time, t,,, varies from 16 CPU cycles through
96 CPU cycles. These numbers are reasonable selections reflecting both the current situation as
well as the future trend. It can be seen from this table that most programs run faster on the CC-
models than on the MM-model. The performance improvement of the CC-models is getting larger
as the speed gap between processor and memory grows. The speedup of the prime-mapped CC-
model over the MM-model goes up to as high as 4.88 when memory cycle time is 96 cycles. When
the memory cycle time is 48 cycles, which is close to the case of Cray-2 [13], the speedup of the
prime-mapped CC-model for all applications ranges from 1.15 to 2.68, though only 8 memory banks
are present in the prime-mapped CC-model. Even with the fastest memory cycle time available in
today’s supercomputers (e.g. 4 cycles in Cray X-MP [13]), our prime-mapped cache organization
still performs better than the MM-model having 256 memory banks as shown in Table 5.

It can be seen from Table 4 that the performance improvement of the two CC-models varies
drastically among different programs due to their distinct localities and vectorizabilities. The con-
ventional CC-model may not always perform better than the MM-model. For example, BDNA
program has a 91% vectorization rate and a wide variety of stride distributions. For this program,
the cache miss ratio of the conventional cache is close to 30% that results mainly from cache line
conflicts. With such a high cache miss ratio, the conventional CC-model performs worse than the
MM-model (see Table 4) when the t,, is smaller than or equal to 64 cycles. However, the prime-
mapped cache memory helps greatly for such programs with poor spatial localities because of its
conflict-free property. For example, the speedup of the prime-mapped CC-model over the MM-
model for programs with a wide range of stride distributions(i.e. Groups B and D) ranges from 1.48

10



Stride (in bytes) Distributions (%) Average
Program Vector Length

0-4 4-8 9-16 17-32 3364 65-128 | 128-256 > 256 (bytes)

MATRIX 0.0 84.96 0.0 0.0 0.0 0.0 0.0 15.04 1024
ADM 34.8 435 0.0 6.0 0.0 6.5 34 5.8 267.6
ARC2D 0.0 51.3 0.0 0.0 24 4.0 28.1 14.2 996.8
BDNA 2.3 14.7 41 94 43.0 8.7 12.3 55 487.6
DYFESM 27.6 52.7 3.0 0.0 8.1 0.0 7.2 1.4 332.0
FLOS53 0.0 93.7 0.0 45 0.0 0.0 1.8 0.0 808.9
ocb 7.9 84.6 0.0 3.2 27 0.0 0.0 1.6 481.3
TRACK 2.3 44.2 0.0 16.2 25.56 0.0 8.1 25 753.4
TRFD 25.6 64.3 33 0.0 41 27 0.0 0.0 430.5
HYDRO2D 0.0 89.4 0.0 0.0 432 0.0 0.0 6.3 477.2
NASA7 1.6 65.6 0.24 18.78 0.30 15 0.5 12.0 4454
SWM256 3.1 89.4 0.0 0.0 2.7 4.3 0.5 0.0 576.2
SU2COR 1.0 92.9 0.0 0.0 0.6 15 1.9 2.1 491.2
TOMCATV 21 93.2 0.0 121 0.0 0.0 16 1.9 870.4

CFFT2D 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0

VPENTA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

to 2.68 when t,, is 48 cycles. But for programs in Group A (e.g. FLO52, HYDRO2D, SU2COR and
SWM256) with good spatial localities and high vectorizabilities, the speedups of both CC-models
over the MM-model are not significant. This is because the MM-model with a large of number of
interleaved memory banks can provide enough memory bandwidth for such programs with good
address localities [1]. Since conflict misses no longer dominate cache misses for these programs, the
prime-mapped cache does not show great advantage. For the low vectorizable programs (CFFT2D
and VPENTA), it is observed that the two CC-models significantly outperform the systems without
cache.

Memory traffic measurements are summarized in Table 6 in terms of the number of memory
accesses (Mbytes) going through the memory system. Both the conventional CC-model and the
prime-mapped CC-model reduce memory traffic to a large extent compared to the MM-model. For
all benchmark programs, the memory traffic reduction due to the cache memory ranges from a
factor of 10 to 40.

In summary, for all benchmark programs, the prime-mapped CC-model outperforms the MM-
model to different extents. Even though only 8 memory modules are used in the prime-mapped
CC-model, we observed that the prime-mapped CC-model performs significantly better than the
MM-model with 256 modules. In other words, a 128K bytes prime-mapped cache does the job
several times better than 248 extra memory modules. In the following section, we will see that after
fine tuning the cache design parameters on the prime-mapped cache, further speedup is possible.

