BARC 2006

Boston area ARChitecture Workshop

Impact of Process Variations on Low Power Cache Design

Mahmoud Bennaser and Csaba Andras Moritz Department of Electrical and Computer Engineering University of Massachusetts, Amherst February 3, 2006

Introduction

- Process variations increase as the feature reduces due to the difficulty of fabricating small structures consistently across a die or wafer.
- In order to analyze the delay and power consumption of a cache under process variation, we must consider both inter-die and intra-die variation
 - Intra-die variations are the variations in device parameters within a single chip, which means different devices at different locations on a single die may have different device features
 - Inter-die variations are the variations that occur from one die to the other, from wafer to wafer, and from wafer lot to wafer lot
- Two main sources of variation:
 - Physical factors
 - Environmental factors

Introduction

- The physical factors are permanent and result from limitations in the fabrication process
 - Effective Channel Length (Geometric Variations):
 - Imperfections in photolithography
 - Variations in *Leff* can be as high as 50% within a die
 - Threshold Voltage (Electrical Parameter Variation):
 - Variation in device geometry

Ο

- Variations in *Vth* can be modeled as 10% of Vth of the smallest device in a given technology [A. Chandrakasan et al., IEEE press 2001]
- The environmental factors depend on the operation of the system and include variations in:
 - Temperature, Power Supply, Switching Activity

Impact of Process Variations on Caches

- The parameter variations are random in nature and are expected to be more pronounced in minimum geometry transistors commonly used in memories.
- Caches in processors like UltraSPARC III, Itanium 2, StorngARM110, and Alpha 21164 can occupy more than 50% of die area.
- Process variations impact the components of a memory subsystem:
 - SRAM Cell

 \cap

- Sense Amplifier
- Address Decoder
- Can cause failure in data access
 - E.g., due to incorrect sensing or slow cell access

Effect of Process Variations on Delay Accessing 1-bit in SRAM Column of 32 Bit Height

The delay can increase as such as 16% per cell.

The Threshold voltage (Vth) variation can impact the delay by 30% per cell access

Worst-case Delay

The delay can increase as such as 50% combining the effects of Vth and Leff.

Effect of Process Variations on Power Consumption of 1KB SRAM

A small variation in the *Leff* value causes a change in the leakage power by as such as 40X from the nominal value.

The Threshold voltage (Vth) variation can impact the power consumption by 65X

Vth(V)

Cache Access Failure?

- A failure in a cell can occur due to:
 - Access Time Failure (due to increase in the access time)
 - Read Stability Failure
 - Write Stability Failure
 - Hold Failure
- \circ $\,$ Failure Probability of a Read $\,$
 - E.g., the minimum differential voltage required for correct sensing (Taccess in figure) needs to be < Tmax for a correct read
 - Threshold voltage distributions are approximated as Gaussian

[Classification is take from S. Mukhopadhyay, et al. Symposium on VLSI Circuits, June 2004]

Failure in Sense Amplifiers

• Circuits like differential sense amplifiers are affected

 Changing offset voltage may lead to erroneous behavior (e.g., due to access Transistors MN3 and MN3B).

What About Application Performance?

[simplescalar simulations]

 To account for the worst case scenario we might need to increase the cache access time

Performance
 impact as much as
 30-40% in the
 example on the
 left

Possible Architectural Directions

- How do we design caches that work in face of these problems?
- We can select a cache design using worst case assumptions
 - ALL VARIATIONS and ALL COMPONENTS on the critical path
- Alternatively, we need to design circuits and architectures that would work *adaptively* depending on actual delay
 - Process variation resilient design
 - Resilience against delays in different parts of the cache

Our Choice: An Adaptive Process Resilient Cache Architecture

- Two phases of operation: classifying and execution
- Classifying phase
 - The cache is equipped with a built-in-self-test (BIST) to detect speed difference due to process variation.
 - Each cache line is tested using BIST when the test mode signal is on. A block is considered fast, medium, or slow (this is for the sake of an example).

An Adaptive Process Resilient Cache Architecture

- Since the speed of the accessed cells (cache lines) changes depending on operating condition (e.g., supply voltage, frequency), such tests are conducted whenever there is a change in operating condition.
 - BIST feeds this information into the delay storage.
- o Execution phase
 - The speed information stored in the delay storage is used to control sense amplifiers during regular operations of the circuit.

Circuit Level Support: Double Sensing

- We need a mechanism to avoid sensing prematurely
- The basic idea of double sensing is to have parallel sense amplifiers to sample the bitline twice during a read cycle. This is required in an adaptive cache design with different cache line latencies.
- The first sensing is performed as the conventional one. The second sensing is delayed and has to be fired as late as required.

Preliminary Results

Baseline: 3 cycle D-cache. Out of order issue.
Adaptive caching scheme: e.g., 3% 3 cycle, 12% 2 cycle. 85% 1 cycle cache line access.
Results below show performance is improved by 13% to 29%!

Conclusion

- Parameter variations will become worse with technology scaling.
- Robust variation tolerant circuits and architectures needed.
- We have shown that process variation can have a significant impact on delay (expected > 2X with all factors included), and in worst-case leads to timing violations.
- In addition, power dissipation, especially leakage power has been shown to be significantly affected (>60X) by the parameter variations.
- Shown new resilient cache architecture