Exploring Architectural Challenges in Scalable Underwater Wireless Sensor Networks

Z. Jerry Shi and Yunsi Fei
Department of Computer Science and Engineering
Department of Electrical and Computer Engineering
University of Connecticut

BARC, February 3, 2006

Outline

- Motivation of underwater wireless sensor networks (UWSNs): Aquatic applications
- Design challenges in UWSNs
 - Communications
 - Networking algorithms/protocols
- Architectural issues in UWSNs
 - Workload characterization
 - Energy-efficient design and resource management
 - Lifetime estimation
- Summary

Underwater wireless sensor networks: application-driven

- Environmental monitoring and data collection
 - Temperature, salinity, ocean currents, etc.
 - Influences on climate and living conditions of plants and animals
 - Marine microorganism
 - Pollution
- Disaster early warning and prevention
 - Seismic monitoring
 - Tsunami
- Off-shore exploration and underwater construction
- Coastline protection and tactical surveillance
- Target detection
 - Mine
 - Shipwreck

Application example: estuary monitoring

- Existing Approaches
 - Ship tethered with chains of sensors moves from one end to the other
 - Cons: no 4D data, either f(x, y, z, fixed t), or f(fixed (x, y, z), t); and high cost

Using UWSN

- Easily get 4D data, f(x, y, z, t), mobile sensors
- Reduce cost significantly
- Increase coverage
- Have high reusability
 4 of 12

Challenges in different aspects of UWSNs

Communications

- Radio does not work well in water
 - 120cm at 433 MHZ reported at USC
 - Low frequency → large antennae and high transmission power
- Acoustic channels adopted
 - Limited bandwidth: Bandwidth × Range product = 40 kbps·km
 - Long delay: $1.48 \times 10^3 \text{ m/s}$ vs. $3 \times 10^8 \text{ m/s}$
 - High bit error rates
 - Multi-path and fading problems

Networking

- Medium access control: high channel utilization
- 3-D networking, geographical-based routing: robust to dynamic topology
- Data transfer: reliable and high throughput
- Localization & time synchronization : GPS-free
- Robustness: resilient to network disconnection

System design of UWSNs

Typical structure of a sensor node

- Sensor probes
 - Interface circuitry
- Controller (processors)
- Trans-receiver
 - Acoustic modem
- Storage
- Battery
- Triggerable air-bladder

Different from land-based sensors:

- Larger and more expensive
- More power hungry
- Prone to failures

Triggerable air-bladder for low-cost reusability purpose

Goals of underwater sensor nodes

- Easy to customize for different applications: workload characterization
 - Satisfying performance
 - Computing capacity
 - Storage
 - Bandwidth
- Long operation time: low power
 - Energy becomes more critical
 - Acoustic communications, memory, air-bladder, etc., more powerhungry
 - Energy harvesting difficult: solar and wind energy are not available
- Reliable operations
- Low cost: allows deployment of large amounts of nodes
 - Decomposable or retrievable

Energy-efficient design at the node level

- Design choices: ASIC, ASIP, FPGA, microcontroller
- Power-efficient design of individual components
 - Acoustic communication modules
 - Flexible packet relaying circuit
 - Only wake up the microcontroller when needed
- Proper task assignments and scheduling
 - Sampling, processing, storing, transmitting, receiving, and forwarding
- Exploiting opportunities in the underwater environment
 - Long and frequent sleep mode due to the long delay of acoustic channels

Power management at the network level

- Power-aware routing algorithms
 - Short-range vs. long-range communications
 - Reliability vs. energy trade-offs
- Power-aware localization algorithms
 - Accuracy vs. energy trade-offs
- Configuration strategy
 - Choosing working parameters adaptively in the field
- In-network computations
 - Utilizing short-range one-hop communications
 - Balance the power consumption of nodes located in different areas

Lifetime estimation model

- Impact of network design parameters on power consumption
 - Average one-hop signal transmission distance
 - Data transmission period
 - Acoustic channel frequency
 - Network topology (3-D, distances, clustering, etc.)
 - Sensor lifetime
- Simulation of UWSNs
 - Hierarchical energy model
 - Output: statistic information, e.g., data communication throughput, retransmission rate, data drop rate, average power consumption, and sensor network lifetime.

Conclusions

- Opportunities: interesting and promising area
 - Requires interdisciplinary collaborations
- Challenges: a lot of new challenges, especially in resource management and energy-efficient system design – a cross-layer effort!