5.2 How to Configure a Vector Cache?

From the initial experiments on the two CC-models, we observed that a properly designed cache can
improve vector processing performance. In this section, we study the effects of various cache design
parameters on vector processing performance. We assume in this section that the main memory
cycle time is 48 cycles (i.e. t,,=48 cycles). First, we change the structural parameters of a vector
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tm 16 48 64 80 9
Progrart New | Conv. New | Conv. New | Conv. New | Conv. New | Conv.

Group

FLO52 112 1.07 131 1.22 1.37 1.28 1.45 1.35 1.63 1.44

A [HYDRO2D| 1.21 1.09 127 111 133 112 1.36 113 1.38 115

SU2COR| 1.10 1.03 1.29 113 | 137 1.14 1.49 117 1.58 1.19
SWM256 | 1.08 1.00 115 109 [ 1.20 111 1.25 1.16 131 1.18

ARC2D 1.28 0.97 1.48 1.10 152 114 1.56 1.15 1.60 117
B BDNA 131 0.89 1.50 0.93 154 0.96 1.60 1.09 1.68 111

MATRIX 141 119 | 156 1.20 1.83 131 194 1.40 2.10 1.58

ADM 137 1.29 1.74 1.68 1.83 172 1.95 1.80 2.33 1.88
DYFESM 127 123 164 1.60 172 1.69 1.87 1.84 214 212

C QCD 1.24 1.10 1.56 1.26 1.79 1.42 191 1.58 2.09 197
TOMCATV| 1.21 111 172 1.38 2.02 1.46 2.25 152 2.46 157
TRFD 1.56 111 1.79 1.20 1.88 122 1.96 1.28 2.10 131

NASA7 1.89 137 2.68 176 291 2.00 3.35 2.08 4.88 254

D TRACK 2.38 153 247 1.59 251 1.64 2.60 1.73 271 1.80

CFFT2D 1.08 1.08 1.60 1.56 1.67 1.65 1.74 171 178 175
E VPENTA | 1.69 1.67 1.89 1.88 1.96 1.96 2.09 2.09 2.18 217

New: New CC-model (with prime-mapped cache)
Conv.: Conventional CC-model (with conventional cache)

cache such as cache size, cache line size and the degree of associativity. Then we will examine the
performance effect of different replacement algorithms. Finally, we discuss on what would be the
optimal cache configuration for vector processing.

We consider cache sizes from 8K bytes through 512K bytes, cache line sizes from 8 bytes to
128 bytes, and the set associativities from 1 to 8. Since most benchmark programs generate over
hundreds of millions of memory references and some programs’ data set sizes are even larger than
100M bytes, it takes at least 20 hours to get one point of performance result on the IBM mainframe
and at least 35 hours on a workstation. Therefore, we did not exhaust all possible combinations of
cache parameters. Instead, we carried out selected experiments based on previous experiments. In
other words, each experiment we performed provides us with a guidance as to what is more important
to do for the next experiment. Using the IBM mainframe as well as about 10 workstations that are
often available, we were able to collect about 500 performance points for our performance evaluation
purpose within 8 months.

5.2.1 Cache size, Associativity and Line size

Figure 3 shows the vector cache performance in terms of cache miss ratio and execution time speedup
for different cache sizes ranging from 8K bytes to 512K bytes. In this subsection, the speedup is
defined as the ratio of the execution time of the conventional cache organization to the execution
time of the prime-mapped cache organization. Results of ten programs are shown in this figure, two
from each of the five groups. As indicated in Section 4, we expect programs from the same group
to have similar performance characteristics. Programs from group C such as ADM and DYFESM
show very good cache performance as shown in Figure 3(c). The cache miss ratios for these two
programs start from about 2% and 7% for the 8K bytes cache respectively to less than 1% for the
512K bytes cache. The reason why these two programs show such good cache performance is that
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Perfect CIub| Apm | ARC2D | BDNA | DYFESM | FLOS2 | QCD | TRACK| TRFD
Benchmarks

New 1.28 116 | 115 115 103 | 112| 137| 110
Conv. 1.23 088 | 0.73 112 097 | 106| 135| 107

SPEC92 HYDRO2D| NASA7 | SWM256 | SU2COR | TOMCATV | CFFT2D VPENTA MATRIX
Benchmarks

New 1.09 152 1.05 1.08 115 1.06 152 118

Conv. 1.05 1.20 0.91 101 1.08 1.06 152 1.07

New: New CC-model (with prime-mapped cache)

Conv.: Conventional CC-model (with conventional cache)

they have very good spatial localities. As shown in Table 3, most data accesses (about 80%) of
both programs are stride 0 and unit stride accesses. In this case, conflict misses do not dominate
the cache misses. Therefore, the speedups due to the prime-mapped cache for these two programs
are not significant (less than 10%). We also note in Table 2 that their vectorization rates are not
very high, 62% in ADM and 72.3% in DYFESM.

