Introducing A New Cache Design into Vector Computers*

Qing Yang
Dept. of Electrical and Computer Engineering

University of Rhode Island, Kingston, RI, 02881
email gyang@ele.uri.edu

ABSTRACT

This paper introduces an innovative cache design for vector computers, called prime-mapped cache.
By utilizing the special properties of a Mersenne prime, the new design does not increase the critical
path length of a processor, nor does it increase the cache access time as compared to existing cache
organizations. The prime-mapped cache minimizes cache miss ratio caused by line interferences that
have been shown to be critical for numerical applications by previous investigators. With negligibly
additional hardware cost, we observe significant performance gains by adding the proposed cache
memory into an existing vector computer. We study the performance of the new design analytically
based on a generic vector computation model. The analytical model is validated through extensive
simulation experiments. Our performance analysis on various vector access patterns shows that
the prime-mapped cache performs significantly better than conventional cache organizations in the
vector processing environment. The performance gain will increase with the increase of the speed
gap between processors and memories.

1 Introduction

While cache memories have been successfully used in general purpose computers to boost system
performance [1], their effectiveness for vector processing has not been established. Most of existing
supercomputer vector processors typically do not have cache memories because of perceived poor
performance for vectorized numerical algorithms. This common believe results primarily from three
considerations: First, numerical programs generally have data sets that are too large for the current
cache sizes. Sweep accesses of a large vector may result in complete reloading of the cache before the
processor reuses them. Secondly, address sequentiality which has been an important assumption in
conventional caches may not be as good in vectorized numerical algorithms that usually access data

*This research is partially supported by National Science Foundation under grants No. CCR-8909672 and MIP-
9208041. This paper is a revised version of “A novel cache design for vector processing” by Qing Yang and Liping W.
Yang which appeared in Proceedings of the 19th International Symposium on Computer Architecture, Gold Coast,
Australia, May 1992.

with certain stride which is the difference between addresses associated with consecutive vector
elements. And third, register files and highly interleaved memories have been commonly used
to achieve high memory bandwidth required by vector processing. It is not clear whether cache
memories can significantly improve the performance of such systems. However, with the rapid
advances in device technology and increased speed gap between processor and memory [2], it has
become increasingly important to study the performance of cache memories for vector processors
3]

The first concern about possible poor performance of vector cache memories (we will call a cache
for vector data a vector cache) has been studied by a number of researchers [4, 5, 6]. It is well known
that the memory hierarchy can be better utilized if numerical algorithms are blocked. Blocking is
a general program optimization technique that promotes data reuse in high speed memories. It
has been shown that blocking is very effective for many algorithms in linear algebra [6]. Lam et
al. have recently studied the cache performance of a blocked matrix multiplication algorithm on
general purpose computers [7]. It is shown in their study that blocking factor (the size of inner
loop) has significant impact on cache performance. In [4], So and Zecca presented an interesting
performance study for vector caches by means of trace driven simulations [4]. They have shown
that although the program locality of vector executions is significantly different from that of scalar
executions the cache hit ratio is high enough to take advantage of a cache. Their study is based on
traces of a set of fixed size programs that are either cache-optimized subroutines from the machine
library or highly vectorized for vector machines. It is not clear how the cache behaves for generally
blocked programs with different problem sizes.

Sequentiality of vector addresses depends on vector access stride that varies widely in numeri-
cal algorithms. Since the basic storage unit in a cache is a cache line that consists of a group of
consecutive memory words, cache pollution may result if the access stride is not one. Large cache
lines may exploit the spatial locality of vector accesses with small stride but may lead to poor cache
performance for large strides [8]. Small cache lines, on the other hand, may increase the number of
cache misses depending on the vector stride. Fu and Patel [8] have recently presented a comprehen-
sive study on the effects of cache line sizes on the performance of vector caches. They proposed two
prefetching schemes, sequential-prefetching and stride-prefetching, for vector caches to reduce the
influence of long stride vector accesses. As shown in [8], certain performance improvements as result
of the two prefetching schemes are obtained. However, the cache miss ratios for some applications
considered in [8] are still very high (40% in some cases). This is because that not only does the
poor sequentiality of vector data result in cache pollutions but also a large amount of interference
misses [7].

In spite of the fact that most supercomputer vector machines use interleaved memory and large
register files to speed up memory accesses, the increased speed gap between processor and mem-
ory may still favor a cache memory to bridge this gap. This is because not only is a register file
relatively small that can hardly hold the working set of a program but also it requires extra ef-
forts in software to manage it. Cache memory, on the other hands, is transparent to programmers.
Highly interleaved memory may provide enough bandwidth to single stream vector accesses, but
the memory speed has to be extremely fast and the number of interleaved memory modules has

to be excessively large in order to provide enough bandwidth for multiple stream vector accesses.
Baily has shown in his study [9] that hundreds and even thousands of interleaved memory modules
are needed to achieve a reasonable memory performance for multiple stream vector accesses. Fur-
thermore, vector processing has become a mainstream form of computing ranging from superminis
to workstations. Vector processors have also been incorporated into mainframes as built-in accel-
erators for computationally intensive applications. For these types of machines, a cache memory
can be a cost-effective enhancement towards a smooth memory hierarchy [4, 10, 8]. Several recent
vector computers feature a cache-based memory hierarchy such as IBM 3090 [4], Alliant FX/8 [10]
and VAX 6000 [11].

Although cache memories have potential for improving the performance of future vector proces-
sors, there are practical reasons why such vector caches have not yet been satisfactorily efficient. A
single miss in the vector cache results in a number of processor stall cycles equal to the entire mem-
ory access time, while the memory accesses of a vector processor without cache are fully pipelined.
In order to benefit from a vector cache, the miss ratio must be kept extremely small. In general,
cache misses can be classified into three categories [2]: compulsory, capacity, and conflicts. The
compulsory misses are the misses in the initial loading of data, which can be properly pipelined in a
vector computer. The capacity misses are due to the size limitation of a cache to hold data between
references. If application algorithms are properly blocked as mentioned above, the capacity misses
can be attributed to the compulsory misses for the initial loading of each block of data provided
that the block size is less than cache size. The last category, conflict misses, plays a key role in the
vector processing environment. Conflicts can occur when two or more elements of the same vector
are mapped to the same cache line or elements from two different vectors compete for the same
cache line. The former is called self-interference whereas the latter is called cross-interference [7].
The recent study on blocked matrix multiply algorithm [7] shows that the self-interference misses
increase drastically and dominate cache misses after the fraction of a 16K-word cache being used
exceeds 3%.

Since conflict misses that significantly degrade vector cache performance have a lot to do with
vector access stride, one may wish to adjust the size of an application problem to make a good access
stride for a given machine. However, not only does this approach give a programmer a burden of
knowing architecture details of a machine but also infeasible for many applications. It is known
that the number of conflicts is minimum if the stride of accessing a vector is relative prime to the
number of sets which is a power of 2 in conventional caches. Note that the stride required to access
the major diagonal of a matrix is one greater than the stride required to access a row of the matrix
stored in a column-major. Therefore, it is not possible to make both row access and major diagonal
access efficient because one stride or the other is not relative prime to the number of sets of any
direct or set-associative cache.

