Tortola: Addressing Tomorrow's Computing Challenges through Hardware/Software Symbiosis

Kim Hazelwood University of Virginia Intel Corporation, VSSAD

Modern Computing Challenges

- Performance
- Power
 - Energy consumption, max instantaneous power, di/dt
- Temperature
 - Total heat output, "hot spots"
- Reliability
 - Neutron strikes, alpha particles, MTBF, design flaws
- Approaches: Circuit, microarchitecture, compiler
- Constraint: Fixed HW-SW interface (e.g., x86)

Typical Approaches

- Optimize using SW or HW techniques in isolation
- Performance
 - SW: Compile-time optimizations
 - HW: Architectural improvements, VLSI technology
- Reliability: Code/data duplication (HW or SW)
- Power & Temperature
 - HW control mechanisms
 - Profile + recompile cycle

Modern Design Constraints

Compilers – "Compile once, run anywhere"

 Cannot ship "MS Office for 1Q05 batch of Pentium-4 3GHz, > 1GB RAM, BrandX power supply, located in high altitudes..."

Microarchitecture – Limited window of application knowledge (past must predict the future)

VLSI – Guaranteed correctness, reliability

We currently must optimize for the common case (but must design for the worst case)

The Power of Virtualization

• A HW-SW interface layer

Dynamic Binary Modification

• Creates a modified code image at run time

Examples:

- Dynamo (HP)
- DAISY/BOA (IBM)
- CMS (Transmeta)
- Mojo (Microsoft)
- Strata (UVa)
- Pin (Intel)
- Always triggered by software events ... until now

Tortola: Symbiotic Optimization

Enable HW/SW Communication

Simulation Methodology

- SimpleScalar 4.0 for x86
- Wattch 1.02 power extensions
- Pin dynamic instrumentation system (x86/Linux version)

Tortola Applications

- Combine global program information with runtime feedback
 - System-specific power usage
 - Application-specific heat anomalies
 - Workload/input specific performance optimization
- Reduce hardware complexity
 - No more backwards compatibility warts
 - Fix bugs after shipment
 - Reduce time to market for new architectures
- One such application: The di/dt problem

The Di/dt Problem

- Low-power techniques have a negative side effect: current variation
- Voltage stability is important for reliability, performance
- Dips (undershoots) in supply voltage can cause incorrect values to be calculated or stored
- Spikes (overshoots) in supply voltage can cause reliability problems

Detecting Imminent Emergencies

- Phantom firing increases current (at the expense of power)
- Resource throttling reduces current (at the expense of performance)

A Di/dt Stressmark

		_						
			BEGIN_LOOP:					
		1	•••					
Sequential	Low Current		ldt	\$f1,	,	(\$4)	
			divt	\$£1,	,	\$£2	, \$£3	
)	divt	\$£3,	,	\$£2	, \$£3	
			stt	\$£3,	,	8(\$4	4)	
			ldq	\$7,	8	(\$4)	
			cmovne	\$31,	,	\$7,	\$3	
		>	stq	\$3,	\$	(4)		
allel	urrent		stq	\$3,	\$	(4)		
			stq	\$3,	\$	(4)		
			•••					
ar	2		stq	\$3,	\$	(4)		
σ.	High		•••					
			JUMP BE	EGIN_	L	OOP		

But...Actuator engages every loop iteration degrading performance

Why not correct the problem in the code?

Proposed Solution

- Leverage our additional software layer to supplement existing solutions
- Microarchitecture provides feedback to our software-based virtual layer

Loop Unrolling & SW Pipelining

Unrolling the Di/dt Stressmark

Summary

- Symbiotic program optimization is a powerful approach
- The di/dt problem well suited for a symbiotic solution
- The Tortola design can also target power reduction, temperature reduction, reliability, etc.

http://www.tortolaproject.com/