When the vectorization rate becomes high and the range of stride distributions becomes wide, the
caching behavior changes drastically. This is exemplified by the other six programs: HYDRO2D,
SU2COR, ARC2D, BDNA, NASA7 and TRACK in Figures 3 (a),(b) and (d) respectively. The
cache miss ratio of the BDNA is over 40% with 8K bytes conventional cache in contrast to 2% of
the DYFESM with the same cache organization. Similarly, miss ratios of the SU2COR, ARC2D,
NASA7 and TRACK are over 20% for the 8K bytes cache. Such high miss ratios would certainly
make the cache memory useless for vector computers. It simply would not help much if such a
conventional cache had been inserted in a vector computer. However, the prime-mapped cache
shows significantly better cache performance for programs from Groups B and D (e.g. ARC2D,
BDNA, NASA7 and TRACK) as shown in Figures 3 (b) and (d). The prime-mapped cache performs
over 4 times as good as the conventional cache for the BDNA program with 8K bytes cache in terms
of cache miss ratio, and the speedup of the prime-mapped cache over the conventional cache is up
to a factor of 2.5. The speedup resulting from the prime-mapped cache for the Group A programs
is also up to 40% as shown in Figure 3 (a). For programs with low vectorization rate such as
Group E (CFFT2D and VPENTA) in Figure 3(e), the prime-mapped cache still outperforms the
conventional cache because of its conflict-free property.

It is interesting to observe from Figure 3 that the miss ratios of the prime-mapped cache stay
relatively flat across different cache sizes. Moreover, miss ratios of the 8K bytes prime-mapped
cache are almost the same as miss ratios of the 512K bytes conventional cache, especially for highly
vectorizable programs. These results imply that the usable portion of the conventional cache is just
about 8K bytes even though the cache size is increased to 512K bytes. The results also indicate
that cache misses in the conventional cache are not mainly due to capacity misses. Rather, they
mainly result from cache line conflicts. We have seen in Table 2 that programs, such as ARC2D,
BDNA, NASA7 and TRACK, access vector data with a high percentage of nonunit stride, which
results in a large amount of cache line conflicts. Such cache line conflicts cause 2 to 4 times more
cache misses as evidenced in Figures 3 (b) and (d).

Since the major source of cache misses comes from cache line conflicts, our next experiment
is to increase the set associativity to examine cache performance for programs with a wide range
of stride distributions. It is well known that a high associativity reduces cache line conflicts in
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the conventional cache. Since programs with good spatial localities, such as Group A and Group
C programs, will not show significant change in performance as set associativity increases, our
experiments on set associativity are primarily based on programs from Groups B and D.

In Figure 4, we plotted the cache miss ratio and execution-time speedup respectively as a function
of set associativity on four programs: ARC2D, BDNA from Group B, NASA, TRACK from Group
D. It is surprising to note in Figure 4 that the increase in associativity does not improve cache
performance significantly in vector processing environment. This is very contradictory to common
believes since we have known that cache misses are mainly caused by line conflicts and it is believed
that the high associativity reduces line conflicts. It can be seen from Figure 4 that even an &way
set-associative conventional cache has about 30% higher miss ratio than the 1-way, prime-mapped
cache. To better understand this phenomenon, let us consider the following example.

e Cache size: 8 lines;
e Line size: one vector element;
e Configuration 1: direct-mapped, i.e. there are 8 sets, sets 0, 1, ... 7;

e Configuration 2: 2-way set associative, i.e. there are 4 sets, sets 0, 1, 2, and 3, each having 2
lines.

Suppose that a vector of 8 elements is loaded into the cache starting from set 1. Assume further
that the vector accessing stride is an even number, say 2. In configuration 1, the first element goes
to set 1, the second element goes to set 3, and so on. When the fifth element is fetched, it is mapped
to set 1 again giving rise to a line conflict. Similarly, all the subsequent three elements will go to
sets 3, 5 and 7 resulting in total 4 line conflicts. Now consider configuration 2, the first element
goes to set 1 and the second element goes to set 3. The third element will also be placed in set
1 but no conflict since each set can hold 2 lines. However, conflict starts from the fifth element
onward resulting in totally 4 line conflicts. Therefore, high associativity does not improve cache
performance in this particular example. The increase of the cache associativity also increases the
cache access time which has negative effects on system performance.