In this paper, we propose a new cache design suitable for use in vector processing and in
particular for vector computers. Our objective is to provide a vector cache memory system that
is capable of efficiently handling numerical programs having data sets of various sizes and various
access strides. Our new cache design, referred to as prime-mapped cache, minimizes cache miss
ratio in vector processing. The primary feature of the design is that memory data are mapped into

cache lines according to a Mersenne prime [12]. The cache access logic of the new mapping scheme
keeps virtually the same as the traditional cache organizations, resulting in no additional delay for
cache accesses. At the meantime, the address generation takes no longer than the normal address
calculation time due to the special properties of the Mersenne number. Moreover, generating
addresses for cache access is done in parallel with normal address calculations resulting in no
performance penalty. Thus, it has the advantages of both direct-mapped cache and fully associative
cache if replacement is not considered.

In order to evaluate the performance potential of the new design, we will carry out performance
analysis on various architecture approaches. Evaluating the performance of cache-based computer
systems is a difficult task because of the complexity of program behaviors. One needs to consider the
locality property of an application and reuse factors among other things. Traditional performance
evaluation techniques can be broadly classified into three categories: trace-driven simulation[13],
event-driven simulation[14] and analytical modeling [15, 16]. Trace-driven simulation is based on
actual traces of programs running on a system. Therefore, it provides the most reliable and accurate
performance estimates for given programs on a given system. Since the collection of traces is a
time consuming process and requires special hardware or software supports, trace-driven simulation
may not be effective in capturing the exact performance behavior of hypothetical architectures.
Moreover, address traces are collected from representative programs of fixed sizes, which is not
appropriate for evaluating vector cache performance because the performance of vector processing
is very sensitive to problem sizes. It is shown in [7] that an algorithm with one problem size can
run at twice the speed of the same algorithm with a different size. If one considers a wide range of
sizes for each problem, on the other hand, the cost of collecting traces would be prohibitively large.
We therefore present performance study by means of analytical modeling and discrete event-driven
simulations. Analytical models are developed for two simple vector processor models: memory-
register vector processor model and cache-based vector processor model. The advantage of analytical
modeling is that it provides us with a quick and insightful performance estimate of a given design
without the limitation of application problem sizes. Based on the analytical model, one can easily
pinpoint where the potential performance bottleneck is. Furthermore, most numerical algorithms
are highly structured, which makes analysis possible and fairly accurate. We also carry out discrete
event-driven simulation experiments to validate our analysis. It is shown that our analytical models
match very well with the simulation experiments.

As examples of applying our analytical models, we analyze caching behaviors of three typical
vector access patterns, namely random multistride access, subblock access and FFT access. Numer-
ical results have shown that the prime-mapped cache outperforms both the vector computer without
cache and the vector computer with a conventional cache for all vector access patterns considered.
The performance improvement ranges from 40% to a factor of 3 depending on the memory cycle
time, blocking factor and access patterns.

The paper is organized as follows. Section 2 presents the cache design and discussions on
hardware issues. In Section 3, we present an analytical performance model for two vector processors
with and without a cache. We will carry out performance analyses and comparisons under different
access patterns for different architectures in Section 4. Section 5 concludes the paper.

2 Minimizing Vector Cache Misses

In this section, we consider several alternatives to reduce vector cache misses. By vector cache, we
mean, in this paper, the cache that holds vector data accessed by vector load or store instructions.
We assume that scalar data have a separate cache [11].

2.1 Can Associativity Help?

Since cache misses in a vector cache result mainly from line conflicts as discussed in the introduc-
tion, one would naturally think of set-associative-mapped cache with higher associativity or fully
associative cache. It is well known that higher associativity has the advantages of less line conflicts
and the flexibility of implementing a replacement algorithm such as LRU. Lam et al [7] have shown
that the average miss rates of a set-associative cache are relatively lower than that of direct-mapped
cache. However, the fraction of cache used in case of set-associative cache still remains very small
(in the range of 20% to 60%) though it is larger than that of the direct-mapped cache. Moreover,
the standard deviation of miss rate increases steadily with the blocking factor implying that the ex-
ecution time for some problem sizes can be significantly worse than others. For the same cache size,
increasing associativity results in decreased number of sets that data can be mapped to although
several cache lines can be mapped to the same set. As a result, we will not see significant reduc-
tion in terms of interference misses. As an example, consider 2 alternative designs of an eight-line
cache memory: 2-way set-associative and direct-mapped. Suppose that a vector is loaded into the
cache with a stride that is an even number. No matter which one of the two designs one wishes
to consider, only four or less number of cache lines can be placed in the cache. In other words,
the number of line interferences is the same for either case if the vector has more than 4 elements.
While this example is simple, it demonstrates a potential problem that exists in any existing cache
design except for a fully associative cache. Furthermore, increasing the associativity also increases
the cache hit time [17] which has negative effects on system performance. As to the replacement
algorithm, due to the nature of numerical algorithms, we may not be able to take this advantage as
we do for most other applications since serial access to vectors dictates against LRU replacement
[3]. Whether there exists a better replacement algorithm needs further study.

2.2 Effects of Line Size

Cache line size is one of the most important parameters in a cache design. Larger cache line sizes
reduce compulsory misses if an application has a high spatial locality. At the meantime, larger cache
lines also reduces the number of lines in the cache, giving rise to more conflicts. In addition, non-unit
access strides may also result in cache pollutions since the loaded excess data may never be used
before being replaced. Cache pollution degrades cache performance significantly because not only
do the unused data use cache space but also memory bandwidth [8]. Fu and Patel [8] observed that
cache line sizes have unpredictable impacts on vector cache performance. The best cache line size
of one program may be the worst for another program in a given cache design. Their observations
suggest that an optimal cache line size for vector processing be difficult to determine unless all

application programs have the same stride characteristics. There are also other considerations in
deciding cache line size such as bus width, degree of memory interleaving etc.. Cache line size
selection for the vector cache is more complicated than general purpose computers.

2.3 Prime-Mapped Cache

It is clear from the above discussions that any incremental work on the existing cache organization
will not help significantly for vector processing. We propose a cache design with a novel mapping
scheme called prime-mapping that attempts to minimize interference misses. The idea behind the
new design is simple. Instead of having 2¢ sets in the cache, we allow only a prime number of sets
to reside in the cache. Using a prime number in a memory system to avoid memory access conflicts
was attempted before. In the early 70’s, Budnik and Kuck suggested the use of prime number
of memory modules in the context of a parallel computer [18]. The idea was latter developed by
Burroughs in the design of the BSP computer [19]. However, addressing for such prime-number
memory systems is much more complex than for memory systems in which the number of memory
modules is a power of 2. This complicated addressing is more critical in cache design since we can
not afford to allow any additional delay for cache accesses. Any increase in cache hit time will affect
not only the average access time but also the clock rate of the CPU. Therefore, it is of essential
importance that any attempt in designing a new cache must ensure no increase in the length of the
critical path of a processor.

Our approach here is to utilize the special properties of a class of prime numbers: the Mersenne
primes. A Mersenne number is of the form 2° — 1 for some ¢ that makes 2° — 1 a prime. Examples
of such c are 2, 3, 5,7, 13, 17, and 19 etc.. A cache line with address A; is mapped into set number
A; mod (2° — 1) in the cache. Since Mersenne number is a prime, a vector access to the cache with
this mapping scheme can be made conflict-free. Meanwhile, the address space is also well utilized
since the number of logical set in the prime-mapped cache is just one less than a power of 2.

