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DASAT

Dynamically Aggressive Spatial, Adaptive
Temporal
Exploits both spatial and temporal locality
—  Small blocks to exploit temporal locality
—  Large blocks to exploit spatial locality

Heuristic-driven variable size prefetch

Hit rates comparable to a conventional cache
4X 1ts si1ze
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DASAT Structure
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Parameters of DASAT

n # blocks AT

m # large blocks DAS
wpb # words per block
sbplb  |# blocks per large block
bl prediction bound 1

b2 prediction bound 2

b3 prediction bound 3
promo | promotion threshold

hitmax

max value for hit counter
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Parameter Bounds

n 28 12<a<17
m 20 12<b<8
wpb 2¢ |0<c<6
sbplb 24 11<d<5
bl b, |b;=0

b2 b, |b;<b,<15
b3 b, |b,<b; <20
promo p |[0<p=<6
hitmax 2¢ |0<e<3

This space contains 7,487,690 points
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Which Parameters are Best?

* Choose a point that gives best possible
performance for (process, benchmark, miss
penalty)

 Exhaustive search would take ~40,000
CPU years

* Goodness function (eAMAT) 1s a function
of hit rate and DASAT speed
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Computing cAMAT

eAMAT = [hitRate *max(atTime,dasTime) ]+
[(1 — hitRate) * (atTime + miSSPenally)]

hitRate = S(P)
atTime = C ,,.(P)
dasTime =C, (P)
missPenalty = k
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Computing eAMAT (cont.)

 C,rand C,,, are computed offline by
CACTI3.0

* §'1s computed by trace event simulation, so
it 1s time-1ntensive

* Define two lengths of simulation
— S, Full (4.6B refs, ~2 days)
— §, : Partial (500M refs, ~2 hours)
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Standard Hill Climbing
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-~

tarting ocalopt )

T,.=mxqixT(S)
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Regression as a Heuristic

We can substitute a regression curve for the
hit rate surface (much faster)

Need k source S, points for generated curve
Can do this in parallel using ¢ CPUs

Empirical results show & > 150
approximates DASAT’s 9-space

Hillclimb on regression, then perform
simulation
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Regression Hillclimbing
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STAGE

* Motivation: Increase starting point quality
and thus decrease necessary m

* Train a feature space that predicts expected
maximal goodness of starting at P

start
 STAGE works well if search space 1s
patterned
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A Picture of Feature Space
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Applying STAGE

Define architecture space to be the set of all
possible P points

Define feature space to be some projection P into
v

For every path m,, train corresponding feature
space points on arrived maximal goodness value

To select a new starting point, hillclimb on
feature space
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R-STAGE

Combines regression curve with m-
reducing STAGE algorithm

Provides 10-40% eAMAT improvements
in several weeks

More work can be done to further reduce
the number of paths m
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cAMAT Results (R-STAGE)

Benchmark |Base (ns) |Opt (ns) |%improv
apsi 1.7519 1.0433 40.4%
bzip2 1.2315 |0.9792 20.5%
COmpress 1.0623 0.9208 13.3%
javac 1.0112 |0.8771 13.3%
mpegaudio |1.0453  |0.8729 16.5%
wupwise 1.1829 0.9294 21.4%
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