In the previous experiments, the cache line size is fixed at 64 bytes without knowing whether
this line size is a good choice. Figure 5 shows the cache performance as a function of cache line
size. The eight representative programs are: FLO52 and SWM256 from Group A, ARC2D and
BDNA from Group B, TOMCATV and TRFD from Group C, and NASA7 and TRACK from
Group D. Because of the good sequentiality of FLO52, SWM256, TOMCATYV and TRFD, the miss
ratios of these programs decrease as the cache line size increases, as shown in Figures 5 (a) and
(c). The situation is quite different for ARC2D, BDNA, NASA7 and TRACK because of their
high percentages of nonunit stride accesses. Cache miss ratios of these programs are no longer
monotonically decreasing as cache line size increases. The shape of cache miss ratio curves of the
conventional cache for these programs is largely dependent on the program localities. It is difficult
to predict the effects of cache line sizes on the performance of the conventional cache. It is important
to observe, however, that the miss ratio curves of the prime-mapped cache corresponding to different
programs have similar shapes (see solid lines in the miss ratio curves in Figure 5). In other words,
the prime-mapped cache makes it possible to predict cache performance for different cache line sizes
and therefore select an optimal cache line size.
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5.2.2 Replacement Algorithms and Prefetching Schemes

In the last subsection, we have seen that the prime-mapped cache significantly outperforms the
conventional cache. Further performance improvement is possible by means of a good replacement
algorithm and a proper prefetching scheme. In this subsection, we evaluate the vector cache perfor-
mance by taking into consideration of replacement algorithm and prefetching scheme. We consider
three replacement algorithms, namely most recently used (MRU) which replaces the data that are
most recently used, least recently used (LRU) that replaces the least recently used data, and Ran-
dom algorithm. The prefetching scheme considered here is the stride-directed prefetch presented in
[10] which shows great performance potential in vector cache designs. The stride-directed prefetch-
ing makes use of stride information for vector data. Let F' be the fetch size and L be cache line
size both in terms of bytes. Then F'/L consecutive cache lines are fetched if stride is less than or
equal to L. If the access stride is larger than cache line size, then we fetch cache lines that are
separated by the stride (in units of cache lines). Since the major concern of this prefetching scheme
is to improve the vector cache performance, in the following experiments, we select programs with
high vectorization rate such as those from Groups A and B.

Data prefetching is to load data into cache before they are actually referenced to reduce cache
misses. Prefetching may result in high memory traffic, which may in turn result in high miss penalty.
Therefore, using cache miss ratio alone as a performance measure to compare with non-prefetched
cache is not appropriate. The total execution time of a program is more appropriate. We will use
the following speedup in our discussions.

FExecution time of non — prefetched cache

(4)

For the conventional cache, miss ratio decreases as fetch size increases as shown in Figure 6. How-
ever, the corresponding speedup is not as significant. The increase in memory traffic reduces the
overall speedup due to prefetching. It is also noticed that MRU algorithm presents lower cache
miss ratio than LRU and Random algorithms in the conventional cache. This is another unusual
phenomenon in vector cache designs since we are used to the concept that LRU generally performs
the best. The main reason is that the vector access stride results in uneven data distribution in the
conventional cache. The large working set size for vector processing makes LRU keep replacing the
data to be used next.

The situation changes completely when we simulate the prime-mapped cache, as shown in Figure
7. First of all, the cache performances are no longer monotonically decreasing with the increase
of fetch size. After the fetch size exceeds certain value, the miss ratio rises and speedup drops in
all three programs as shown in Figure 7. The LRU algorithm performs better than the MRU and
Random algorithms. Our explanations to these results are as follows. With the prime-mapped
cache, the cache utilization is much higher than the conventional cache as evidenced by Figure 3.
In other words, the fraction of the cache being utilized to hold useful data is larger in the prime-
mapped cache as compared to the conventional cache. Thus, the chance that prefetched data take
the cache positions of some useful data is high. As a result, massive amount of prefetching may
result in unnecessary replacement of some useful data. Therefore, cache miss ratio starts becoming
larger when the fetch size is too large. As to the replacement algorithm, it is under our expectation
that the LRU is better than the MRU. With a very high probability, data elements in one vector
go to different sets in the prime-mapped cache due to its conflict-free property. As a result, the
chance that data in one set are co-related is very small. If data in a set are not co-related, the
caching behavior is similar to the conventional general purpose cache. Therefore, LRU performs
better than MRU and Random algorithms.