A detailed description of the Prime-mapped scheme is as follows: Each memory address, same as
conventional cache-based computer system[17], is partitioned into three fields: W = logs(line size)
bits of word address in a line (offset); ¢ = logs(number of sets+ 1) bits of index; and the remaining
tag bits of tag. The access logic of the prime-mapped cache consists of three components: data
memory, tag memory, and matching logic. Same as a set-associative cache, the data memory
contains a set of address decoders and cached data; the tag memory stores tags corresponding to
the cached lines; and the matching logic checks if the tag in an issued address matches the tag in
the cache. The cache lookup process is exactly the same as the set-associative cache and hence
takes the same amount of time as the set-associative cache. However, the index field used to access
the data memory is not just a subfield of the original address word issued by the processor since
the modulus for cache mapping is not a power of 2 any more. It is the residue of the line address
modulo a Mersenne number. How efficient this modular operation can be done is essential to the
cache performance. In the following, we show how the index conversion can be done without adding
additional delay in the address mapping process.

Figure 1 shows the block diagram of the address computation logic. It consists of two parallel
parts: one normal address calculation unit that generates addresses for accessing the main mem-

ory and the other address generator that calculates addresses for accessing the vector cache. For
notational convenience, we call the address for accessing the main memory as memory address and
the one for accessing the vector cache as cache address. The normal address calculation unit is a
part of address control logic or functional unit that any existing vector computers should have. The
memory address of a vector element is calculated based on a vector stride and the address of the
previous element of the vector. For generating a cache address, the tag field and the word (offset)
field are the same as that for memory address. It is only the index field (c bits) that needs to be
calculated in a Mersenne number form through the additional address generator. Since a Mersenne
number is defined as an integer modulo 2¢—1, arithmetic operations are greatly simplified by noting
that 2¢ mod (2° — 1) = 1. Consider any two integers represented in c¢-bit binary form. If we add
the two numbers we obtain a (¢ + 1)-bit sum with the most significant bit being carry bit. But
2°=1 mod (2¢—1). Thus, addition modulo a Mersenne number is performed very simply by using
a conventional full binary adder of ¢ bits and by folding the most significant carry bit output back
into the least significant carry bit input. Therefore, a c-bit full adder is sufficient to perform the
address generation. The index field of the cache address of a vector element is obtained by adding
the stride to the index field of the cache address of the previous element of the vector. Note that
both the stride and the previous index value should be in the Mersenne number form as explained
shortly. Because the addition is performed on a c¢-bit field which is a portion of a memory word,
this process should take no longer than the normal address calculation process. Two addresses are
therefore generated concurrently: one for cache access and the other for memory access in case of
a cache miss.

It remains to consider how to generate the cache address of the first element of a vector and
the vector stride in a Mersenne number form efficiently. Let the starting line address of a vector
be At that consists of two fields: tags and index 4 with the lengths of each field being tag and
c, respectively. We ignore the offset field of an address since a line is the basic unit for cache
mapping. Suppose the least significant ¢ bits of tag, are represented by tags; and the second ¢
bits are represented by tagas and so forth. In order to map the starting line of the vector into the
prime-mapped cache, we need to perform a modular operation A+ mod (2¢ —1). Since

Astart = indel‘A —+ QCtagAl -+ QZCtagAQ + ... ,
and 2¢ mod (2°— 1) = 1, we can write
Astart mod (2C - 1) = indea:A +taga1 +tagas + - - -.

Therefore, to derive the index field of the starting line address of a vector, what we need to do is to
perform a sequence of ¢ bit additions. If the length of tags (tag) in bits is less than or comparable
to the length of index 4 (c), then we just need one c-bit addition plus taking care of the carry bit,
which is equivalent to a 2¢-bit addition. Note that this 2¢-bit addition should take less time than
the normal address calculation which operates on whole word length. In practice, it is often the
case that the tag field is comparable to the index field. For example, the cache size of the Alliant
FX/8 is 128K bytes (16K double words) [10] giving rise to an index length of 14 bits if the line size
is 8 bytes. If the address length is 32 bits, the remaining tag field consists of maximum of 15 bits.

7

We then need to perform a 14-bit addition and add back the most significant bit of the starting
address and the carry bit into the least significant bit of the sum. Similarly, the VAX 6000 Model
400 vector processor has a cache of 1 Mbytes that can easily make the tag field comparable to the
index field. If it is desired in a design that the tag field be much longer than the index field, we
would need at most one or a few more level of additions of ¢ bits in calculating the index field of
the starting address of a vector.

The address conversion logic for the starting element of a vector is also shown in Figure 1 assum-
ing tag < c¢. Two multiplexors are used to select addends for the c—bit adder. The multiplexors will
select two fields (tag and index) of the memory address word to do addition if it is for the starting
element. For all other elements of the vector, the multiplexors will select index value of the cache
address of the previous element and the stride to do addition. The generation of the vector starting
address for cache access can be done in parallel with the memory access of the vector element if the
vector is accessed first time. It is safe to assume that a couple of stages of ¢ bit additions can finish
before the first element of a vector loaded from the main memory arrives in the vector cache. Thus,
the loaded data can be written into the vector cache using the newly calculated index value. In this
case, there is no performance penalty resulting from the address conversion. The converted cache
address of the starting element can be stored in a special register for future reuses if the vector is
going to be accessed again. Subsequent accesses to the elements in the same vector can be done
using two possible addresses: cache addresses as discussed above or memory addresses if a miss
occurs. The calculation of these addresses does not incur any additional delay compared to existing
machines as evidenced previously.

Converting an integer stride into a Mersenne number can be done in the same way as for the
starting address. That is, just additions are needed. This process can be done at the time when the
vector stride is loaded into the vector stride register. However, a special register of ¢ bits is needed
to keep the converted stride as shown in Figure 1.

It should be noted that the number of physical lines in the cache is still 2° though there are only
2¢ — 1 logical lines. The reason is that there are 2 different 0’s in Mersenne number (0,0---,0) and
(1,1,---,1) that correspond to 2 different memory addresses. Whenever the index field becomes all
1’s, we need to reset the index field. This can be easily implemented as shown in Figure 1.

The additional hardware cost as result of this new mapping scheme includes 2 multiplexors,
a full adder and a few registers as shown in Figure 1. Even a small percentage of performance
improvement can justify such insignificant hardware cost. As will be evidenced latter in this paper,
we expect to double and even triple the performance of direct-mapped cache and the performance of
the machines without cache. However, there is still a trade-off between performance and hardware
cost. The registers storing the starting addresses of vectors, for example, add more cost to the
machine. If several vectors are accessed concurrently, we not only need more registers but also the
control logic to control the access of these registers. If we can afford to spend 1 or 2 more cycles at
each vector start-up time, we may eliminate these registers. Each time a vector is accessed again,
we recalculate its starting address even though the vector is already in the cache. This recalculation
requires just additions of subwords, which takes small amount of time and may also be pipelined.
On the other hand, if performance is absolutely important one can pay for the registers.

2.4 Cache Size Limitations

Readers may have already noticed that using Mersenne number to implement cache mapping poses
cache size limitations. The values of ¢ that make Mersenne number a prime are 2, 3, 5, 7, 13, 17, and
19 etc.. There is a gap between each 2 subsequent Mersenne primes. For example, the next larger
cache size beyond 8K sets is 128 K sets. Such size gaps can be avoided in actual designs in a number
of ways. Let us say that the cache size is measured in terms of memory words. Then changing the
line size from 1 word to 16 words results in consecutive cache sizes from 8K (2'%) to 128K (2'7)
words. On the other hand, if an optimal line size is chosen, one can also change the degree of
associativity to have different cache sizes. From a direct-mapped cache to 8-way set-associative,
one can fill up the size gap between 8K and 128K lines. Therefore, there are 3 design dimensions:
number of sets (modulus), line size, and associativity. A computer designer has enough space to
exercise his/her design trade-offs.

