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Shared Memory Architecture

P P P P
12 ]| |2 |E2T] (=

| Shared Memory |

= Atomic memory access
Increment variable in address A

Load (R1, A)
Add (R1, R1, 1)
Store (A, R1)
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\Synchronization of Accesses
to Shared Memory

Lock

- Represented by
fleld In memory

- Repetitive accesses

Transaction
- Lock-free execution
- Speculative, optimistic

until free - Ease of programming
. Coarse/Fine-grain - Disadvantages:
. High contention - Roll-back and reissue
h n If conflict detected
- Low throughput (wasted cycles and
- High energy energy)

consumption
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\During a Transaction

Tag Data Status
Invalid Tag| Data Status [Trans.Tag
12 ExcluSive 12 Exclusive Xabort
NN 12 Exclusive X commit

- Lookup in both DL1 and transactional cache
- If the line Is found in DL1,

move It to transactional cache

- |If a miss, bring from L2 to transactional

cache
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\Considerations

- In the past designers only considered
ease of programming and throughput

- Synchronization has a cost in terms of
throughput and energy

- We take a first look at tradeoffs for

Ease of programming
Throughput
Energy
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‘Energy Consumption per Access

8KB 4-way; 32B line;

L1Data Cache 0.47nJ
3 cycle latency

Transactional 64-entry; | 0.12n)
Cache fully associative

|2 Cache 128KB 4-way; 32B line; 0.9n]

10 cycle latency

256MB; 64-Dbit bus;
Shared Memory 33nJ
200 cycle latency;

Sources: Micron SDRAM power calculator
CACTI
Private industrial communication
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\ Standard Transactions

start_transactior
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\ Standard Transactions
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‘Serializer

= Only impacts conflicting transactions

= Small overhead in hardware

= Reduce useless execution

= Reduce energy consumption

= Potentially negative impact on throughput
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\Standard Benchmarks Results

Energy Consumption in nJ
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‘ Synthetic Benchmarks

s Standard benchmarks have little contention

= Realistic applications include intervals of
high contention

= Synthetic benchmarks
o High contention
o Various conflict scenarios

= Parallel accesses to a shared array
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Energy Consumption
Locks vs. Transactions
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\ Performance
L ocks vs. Transactions
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\Conclusion

= Throughput and energy need to be balanced

= Speculative approach has a clear advantage
In both energy and throughput in low
contention

= Speculative approach needs modification In
high contention for energy efficiency:
) serialized transactions
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‘Future Work

= Simulate a wider range of applications
= Various memory configurations
= Compare alternative locking schemes

= Consider longer running transactions
o A trace-based analysis
o Software transactions
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