AXCIS: Accelerating Architectural
Exploration using
Canonical Instruction Segments

Rose Liu & Krste Asanovié

Computer Architecture Group
MIT CSAIL

BT

III

Simulation for Large Design Space
Exploration

Large design space studies explore thousands of
processor designs
o Identify those that minimize costs and maximize performance

Pareto-optimal
8, designs on curve
Cost
Metric
A

Cost Metric B

Speed vs. Accuracy tradeoff

o Maximize simulation speedup while maintaining sufficient
accuracy to identify interesting design points for later detailed
simulation

AXCIS Framework

(performed once)

CIST - Machine independent
- except for branch
Program R Dynamlc .| Canonical predictor and cache
& Trace Instruction OrganizationS
Compressor Segment
InPUts P Table « Stores all information
\/ \/I needed for
l performance analysis
i Configs — |
In-order superscalars:
* Issue width AXCIS IPC1
« # of functional units — | Performance > IPC2
* # of cache primary-
miss tags - MOdel IPC3
* Latencies —

—
Stage 2 "

Instruction Segments

An instruction segment captures all performance-
critical information associated with a dynamic
instruction

addg

1dg (cache miss) Load_Miss

subqg

stqg (cache miss)

Store_Miss

defining instruction

Dynamic Trace Compression

Repetition in program behavior such as loops, and
code reuse cause instruction segments of different
dynamic instructions to be canonically equivalent

Ideal Compression Scheme: (no loss in accuracy)

o Compress two segments if they always experience the same stall
cycles regardless of the machine configuration

o Impractical to implement within the Dynamic Trace Compressor

Three compression schemes that approximate this
ideal scheme
o Each selects a different tradeoff between accuracy and speedup

o Our simplest scheme compresses segments that look the same
(i.e. have the same length, instruction types, dependence
distances, branch and cache behaviors)

Instruction Segments & CIST Example

Freq Segment

v

Load Miss

Int_ALU
] <m
\ Load_Miss

] <m

Total ins: 3

Load_Miss

Canonical Instruction Segment Table (CIST) records:

= One instance of each set of canonically equivalent
segments and its frequency count

» The total dynamic instructions analyzed during
trace compression

Store_Miss

Instruction Segments & CIST Example

Freq Segment

1 Int_ALU

Int_ALU

Load Miss

E

Load_Miss

:

Load_Miss

Load_Miss
1 < E Int_ALU
Store_Miss

Total ins: 6

AXCIS Performance Model

Methodology is independent of the compression
scheme used to generate the CIST

Calculates IPC using a single linear dynamic
programming pass over CIST entries

Total Ins _ Totd Ins
Total Ins+ Total EffectiveStalls Total Cycles

IPC =

Total EffectiveStalls =

CIST Size

Z Freq(i) * EffectiveStalls(Defininging(i))

Dynamic Programming Example

Freq Segment Stalls Total work is
proportional to the

of CIST entries

1 Int_ALU

Int_ ALU

2 <m
Load_Miss

2 <m

Load_Miss

I
J U

Calculate the stalls
of the defining
Instruction in each
segment

Look up stalls of
other instructions in
1 Int_ALU i : previous entries

Total ins: 6 |:| Calculate

Experimental Setup

Evaluated AXCIS against a baseline cycle accurate simulator

on 24 SPEC2K benchmarks using their respective optimal
compression schemes

Evaluated AXCIS for:

o Accuracy:.

| AXCIS — Detailed Sim |

Absolute IPC Error = — _ _ *100
Detailed Sim

o Speed: # of CIST entries, time in seconds

For each benchmark, simulated many configurations that span
a large design space:
o Issue width: {1, 4, 8}, # of functional units: {1, 2, 4, 8},
Memory latency: {10, 200 cycles},
of primary miss tags in non-blocking data cache: {1, 8}

AUABL
CSAIL
10 of 13

Results: Accuracy

Distribution of 1PC Error in quartiles

26%

+P_25 R

20% | | 5 Average Absolute
22% |77 IPC Error =2.6 %
20% | xp_75

18% - @ awe. IPC error

oo Average

149% | Error Range = 4.4%
12% -
10% -
8% -

Absolute IPC Error
®

6% A
4% ~
2%

apsi ot®©
& —O
swim o—F @ k——o
eon |[<fO%®
gap e
gcc & @ 0
i g ® P
vortex <& ® ®
&)
L |
® ®
$o®
%

ammp ©fF & —©

mesa oF @ ®

0% T T T T T T T T T T T \%\ \§\ T \$\ T

+v [(7] N Q P T S~ — b = O @ T
© % 8 2 2 SNESE289838 BT
5 3 = 9 o 2 = 5 2 2 o g 2
o - a ° 5 o 8 - © g o €

[} ; o Y=
Limit-based Scheme Relaxed Characteristics-
Scheme based Scheme

(10 bill ins) (4 billins) (3 bill ins)

11 0f 13

Results: Speed

of CIST Entries

of CIST entries and simulation time (sec)

3000000 17.4 4755
7-3%ec sec
sec
2500000 +
2000000 - 4.5
5.56 >°C¢
sec
1500000 - 3.1
sec
2.26 2.74
sec sec
1000000 -|
1.09 1.32
0.09 0.08 ¢gg sec || sec 069 972
500000 7 sec sec)) sec
0.3 0.05 sec0.550 25 sec
tec 0.07 015005 002 oo 0.06 0.07
sec sec S€C gec sec sec | |sec
O,
2 7 £t @ © 8@ £ 2@ N £ 2 Q 2 X X > % L5 £ = 3 0o g T
E 8 ¢ ¥ § 9 2 2 0 8 & F E 8 & ® ¢ 2 3 9 & =
© 2 3 N © ®» O 5 5 £ s E 2 3 > = D
; o
Limit-based Scheme Relaxed Characteristics-
Scheme based Scheme
(10 bill ins) (4 bill ins) (3 hill ins)

m AXCIS is over
4 orders of
magnitude faster
than detailed
simulation

¥ While detailed
simulation
takes hours to
simulate
billions of
Instructions,
AXCIS takes
seconds

CSAIL
120t 13

Conclusion

AXCIS is a fast, accurate, and flexible tool for
design space exploration

AXCIS

o Over four orders of magnitude faster than detailed simulation
o Highly accurate across a broad range of designs
o Predicts performance as well as buffer occupancies

Future Work

o More general compression schemes
o Support out-of-order processors

e Y b
e
[S0

T CSAIL
13 of 13

—