3 An Analytical Model

In this section, we present an analytical performance model based on the simple vector performance
model given in [2]. It should be noted that the analysis and the numerical results presented here
are not meant to be predictors of performance of any realistic computer system. Rather, they are
meant to give a quick insight into the simplified vector processor models and to show some potential
problems that might exist in a vector cache memory. By varying different input parameters over
a wide range, we use the analytical model to comparatively study the performance of different
alternatives of cache designs.

3.1 A Vector-Computation Model

Two simplified vector processor models considered here are shown in Figures 2 and 3 which will
be referred to as MM-model and CC-model, respectively. Both models have a vector processing
unit, a set of vector registers with maximum vector length of V, words, and a set of low order-bit
interleaved memory modules (or banks) that are connected to the vector processor through three
pipelined buses. Two of the three buses are read buses and the other is write bus. Each of these
buses contains separate data bus and address bus. There are totally M = 2™ interleaved memory
banks each of which has the access time of ¢,, cycles. The second processor model (CC-model)
shown in Figure 3 differs from the first one (MM-model) only in that it has a cache memory of size
C sets between the processor and memories. We assume that this cache memory is used purely for
vector data similar to the split vector cache of VAX 6000 [11]. A line of data can be transferred on
one of the buses in one cycle.

Cache miss ratio has been used by many researchers as a performance measure to evaluate
cache performance. However, it is not a very good performance measure in this context because
we intend to compare the performance differences between the MM-model and the CC-model. The
performance measures that we will use in this paper are the total execution time of an application
program and the speedup resulting from adding cache memories into the MM-model vector computer.

The speedup is defined as the ratio of the execution time on the MM-model to the execution time on
the CC-model. In order to estimate the total execution time, we present in the following a simple
and generic vector computational model that attempts to cover a wide spectrum of numerical
algorithms.

Our simplified computational model assumes that application programs are blocked into several
segments. One of the vector data that an application program operates on is partitioned into several
sub-blocks of size B each. We call this B a blocking factor. For example, if a matrix is blocked
into several submatrices of size b x b, then the blocking factor is 2. A sub-block of data may be
used several times by one program segment. We define a reuse factor, R, as the number of times
a block of data is reused. During each vector operation, the processor may load two vectors from
the memory simultaneously or load just one vector with the other operand available in a register.
It is assumed that the probability that the processor accesses two vector streams simultaneously
from the memory during one vector operation is P, (double stream). The probability that the
processor accesses just a single vector stream with the other operand available in a register is
P,; (=1 — Py). The system performs operations similar to the SAXPY (Single-precision A * X
Plus Y:Y = a* X +Y) operations. The processor first loads one or two vectors into its registers
and then performs arithmetic operations on the two vectors or on one vector and a scalar in a scalar
register.

We now determine the length of the second vector for double stream vector accesses. In order to
simplify our analysis, we further assume that all single-stream vector accesses are evenly intercepted
by one-double-stream accesses if Py, # 0. In other words, every sequence of %ﬁi = %z consecutive
single-stream vector accesses is followed by one double stream vector access which is again followed
by a statistically identical sequence of single stream accesses, and so forth. This assumption is
backed by many realistic numerical algorithms [7, 20, 21]. Thus, one can imagine one of the vectors
of length B as a two dimensional matrix with Py;/Pys+1 columns and BP,s rows. The vector length
of each column is BP,,. After every P;,/P;s column accesses of the imagined matrix, the processor
loads two vectors to perform vector operations on the first and the second vector. Therefore, the
length of the second vector can be considered as B Py;.

Although the assumed computation model is simplified, it is very close to many realistic applica-
tions. For example, the blocked matrix multiply algorithm in [7] has the blocking factor of b* since
the matrices are blocked into submatrices of size b x b. The reuse factor of each block is b and each
sequence of b— 1 single stream vector accesses is followed by a double stream access. Therefore, the
fraction of time when the processor accesses a single vector stream is (b — 1)/b while the fraction of
double stream accesses is 1/b. The length of the first vector is then b? and the length of the second
vector is b. Similarly, the blocked LU decomposition algorithm with a blocking factor of * [20] has
an average reuse factor of 3b/2 and the blocked FFT algorithm [21] with a blocking factor of b has
a reuse factor of Logsb.

The access strides of loading the two vectors are denoted by s; and ss, respectively. Access strides
vary widely depending on application programs. In general, unit stride occurs more frequently than
other strides in most numerical algorithms [8]. We therefore use Py.;4e1 to denote the probability
that an access stride is 1. If a stride is not 1, we assume that it takes any other integer values

10

equally likely. Since we are interested in memory bank conflicts and cache line conflicts, a stride is
assumed to take an integer value in the range of (1,2,---, M) for the MM-model and in the range
of (1,2,---,C) for the CC-model due to modular operations. We also assume that writing results
into memory or cache will not delay the normal vector operations. This assumption is not a severe
restriction because it can be approached in real machines by having write buffers, separate data
bus for writing and separate write port for memories [2].

In summary, our simple vector computational model consists of the following seven-tuple:

VOM = [Ba Ra Pdsa 51, 82, Pstridel<81), Pstridel (SZ)];

where
B: blocking factor or the size of each sub-vector;
R: reuse factor, the number of times a sub-vector is reused;
Py,: the probability that a processor accesses two vector streams;
S5 stride of accessing ith vector;

Piiriae1(8;): the probability that s; = 1.

By properly selecting these model parameters, the model can fit into a variety of numerical
algorithms and various vector access patterns. For example, if we set VCM = [b,r,1,1, P,1,1/C],
we have double stream vector accesses to columns and rows of a b x b submatrix of a P x
matrix stored in column-major. Each pair of column and row are used for r times. If VCM =
[b,7,0,P+1,%,1/C,*] !, then we get a single vector access stream to a major diagonal of a b x b
submatrix of the same P x () matrix. FFT access and sub-block access can also be easily modeled
with some minor modifications as will be discussed later in the paper.

3.2 Execution Time of the MM-Model

Let us consider the MM-model of Figure 2 first. The vector performance can be characterized by
the execution time for a sequence of operations on a vector of length B, Tg. This quantity depends
on a number of factors including the overhead for computing the starting addresses and setting up
vector controls, the overhead for executing scalar code for strip-mining (fine level of blocking), and
the maximum vector register length, V. By assuming these parameters to be constant denoted by
T,, we have

elemt

B
Ty =T, + (5] Tl + BT (1)
L

where TM

star

element of the vector ignoring the start-up time. The start-up time depends on the memory access
time and the type of arithmetic operations to be performed. It should not be difficult to determine

. is the start-up time for each inner most loop and TA! . 2 is the time for processing one

elemt

its value for a given set of system parameters. In our discussions, we assume Ty,,; to be constant

for a given memory access time. If the system is fully pipelined with one functional unit, T} .
M

elemt

should be one in an ideal case. In reality, is often greater than one because of stalls resulting

1The symbol ”*” means undefined
2For notational convenience, we use superscript M and C on a parameter to distinguish MM-model (Figure 2)
and CC-model (Figure 3) vector processors, respectively.

11

from memory accesses, data dependencies and control dependencies. Since our primary interest
here is memory system performance, we will concentrate on memory stalls only. The major source
of memory stalls for vector processors is memory conflicts [22, 23, 9]. A number of storage schemes
to minimize memory conflicts stands out in the literature. Some examples are [24, 22, 19, 18] to
list a few. In our analysis, we consider only the low-order bit interleaving scheme although some
conflict-free dynamic storage schemes can provide about 18% better performance than the simple
interleaving [22]. In the following, we derive T3 . by taking into account memory stalls.

