
1

AXCIS: Accelerating Architectural
Exploration using
Canonical Instruction Segments

Rose Liu & Krste Asanović
Computer Architecture Group
MIT CSAIL

2 of 13

Simulation for Large Design Space
Exploration

Large design space studies explore thousands of
processor designs

Identify those that minimize costs and maximize performance

Speed vs. Accuracy tradeoff
Maximize simulation speedup while maintaining sufficient
accuracy to identify interesting design points for later detailed
simulation

Pareto-optimal
designs on curve

Cost Metric B

Cost
Metric

A

3 of 13

AXCIS Framework

Dynamic
Trace
Compressor

Program
&

Inputs

IPC1
IPC2
IPC3

AXCIS
Performance
Model

CIST
Canonical
Instruction
Segment

Table

Configs
In-order superscalars:
• Issue width
• # of functional units
• # of cache primary-

miss tags
• Latencies
• Branch penalty

• Machine independent
except for branch
predictor and cache
organizations

• Stores all information
needed for
performance analysis

Stage 1 (performed once)

Stage 2

4 of 13

Instruction Segments
An instruction segment captures all performance-
critical information associated with a dynamic
instruction

Int_ALU

Load_Miss

Int_ALU

Store_Miss

defining instruction

addq

ldq (cache miss)

subq

stq (cache miss)

5 of 13

Dynamic Trace Compression
Repetition in program behavior such as loops, and
code reuse cause instruction segments of different
dynamic instructions to be canonically equivalent
Ideal Compression Scheme: (no loss in accuracy)

Compress two segments if they always experience the same stall
cycles regardless of the machine configuration
Impractical to implement within the Dynamic Trace Compressor

Three compression schemes that approximate this
ideal scheme

Each selects a different tradeoff between accuracy and speedup
Our simplest scheme compresses segments that look the same
(i.e. have the same length, instruction types, dependence
distances, branch and cache behaviors)

6 of 13

Instruction Segments & CIST Example
Freq Segment

Total ins: 3

Load_Miss

Int_ALU

Int_ALU

Int_ALU

Load_Miss

Store_Miss

Int_ALU1

Int_ALU

Load_Miss
1

Load_Miss

Int_ALU
1

Canonical Instruction Segment Table (CIST) records:
One instance of each set of canonically equivalent
segments and its frequency count
The total dynamic instructions analyzed during
trace compression

7 of 13

Instruction Segments & CIST Example
Freq Segment

Total ins: 6

Load_Miss

Int_ALU

Int_ALU

Int_ALU

Load_Miss

Store_Miss

1

Load_Miss

Store_Miss

Int_ALU

Int_ALU1

Int_ALU

Load_Miss

Load_Miss

Int_ALU

1 2

21

8 of 13

AXCIS Performance Model

∑
=

=
Size CIST

1
))ningIns(talls(DefiEffectiveS *)Freq(

i
ii

Stalls Effective Total

Cycles Total
Ins Total

 Ins Total
Ins Total =

+
=

Stalls Effective Total
IPC

Methodology is independent of the compression
scheme used to generate the CIST
Calculates IPC using a single linear dynamic
programming pass over CIST entries

9 of 13

Dynamic Programming Example

Int_ALU

Freq Segment

Int_ALU

Load_Miss

Load_Miss

Int_ALU

1

2

2

1

Load_Miss

Store_Miss

Int_ALU

Total ins: 6

Stalls

Look up in previous segment
Calculate

Total work is
proportional to the
of CIST entries

Calculate the stalls
of the defining
instruction in each
segment

Look up stalls of
other instructions in
previous entries

10 of 13

Experimental Setup
Evaluated AXCIS against a baseline cycle accurate simulator
on 24 SPEC2K benchmarks using their respective optimal
compression schemes

Evaluated AXCIS for:
Accuracy:

Speed: # of CIST entries, time in seconds

For each benchmark, simulated many configurations that span
a large design space:

Issue width: {1, 4, 8}, # of functional units: {1, 2, 4, 8},
Memory latency: {10, 200 cycles},
of primary miss tags in non-blocking data cache: {1, 8}

Absolute IPC Error =
| AXCIS – Detailed Sim |

Detailed Sim
* 100

11 of 13

Results: Accuracy

Average Absolute
IPC Error = 2.6 %

Average
Error Range = 4.4%

(10 bill ins) (4 bill ins) (3 bill ins)

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

24%

26%

am
m

p
ap

si ar
t

eq
ua

ke

lu
ca

s
m

es
a

sw
im

w
up

w
is

e

bz
ip

2
eo

n

ga
p

gc
c

gz
ip

pe
rlb

m
k

vo
rt

ex
cr

af
ty

m
cf

pa
rs

er

tw
ol

f
vp

r

ap
pl

u
fa

ce
re

c

ga
lg

el
m

gr
id

A
bs

ol
ut

e
IP

C
 E

rr
or

P_25
P_MIN
P_50
P_MAX
P_75
ave. IPC error

Limit-based Scheme Relaxed
Scheme

Characteristics-
based Scheme

Distribution of IPC Error in quartiles

12 of 13

Results: Speed

AXCIS is over
4 orders of
magnitude faster
than detailed
simulation

While detailed
simulation
takes hours to
simulate
billions of
instructions,
AXCIS takes
seconds

(10 bill ins) (4 bill ins) (3 bill ins)

0

500000

1000000

1500000

2000000

2500000

3000000

am
m

p

ap
si ar
t

eq
ua

ke

lu
ca

s

m
es

a

sw
im

w
up

w
is

e

bz
ip

2

eo
n

ga
p

gc
c

gz
ip

pe
rl

bm
k

vo
rt

ex

cr
af

ty

m
cf

pa
rs

er

tw
ol

f

vp
r

ap
pl

u

fa
ce

re
c

ga
lg

el

m
gr

id

of

 C
IS

T
En

tr
ie

s

2.26
sec

0.3
sec 0.07

sec

0.09
sec

0.15
sec

0.05
sec

0.08
sec

0.02
sec

0.88
sec0.55

sec
0.25
sec

2.74
sec

1.09
sec

3.1
sec

1.32
sec 0.69

sec
0.06
sec

0.72
sec

0.07
sec

5.56
sec

4.5
sec

7.32
sec

17.4
sec

17.55
sec

Limit-based Scheme Relaxed
Scheme

Characteristics-
based Scheme

of CIST entries and simulation time (sec)

13 of 13

AXCIS is a fast, accurate, and flexible tool for
design space exploration

AXCIS
Over four orders of magnitude faster than detailed simulation
Highly accurate across a broad range of designs
Predicts performance as well as buffer occupancies

Future Work
More general compression schemes
Support out-of-order processors

Conclusion