Speedup =
P p FExecution time of prefetched cache
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In order to observe how cache line size and fetch size affect the prime-mapped cache performance
with prefetching, we plotted cache performance as a function of both cache line size and fetch size
in Figure 8 for the prime-mapped cache only. Prefetching on the prime-mapped cache improves
the cache performance even further as shown in Figure 8 when proper cache line size and fetch size
are selected. The advantage of prefetching diminishes as the line sizes become larger, because large
cache lines cause cache pollution when data are accessed with nonunit strides. Large cache line also
increases the chance of line conflicts for the same cache size and incurs more memory traffic. From
Figures 7 and 8, the best performance points occur at 8 bytes cache line and 128 bytes (16 cache
lines) fetch size.

5.3 Optimal Cache Designs

Now let us put all sixteen programs together to observe the performance of the prime-mapped cache.
Based on our observations in the previous section, we select the 128K bytes, 4-way set-associative
prime-mapped cache with line size of 16 bytes and LRU replacement. Because a moderate set-
associativity shows a good performance, a 4-way set-associative prime-mapped cache instead of
1-way prime-mapped cache is used here. For prefetched cache, 128 bytes of data are stride-directed
prefetched on each cache miss. Table 7 illustrates the cache miss ratios in the two CC-models and
the speedups of the prime-mapped CC-model over the MM-model for all 16 benchmark programs.
The speedups over the MM-model as a result of adding a non-prefetching prime-mapped cache into
vector computers range from 1.15 to 2.68. The speedup range increases for a properly-designed
prime-mapped cache with prefetching, namely ranging from 1.31 to 3.10. And cache miss ratios in
this prime-mapped cache design are as low as 0.3% to the maximum 5.21%. We expect the speedup
to be even larger as the speed gap between processors and memories increases, particularly in
multiprocessor systems which may add additional memory delays due to interconnection network
contention and more memory interferences. Therefore, the 4-way set-associative prime-mapped
cache with small cache line (16 bytes) and limited amount of stride-directed prefetching is a good
choice for vector cache designs.

6 Conclusions

In this paper, we have studied cache performance of vector computers by using execution-driven
simulations. A set of scientific application programs from Perfect Club and SPEC92 benchmark
suites are simulated on the vector computer simulator with different memory hierarchy configu-
rations. Simulation results on vector cache performance are reported in this paper considering a
variety of cache configurations by varying mapping function, cache size, line size, degree of associa-
tivity, as well as replacement algorithm. Cache miss ratio, total execution time and memory traffic
are used as performance measures to evaluate the memory hierarchy performance. It is shown
that the cache-based vector computers with our newly proposed prime-mapped cache outperform
the vector computers without cache or with the conventional set-associative cache for all appli-
cations considered. Prime-mapped cache has proven to be cost-effective and it provides optimal
vector cache performance. Numerical results indicate that vector caches prefer small cache line
and moderate associativity. Vector caches can also benefit greatly from limited amount of stride-
directed prefetching on each cache miss. The properly designed prime-mapped cache can double
and even triple the overall performance of existing vector computers in terms of overall execution
time. Our conclusion is that cache memory can improve the performance of vector processing and
is a cost-effective enhancement towards a smooth memory hierarchy for vector computers.
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Figure 6: Cache performance (miss ratio & speedup) of the conventional cache vs. fetch size.
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Figure 7: Cache performance (miss ratio & speedup) of the prime-mapped cache vs. fetch size.
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Conventional
cache

prime-mapped cache

Optimal Cache

PROGRAMS (noprefecth)

missratio missratio speedup missratio speedup

ADM 1.48% 1.34% 1.74 1.01% 2.07

E ARC2D 7.01% 6.13% 1.48 3.81% 1.87

E BDNA 10.60% 9.15% 1.50 5.01% 1.84

C | DYFESM 0.31% 0.27% 1.64 0.23% 2.03

! FLGb2 2.11% 4.25% 1.31 1.04% 1.69

E QcD 2.47% 6.28% 1.56 1.43% 2.12

; TRACK 4.98% 511% 2.47 2.13% 3.10

TRFD 1.34% 1.96% 1.79 0.37% 2.37

HYDRC2D 2.61% 4.87% 1.27 1.30% 165

NASA7 2.75% 8.75% 1.29 1.59% 1.70

i SU2C0R 3.87% 7.43% 1.15 1.98% 131

(E: SWWR56 1.68% 4.19% 1.29 1.01% 2.56

g TOVCATV 6.68% 6.01% 2.68 4.21% 3.05

CFFT2D 7.53% 6.28% 243 4.44% 221

VPENTA 6.21% 5.81% 2.26 5.21% 2.48

MATRI X 4.15% 3.11% 119 2.04% 1.68

Execution time of the MM-Model

Speedu

P= Execution time of the CC-Model
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