Memory stalls can result from two types of bank conflicts: One is the conflicts between elements
in the same vector (self-interference) denoted by IM, and the other occurs between elements from
two different vector access streams (cross-interference). Let us first consider the number of possible
stall cycles of accessing one vector stream with stride s;. When a vector access stream traverses
across all the memory banks (one sweep), the number of memory banks visited by the access stream,
the return number (N,), is given by M/gcd(M, s;) [23], where gcd(M, s1) is the greatest common
divisor of M and s;. If Vi, > M/ged(M, s1), memory conflicts occur within the vector access stream.
For a special case where gcd(M, s;) = 2™ = M, all element requests go to a single memory bank.
Since M is a power of 2, ged(M,s;) is in the form of 2° for some i = 0,---m — 1. For each 27,
there may be a number of values of s; within M such that ged(M, s;) = 2. In order to find the
distribution of return number N, which determines average memory stalls, we need to find out the
number of integers within M that share the same gcd(M, s;) = 2°. This number is clearly the same

as the number of values of s; such that ged(4%, %) = 1, which is Euler’s function [12] given by
M M m—i—1 .
¢<§):F:2 , fori<m.

For each such s, the return number, N,, is 2™ . Recall that the probability of s; = 1 is Pypider
and the probability of s; taking any other value in (2,---, M) is 1-fatzider Thys, the probability
distribution of N, is given by

1_F).str'idel Z:
) M-1 i ’
PT{NTIQ’L}: (1_Pstridel)%, /L:]_’ 2’ "‘U—l, (2)
1= XL Pr{N} =1 - gpeal =y,

Now consider a vector access stream. If the memory cycle time is greater than the return
number, i.e. t,, > M/ged(M, s;), memory stalls occur. Each one of the V /N, sweeps are delayed
by t., — N, cycles. If gcd(M,s1) = 2™ = M, then each of V, elements will be delayed by ¢, — 1
cycles. Therefore the total number of stall cycles resulting from accessing a vector of length Vj,
IM | is given by

1— Ps ridel = m—1i\om—i— VL
M = Mi—t[S (tw—2"72 12mﬂ. + Vi (tm — 1)].

i=[loga 21

The lower limit of the summation in the above equation is determined based on the condition
tm > M/ 2. Notice that the above equation assumes that ¢,, < M so that unit stride does not incur

12

any stalls. Simplifying the above expression we have

1 — Parider t
IM =y, =2l 4 2 logat,, | — 2Lesztml], 3
s L (M — 1) [9 L g2 J] ()
Next, let us consider memory stalls as result of cross-interferences between two independent
vector access streams. Let the stride of accessing the second vector stream be s, which has the
same distribution as s;. Let the memory bank difference between the starting addresses of the two
vectors be uniformly distributed between 1 and M. Conditioning on the return numbers of the two
access streams, N,; and N,s, we have the probability that the two vector access streams overlap
mER=Lif M > n+ e

Py, = Pr{overlap|Ny1 = nq, Ny2 = na} = { 1 v otherwise

(4)

If two vector access streams do not overlap, then the number of memory stalls will depend on the
vector access stream that has smaller return number. Therefore, the number of stalls (N S,,,) in
this case given that N,; = n; and N,y = n is given by

Vi

NSnm, = (S(tm — min(nl,ng)) . m,

where 0(z) = x if x > 0 and 6(xz) = 0 otherwise. If the two vector access streams overlap, the
overlapped elements of the second vector can not start memory access until after Z—f - tm — 1 cycles
which are the time needed to finish all memory accesses of the first vector in that memory bank.
The reason of lessing 1 here is that the load instruction of the second vector starts memory access 1
cycle later than the first vector access. After we start memory accesses for the overlapped elements
of the second vector, it will again take ¢,, - Z—g cycles to finish up all memory accesses in the memory
bank. Therefore, the number of stalls (V.S,,) in case of overlapping given that N,; = n; and

N,o = ny is given by
V) Vi
NS, = ~Z -t —1+1t, ~—=.
n1 o
The expected number of memory stalls conditioning on the two return numbers is therefore given
by

El[stalls|Ny; = ny, Npg = no| = Py - NSoy + (1 — P,y) - NSy

Removing the conditions, we have the average number of memory stalls resulting from a double
stream vector access. It is given by
1% 1%
El[stalls] = Z Z E[stalls|Ny1 = n1Nyo = ng|Pr{N,1 = n1} Pr{N,s = no}, (5)
ni=1ns=1
where the distribution of N,; and N, is given by Equation (2).

M
T can now be expressed as

TM =1+ average stall cycles per element

elemt —

. M .
. Elstalls] - Pys + I Pss. (6)
VL

13

Substituting Equation (6) into Equation (1) we get the execution time of one block. Assume
that the total data size of a program is N which is blocked into several segments of length B. Taking
into account the reuse factor, R, the total execution time T can be expressed as:

N

Ty =Ts-R- 51

where T is given by Equation (1).

3.3 Execution Time of Direct-Mapped CC-Model

Now let us consider the CC-model of Figure 3 that has a direct-mapped cache of size C' = 2¢ lines.
We assume in this section that a cache line contains one double precision word of data.

The processor initially loads one or two vectors into the cache while performing the designated
vector operations. The process of the initial loading will take the amount of time given by Equation
(1). After the vectors are loaded into the cache, the remaining operations on the same set of data
are expected to be performed in the cache without accessing memories in an ideal situation. The
total execution time of the CC-model (Figure 3) is given by

B N
Tlg = {TB + [TO + [VL] : Ts?art +B- Te?emt : (R - 1)} ’ [§—|7 (7)

where Tg covers the effects of compulsory and capacity misses as discussed above. Similar to the
analysis of the MM-model, we use TS, , to include memory stalls due to cache misses. We will
consider in the following the effects of cache misses caused by line interferences on the system
performance.

Suppose that the processor tries to load a vector of length B into the vector cache with a
stride s; chosen from a random number having the distribution described in the beginning of
this section. The number of cache lines occupied by the vector is given by C/ged(C, s1). Thus,
there will be B — C/gcd(C, s1) self-interferences if the vector length B is greater than or equal to
C/gcd(C, s1). Again the number of s;’s such that ged(C, s;) = 2(¢™ is 2°~! (divisor function) [12].
If ged(C,s1) = C, then there would be B — 1 conflicts. Assuming lock-up free cache, the average
number of stalls due to self-interference misses in the B-element vector is given by

c—[loga <7
1_Ps ride B C j—
I€(B) =~ N (B—)27+ B = 1] tm,
C-1 i=1 2

where the upper limit of the summation is determined in such a way that B — C/2" is always
positive. Notice that there is no self-interference if the access stride is one and the block size B is
less than cache size. For every self-interference miss the processor stalls for ¢, cycles. Simplifying
the above expression we have

1- Pstr’idel 1

I9(B) = — e S (3B2l P g 2lewBl) o, ®)

14

For B being a power of 2, we have

1- Pstridel

B =567

(B® = 1) - tp.

The cross interference misses can be calculated in a similar way as for the MM-model assuming
that the two vectors are independent and their starting addresses differ by a random number. The
probability distribution of the return number, the number of cache lines occupied when loading
a vector, is obtained using Equation (2) by substituting M and v with C' and logB respectively.
Similarly, the probability that the two vectors overlap is given by Equation (4) by replacing M by
C. If the two vectors do not overlap in the cache, the expected number of stalls conditioning on
the two return numbers n; and ny is given by

NSnm, = tm(B — nl) + tm(B — 7’L2).

