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Simulation for Large Design Space
Exploration

Large design space studies explore thousands of
processor designs
o Identify those that minimize costs and maximize performance

Pareto-optimal
8, designs on curve
Cost
Metric
A

Cost Metric B

Speed vs. Accuracy tradeoff

o Maximize simulation speedup while maintaining sufficient
accuracy to identify interesting design points for later detailed
simulation




AXCIS Framework

(performed once)

CIST - Machine independent
- except for branch
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Instruction Segments

An instruction segment captures all performance-
critical information associated with a dynamic
instruction
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defining instruction




Dynamic Trace Compression

Repetition in program behavior such as loops, and
code reuse cause instruction segments of different
dynamic instructions to be canonically equivalent

Ideal Compression Scheme: (no loss in accuracy)

o Compress two segments if they always experience the same stall
cycles regardless of the machine configuration

o Impractical to implement within the Dynamic Trace Compressor

Three compression schemes that approximate this
ideal scheme
o Each selects a different tradeoff between accuracy and speedup

o Our simplest scheme compresses segments that look the same
(i.e. have the same length, instruction types, dependence
distances, branch and cache behaviors)




Instruction Segments & CIST Example

Freq Segment

v

Load Miss

Int_ALU
] <m
\ Load_Miss

] <m

Total ins: 3

Load_Miss

Canonical Instruction Segment Table (CIST) records:

= One instance of each set of canonically equivalent
segments and its frequency count

» The total dynamic instructions analyzed during
trace compression

Store_Miss




Instruction Segments & CIST Example

Freq Segment

1 Int_ALU

Int_ALU

Load Miss

E

Load_Miss
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Load_Miss

Load_Miss
1 < E Int_ALU
Store_Miss

Total ins: 6




AXCIS Performance Model

Methodology is independent of the compression
scheme used to generate the CIST

Calculates IPC using a single linear dynamic
programming pass over CIST entries

Total Ins _ Totd Ins
Total Ins+ Total EffectiveStalls Total Cycles

IPC =

Total EffectiveStalls =

CIST Size

Z Freq(i) * EffectiveStalls(Defininging(i))




Dynamic Programming Example

Freq Segment Stalls Total work is
proportional to the

# of CIST entries

1 Int_ALU

Int_ ALU

2 <m
Load_Miss

2 <m

Load_Miss

I
J U

Calculate the stalls
of the defining
Instruction in each
segment

Look up stalls of
other instructions in
1 Int_ALU i : previous entries

Total ins: 6 |:| Calculate




Experimental Setup

Evaluated AXCIS against a baseline cycle accurate simulator

on 24 SPEC2K benchmarks using their respective optimal
compression schemes

Evaluated AXCIS for:

o Accuracy:.

| AXCIS — Detailed Sim |

Absolute IPC Error = — _ _ *100
Detailed Sim

o Speed: # of CIST entries, time in seconds

For each benchmark, simulated many configurations that span
a large design space:
o Issue width: {1, 4, 8}, # of functional units: {1, 2, 4, 8},
Memory latency: {10, 200 cycles},
# of primary miss tags in non-blocking data cache: {1, 8}
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Results: Accuracy

Distribution of 1PC Error in quartiles
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Results: Speed

# of CIST Entries

# of CIST entries and simulation time (sec)
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m AXCIS is over
4 orders of
magnitude faster
than detailed
simulation

¥ While detailed
simulation
takes hours to
simulate
billions of
Instructions,
AXCIS takes
seconds
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Conclusion

AXCIS is a fast, accurate, and flexible tool for
design space exploration

AXCIS

o Over four orders of magnitude faster than detailed simulation
o Highly accurate across a broad range of designs
o Predicts performance as well as buffer occupancies

Future Work

o More general compression schemes
o Support out-of-order processors
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