If the two vectors overlap in the cache, then the average overlap length is # Therefore, the

number of stalls resulting from cache misses given that the two vectors overlapped is given by
nin9

NS,, =t (B — tm(B — tyy———.
(™)+t n2) + ny+ng—1

The total stalls, E¢[stalls], are calculated using Equation (5) with the upper limits for the
summations being B and BP,, respectively. Thus, the time for processing one vector element,

TC’

elemt»

18

I(B EC[stall
Te?emt:1+Pss Sé)+Pds 7[8Ba 8]- (9)

Substituting Equation (9) into Equation (7) we obtain the total execution time of the direct-mapped
CC-model.

3.4 Execution time of Prime-Mapped Cache

Since the modulus in the prime-mapped cache is a prime number, interference misses are minimum.
For the random stride access pattern, the self-interference misses occur only when the stride is an
integral multiple of the cache size. Therefore, I¢ is simply given by

— Pstm'del)(B — 1)

10(B) = L= Pariae)

tm, (10)

assuming that the stride is uniformly distributed between 2 and C' if it is not 1. Cross-interferences
are computed in the same way as for the direct-mapped cache. Substituting Equation (10) into
Equation (9) we obtain the time for processing one vector element for prime-mapped cache. The
total execution time is calculated using Equation (7).

15

3.5 Validation of the Analytical Model

In order to verify the correctness of our analytical model developed in the last subsection, we have
written a simulator. The simulator is synchronous (Time-driven Simulation) in the sense that all
the system activities occur at discrete time intervals which are processor cycles. The simulator
simulates a vector processor, a set of interleaved memory banks, and three data buses that connect
the processor and memories. The vector processor in the simulator can be in one of two states:
active doing useful computations or idle waiting for a memory access. At the beginning of each
simulation cycle, we check if the processor is in active or idle state. If it is in active state, a vector
access request is generated and the processor is made idle. Whether the request is for a single vector
or two vectors is determined by P,,. The starting memory bank number of the vector access(es)
is selected from the M memory banks equally likely. At the mean time the access stride is also
determined based on the random number following the assumed distribution. Once the starting
address and the stride are determined, V element requests are then appended to the corresponding
memory bank queues. Every two consecutive element requests of the vector are separated by the
chosen constant stride. Before the cycle ends, we update all the memory queues, decrease the
remaining memory time of the element request at the head of a queue, and return the request
to the processor if the remaining time is 0. If the processor has collected all element requests it
had initiated, it resumes active for the following cycle. The statistics that we collected from the
simulator is Tem: which is 1 plus the average number of stalls per vector element. We run the
simulator for 1,000,000 cycles in each simulation run. All the simulation results reported in this
paper are the average of 10 such runs.

16

Table 1. Comparison between analysis and simulation in terms of T,..,;. (V,=64,
Pstridel = 025, Pss = 10)

tm| M =64 | M =128 M =256
Sim Ana | Sim Ana | Sim Ana
5 1169 169|166 1.66 |1.64 1.64
10 {1.89 191|180 1.80 |1.76 1.75
15210 2131192 1.95 | 1.89 1.86
20 |1 2.35 238 |2.12 211 |1.94 1.99
25 (259 264|225 229 |221 211
30 | 2.86 2.89 246 2.45 |2.24 223
35 1310 317|254 263|230 2.36
40 | 3.39 3.46 | 2.66 2.81 | 2.46 2.49

Table 2. Comparison between analysis and simulation in terms of T....;. (V;,=64,
Pstridel = 025, Pss = 00)

tm| M =64 | M =128 M =256
Sim Ana | Sim Ana | Sim Ana
5 1236 228223 217 |2.01 1.91
10 | 2.74 277 | 2.50 247 | 2.23 2.09
15 | 3.19 3.26 | 2.77 2.77 | 245 2.29
20 | 3.76 3.76 | 3.11 3.08 | 2.69 2.49
25 | 4.06 4.25 | 3.45 3.40 | 2.86 2.68
30 | 4.66 4.74|3.73 3.72 | 3.09 2.88
35 | 5.18 5.25(4.07 4.04 |3.30 3.08
40 | 5.80 5.74 | 4.38 4.36 | 3.50 3.30

We first verify our analysis by varying the memory cycle time, ¢,,. Table 1 shows the comparison
between the simulation results and the analytical results with P, = 1 and Piyiger = 0.25. It is
shown in the table that the two results are in an excellent agreement for all considered values of t,,.
When we decrease (P;,) from 1 to 0 implying that all vector accesses are double streams, similar
agreement is also observed as shown in Table 2. In all cases, the maximum difference between the
simulation and the analysis is about 6% indicating a high accuracy of our analytical model.

We have also varied the proportion of single stream vector accesses, P;,, and the probability
of unit stride, Pj;;q.1, to compare the two results. Table 3 shows the numerical results for differ-
ent values of P,; and Table 4 shows the numerical results for different values of P41 Similar
agreements are also observed from these two tables.

17

Table 3. Comparison between analysis and simulation in terms of T,..,;. (V,=64,
Pst'ridel = 025, tm = 20)

P, M =64| M =128
Sim Ana | Sim Ana
0.0 | 3.69 3.76 | 3.12 3.09
0.2 | 3.46 3.48 | 2.99 2.89
0.4 324 321|272 2.70
0.6 | 2.98 293 | 2.56 2.51
0.8 274 266|237 2.31
1.0 | 2.38 238|212 2.12

Table 4. Comparison between analysis and simulation in terms of T ;. (V,=64, P;; =
0.9, tm = 20)

Piviger | M =64 M =128
Sim Ana | Sim Ana
0.0 2.80 2.71|2.32 231
0.2 2.69 259|226 2.25
0.4 255 246 2.18 2.18
0.6 2.32 233|211 2.12
0.8 2.09 2.21|2.02 2.06
1.0 1.89 2.08 | 1.89 1.99

4 Performance Analysis and Comparison

We now carry out performance analysis and comparison of different architectural alternatives based
on the simple analytical model presented above. The degree of cache associativity is considered to be
1 since we are only interested in relative performance of the new cache design and the conventional
cache design. One may increase the associativity of both designs to study the cache performance,
which is not considered here to control the length of the paper. In the following figures, we fix
the values of Vi, T,, TM . and TS, at 64, 20, 15 + t,, and 15 [2], respectively. Unless otherwise
specified, the probability of unit stride access, Psrige1, is fixed at 0.25 which is the average value of
the experimental data reported in [8].

Random Multistride Accesses

Figure 4 shows the speedup as a function of memory access time in terms of processor cycles assuming
random stride having the distribution given previously. The speedups are obtained by dividing the
total execution time of the MM-model by the execution times of the corresponding CC-models.
Two curves are drawn corresponding to the direct-mapped CC-model and the prime-mapped CC-
model, respectively. If memory access time is small, it can be seen from the figure that adding a
direct-mapped cache memory does not help. The MM-model performs even better than the CC-
model that has a direct-mapped cache memory. This is primarily due to the fact that any one of

18

irregularly distributed cache misses results in a memory access that takes ¢,, cycles. The interleaved
memory with pipelining may well satisfy the bandwidth requirement of the processor. However,
as the speed gap between processor and memory increases, i.e. the number of cycles needed for
accessing memory increases, the performance of the direct-mapped CC-model takes over. Still, the
speedup of the direct-mapped CC-model is limited. The prime-mapped cache, on the other hand,
shows significant speedup which is getting even larger as memory access time increases. The prime-
mapped CC-model outperforms both the MM-model and the direct-mapped CC-model over entire
range of memory times considered. We notice that the prime-mapped CC-model runs up to three
times faster than both the direct-mapped CC-model and the MM-model.

It was noted in [7] that different blocking factors show different performances. To observe this
effects, we plotted the performance vs blocking factors with other parameters being fixed at the
values shown in Figure 5. As shown in the figure, speedup resulting from adding the direct-mapped
cache quickly drops down below 1 after the blocking factor is about 1K, while the speedup of the
prime-mapped cache remains flat. This figure indicates that improper choice of blocking factor can
make the performance of the direct-mapped CC-model worse than that of the MM-model, whereas
the prime-mapped cache is not sensitive to the blocking factor. This is another advantage of the
prime-mapped cache.

In the above two figures, we have fixed the probability of accessing a vector with stride 1, Pyyige1,
at 0.25. To examine the effect of this parameter on system performance, we plotted speedups by
varying Pi.iqe1 as shown in Figure 6. High probability of unit stride will reduce both memory
conflicts and cache line conflicts. As a result, the performance difference between the two mapping
schemes comes close as this probability increases. When the probability of having unit stride is 1,
the performance of the two mapping schemes is the same. Whenever this probability is nonunit,
the prime-mapped cache performs better than the direct-mapped cache.

Figure 7 shows the effect of proportion of double access streams (Py) on the performance
of the three models. When the proportion of double access streams is large, cross-interference
between the two vectors in the main memory or in the cache becomes large. Notice that the cross-
interference in the prime-mapped cache is more severe than that in direct-mapped cache because
the vector footprint in the former is larger than the vector footprint in the latter. Notice also that
cross-interference in the main memory is more severe than cross-interference in the cache for small
footprints, giving rise to increased speedup of direct-mapped cache as P, increases. For prime-
mapped cache, on the other hand, cross-interference is relatively larger because of the large sizes
of the two vectors that can be placed in the cache. As a result, the speedup of the prime-mapped
cache decreases with the increase of the proportion of double stream accesses. Nevertheless, the
prime-mapped cache still performs better than the direct-mapped cache over all possible fractions
of double stream accesses. This is mainly because of the large effect of self-interferences.

It should be pointed out here that cross interferences in the prime-mapped cache can be com-
pletely eliminated by increasing the cache associativity. A 2-way set associative cache with a prime
number of sets can hold two vector streams without conflicts; a 4-way set associative cache can hold
4 vector streams and so forth. The same is not true for conventional set-associative caches due to
a large amount of self-interferences.

19

Sub-block Accesses

Sub-block accesses have proven to be important in many vector processing applications. Blocked
matrix multiply is an example that needs to access a submatrix of a large matrix. Let the original
large matrix be dimensioned P x @, and the sub-block be dimensioned b; x by. A sub-block access
can be characterized as by stride-1 accesses to column vectors of length b;. The distance between
the starting addresses of two successive column vectors is P.

Sub-block accesses can be easily made conflict free for any arbitrary two dimensional matrix by
properly selecting blocking factors. Notice that this is either impossible or prohibitively costly for
the MM-model since the modulus is a power of 2 [22]. Consider the above matrix with dimensions
P x @ that is stored in a column-major. To make accesses to a sub-block of dimension b; x by
conflict free in the prime-mapped cache, what we need to do is to select b; and b, in such a way
that the following conditions are satisfied.

by < min(P mode C, C — P mod C), and
by < |C/min(P mode C, C — P mod C)]|,

where C' is cache size. A row-major storage can also be realized similarly by interchanging the
corresponding dimensions. It can be easily shown that a sub-block with b; and b, satisfying the
above conditions can be stored in the cache without line interference. This is because that b;
elements of any column vector are stored in consecutive memory locations and hence no conflict
can occur among them. Moreover, since (P mode C) > by and (C — P mod C) > by, the first
elements of any two column vectors are mapped into two cache locations that are at least b; lines
apart as long as by < |C/min(P mode C, C' — P mod C)|. The fraction of the cache being used
is b1by/C. If we let by = min(P mode C, C — P mod C'), and by = [%J then the cache utilization
is close to 1. In other words, conflict free access is possible to the submatrix even with the cache
utilization approaching 1.

Suppose that a subblock of b; x by that is stored in column-major is reused for R times in a
program. We can use the analysis presented in the previous section to calculate the execution time
by assuming that each subcolumn of a subblock can be contained in a cache set. Figure 8 shows the
speedup as a function of memory access time in terms of processor cycles. With the blocking factor
of 1K, the direct-mapped CC-model just manages to have some speedup. The speedup is about
1.6 for memory access time being 32 cycles. If the blocking factor is 2K, i.e. the fraction of cache
being used is about a quarter, we can hardly see any speedup. The prime-mapped cache, however,
shows significant speedup as long as the blocking factor is less than the cache size. It is clear from
the figure that adding the newly proposed cache memory triples the vector performance after the
memory time exceeds 28 cycles.

In Figure 9, we fix blocking factor by which is the number of columns in each submatrix at
1K while changing blocking factor b; which is the length of each column in a submatrix and also
the number of words in a set. Note that the blocking factor is changed in terms of logsb; in the
figure rather than b;. Since matrix Y is stored in column-major, elements along any column are in
consecutive memory locations. As a result, changing subcolumn size does not change number of line
conflicts as long as b, keeps the same, which makes the two curves remain relative flat. However,

20

when we fix b; while changing by, the performance of the direct-mapped CC-model drops drastically
after by exceeds 64 (logaby = 6) as shown in Figure 10. The initial increase in speedup of direct-
mapped CC-model is due to the increase of vector length (within V7)) of each vector operation. In
both cases (Figures 9 and 10), the prime-mapped cache organization performs significantly better
than the direct-mapped CC-model. Moreover, the speedup remains unchanged for all possible
blocking factors because it is conflict-free as long as the subblock is smaller than cache size.

To observe how the reuse factor affect the performance of vector caches we plotted speedup as
a function of reuse factor R while fixing the blocking factors as shown in Figure 11. As expected,
the performance of the two cache organizations is the same when the reuse factor is 1. Recall that
the initial loading of the cache is pipelined and is done concurrently with the vector operation.
The performance difference between the two mapping schemes is getting larger as the reuse factor
increases due to the fact that the prime-mapped CC-model has a much higher chance of finding in
cache the reused data than the direct-mapped counter part does. Moreover, it can be seen in this
figure that after the reuse factor exceeds certain value, the performance change is not significant.

FFT Accesses

The FFT accesses result from the Cooley and Tukey’s Fast Fourier Transform (FFT) algorithm.
The FF'T is a basic tool in various scientific and engineering disciplines, ranging from oil exploration
to artificial intelligence. Efficient FFT computation is desirable for any engineering/scientific com-
puters. While the FFT algorithm performs well on scalar computers, it does not perform as well
on vector computers because the access stride changes after each stage of computation. Moreover,
other than the final stage all strides are powers of 2, which results in a lot of line conflicts in a
direct-mapped cache. The FFT in its original form can only keep a very small amount of data in
the cache if the data size that has to be a power of 2 is greater than the cache size. A tremendous
amount of efforts has been made during the past 20 years to optimize the performance of FFT on
a vector machine [21].

One way to implement the FFT algorithm in a memory hierarchical system is to map the input
data into a two dimensional array [21]. Suppose an N-point data array to be transformed can be
represented as N = By X By. Then the input data can be considered to be a matrix of By columns
and B, rows. The matrix is stored in a column-major. The algorithm proceeds by first doing B;-
point row FFTs for By times each of which is expected to be done within the local cache. After all
B> row FF'Ts are done, we multiply twiddle factors and perform column FFTs for By times. Again
it is expected that each of the column FFTs is done inside the cache. If B, is less than the cache
size, each of the column FF'Ts can be done in the cache without misses except for the compulsory
misses since the array is stored in a column-major. However, the row FF'Ts of the first step may not
be guaranteed to be done inside the cache without misses. Depending on the value of B,, conflict
misses may occur. The number of interference misses is obviously given by B; — C/gcd(Bs, C) for
By, > C/gcd(B,, C).

The total execution time of this algorithm on the direct-mapped cache can be computed by
using Equation (7) twice. First, we substitute B and R in (7) by B; and log,Bi, respectively.

TS, . should include the above self interferences for a given B,. Notice that P;, = 0 if we assume

21

that twiddle factors are available in the registers. Second, Equation (7) is used again with B and
R being replaced by B, and log,Bs, respectively. T

Slem: Call be considered to be 1 assuming that

B; < C. The final total execution time is the sum of the above two times. The execution time of
prime-mapped cache can be done similarly by noting that there are no self-interference misses unless
B, = C. Compulsory misses (T5) should also be adjusted based on the FFT stride characteristics.

Figure 12 shows the performance comparison of the FFT algorithm on the two different cache
organizations. The curves are the average clock cycles per point which is the total execution time
divided by N. In the figure, we fix one dimension while varying the other. It is observed from these
curves that the prime-mapped cache outperforms the direct-mapped cache by a factor of more than
2. The improvement is valid over all possible values of the blocking factor By. With the prime-
mapped cache, the FFT algorithm can be implemented very easily. Optimization is guaranteed as
long as the block size is less than the cache size.

5 Conclusions

In this paper, we have proposed an innovative cache mapping scheme for vector computers, called
prime-mapped cache. The new cache organization minimizes cache misses caused by cache line
interferences that have been shown to be critical in numerical applications. The cache lookup time
of the new mapping scheme keeps the same as conventional caches. Generation of cache addresses
for accessing the prime-mapped cache can be done in parallel with normal address calculations.
This address generation takes shorter time than the normal address calculation due to the special
properties of the Mersenne prime. Therefore, the new mapping scheme does not result in any
performance penalty as far as the cache access time is concerned. The hardware cost introduced by
the prime mapping scheme includes 2 multiplexors, a full adder and a few registers.

We have developed an analytical performance model for a generic vector computational model
that covers a wide spectrum of numerical algorithms. The analytical model is simple and precise
for a given set of vector access patterns. Simulation experiments have been carried out to validate
our analysis. It has been shown that our analysis is in a good agreement with simulations. Three
typical vector access patterns have been considered in our performance analysis: random multi-
stride, submatrix and FFT accesses. Numerical results have shown that the prime-mapped cache
outperforms both the vector computer without cache and the vector computer with a conventional
cache for all vector access patterns considered. The performance improvement ranges from 40% to
a factor of 3 depending on the memory cycle time, blocking factor and access patterns.

Our conclusion is that cache memory can improve the performance of vector processing provided
that application programs can be blocked. With the new mapping scheme, the cache memory can
provide significant performance improvement which will become larger as the speed gap between
processor and memory increases.

Acknowledgement

The author is grateful to Mr. J. Huang for his help in simulations. The paper has also benefited
from several discussions with Dr. Jim Cooley of URI and Dr. Dave Harper of UT Dallas. The

22

author would like to thank the anonymous referees for their valuable comments that greatly helped
improving the quality of the paper. Special thanks are due to Ms. Liping W. Yang for her continued
support as well as her helps in numerical computations.

References

[1] A. J. Smith, “Cache memories,” Computing Surveys, vol. 14, pp. 472-530, Sept. 1982.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture, A Quantitative Approach. Morgan
Kaufmann, 1990.

[3] H. S. Stone, High Performance Computer Architecture. Addison-Wesley, 1990.

[4] K. So and V. Zecca, “Cache performance of vector processors,” in Proc. 15th. Int’l Symp. on
Comp. Arch., pp. 261-268, 1988.

[6] D. Gannon, W. Jalby, and K. Gallivan, “Strategies for cache and local memory management
by global program transformation,” in Int’l Conf. on Supercomputing, 1987.

[6] J. Dongarra and et al., “A set of level 3 basic linear algebra subprograms,” ACM Trans. on
Math. Soft., vol. 16-1, pp. 1-17, March 1990.

[7] M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and optimizations of
blocked algorithms,” in Proc. of Arch. Supp. for Prog. Lang. and Opr. Sys., pp. 63—74, April
1991.

[8] J. W. C. Fu and J. H. Patel, “Data prefetching in multiprocessor vector cache memories,” in
Proc. 18th. Int’l Symp. on Comp. Arch., pp. 54-63, 1991.

[9] D. H. Bailey, “Vector computer memory bank contention,” IEEE Trans. on Computers, vol. C-
36, pp. 293-298, MARCH 1987.

[10] W. Abu-Sufah and A. D. Malony, “Vector processing on the Alliant FX/8 multiprocessor,” in
Int. Conf. on Parallel Processing, pp. 559-566, Aug. 1986.

[11] D. Bhandarkar and R. Brunner, “VAX vector architecture,” in Proc. 17th. Int’l Symp. on
Comp. Arch., pp. 204-215, 1990.

[12] A. J. Pettofrezzo and D. R. Byrkit, Elements of Number Theory. Prentice-Hall, 1970.

[13] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation of directory schemes
for cache coherences,” in The 15th Ann. Int. Symp. on Comp. Arch., pp. 280—-289, June 1988.

[14] J. Archibald and J.-L. Baer, “Cache coherence protocols: Evaluation using multiprocessor
simulation model,” ACM Tran. on Comput. Systems, vol. 4, pp. 273-298, November 1986.

23

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

Q. Yang, L. Bhuyan, and B.-C. Liu, “Analysis and comparison of cache coherence protocols for
a packet-switched multiprocessor,” IEEE Trans. on Comput., vol. 38, pp. 1143-1153, August
1989. Special Issue on Distributed Computer Systems.

M. Dubois and F. Briggs, “Effect of cache coherency in multiprocessors,” IEEE Tran. on
Comput., vol. C-31, pp. 1083-1099, Nov. 1982.

M. D. Hill, “A case for direct-mapped caches,” IEEE Computer, pp. 25—40, Dec. 1988.

P. Budnik and D. J. Kuck, “Organization and use of parallel memories,” IEEE Trans. on
Computers, pp. 1566-1569, Dec. 1971.

D. H. Lawrie and C. R. Vora, “The prime memory system for array access,” IEEE Trans. on
Computers, vol. C-31, pp. 435-441, May 1982.

J. Armstrong, “Algorithm and performance notes for blocked LU factorization,” in Int. Conf.
on Parallel Processing, pp. I1I-161-164, Aug. 1988.

J. W. Cooley, The Structure of FFT and Convolution Algorithms. IBM T. J. Watson Research
Center, 1990. Research Report.

D. T. HarperllIl, “Block, multistride vector, and FFT accesses in parallel memory systems,”
IEEFE Trans. on Parallel and Distributed Systems, Jan. 1991.

W. Oed and O. Lange, “On the effective bandwidth of interleaved memories in vector processor
systems,” IEEE Trans. on Computers, vol. C-34, pp. 949-957, Oct. 1985.

R. Raghavan and J. P. Hayes, “On randomly interleaved memories,” in Proceedings of
Supercomputing-90, pp. 49-58, Nov. 1990.

Q. Yang and L. W. Yang, “A novel cache design for vector processing,” the 19th Int’l Symp.
on Computer Architecture, May 1992. Gold Coast, Australia.

24

