
Software-based Failure 
Detection in Programmable 

Network Interfaces

Yizheng Zhou, Vijay Lakamraju, Israel Koren, C.M. Krishna

Architecture and Real-Time Systems (ARTS) Lab
Department of Electrical & Computer Engineering

University of Massachusetts at AmherstARTS



2 of 12

Introduction
Complex network interfaces

• Typical Ethernet controller: 10 thousand gates
• IXP1200: 5 million gates
Transient faults: a major reliability concern

• Neutrons from cosmic rays
• Alpha particles from packaging material
Software-based fault tolerance approaches

• Pros: Less expensive than
• Custom hardware
• Massive hardware redundancy

• Cons: Overhead
• Performance degradation
• Increased code size



3 of 12

Software-Based Failure Detection

Network interface failures
• Hardware failures
• Software failures 

• The instruction and data of the Network Control Program 
(NCP) in the local memory.

Requirements for failure detection of network 
interfaces
• Limited performance impact 

• Performance is critical for high-speed network interface
• Good failure coverage



4 of 12

Myrinet: An Example High-speed 
Network Interface

A cost-effective local area 
network technology

High bandwidth: ~2Gb/s
Low latency: ~6.5μs

Components in an 
example Myrinet LAN:



5 of 12

Simplified Block Diagram of The 
Myrinet Network Interface

Instruction-interpreting 
RISC processor
DMA interface
Link interface
Fast local memory 
(SRAM)



6 of 12

Network Interface Failures
Transient faults in the form of random bit flips in the network interface
Failures observed:

Unusually long latencyDMA failures

Corrupted messagesSend/Receive failures

Corrupted control informationNetwork interface hangs

(a) (b)



7 of 12

Failure Detection Strategy 
Interface hangs

Software watchdog timer
Other failures

A useful observation: applications generally use only 
a small portion of the NCP

Directed Delivery: used for tightly-coupled systems, allows 
direct remote memory access
Normal Delivery: used for general systems, allows reliable 
ordered message delivery 
Datagram Delivery: delivery is not guaranteed 

Adaptive Concurrent Self-Testing (ACST)
Test only part of the NCP
Avoids testing & signaling benign faults
Can detect hardware & software failures



8 of 12

Logical modules

Identify the “active” parts
Logical module: 
The collection of all basic blocks 
that might participate in providing 
a service

To test a logical module: 
Trigger several requests/events 
to direct the control flow to go 
through all its basic blocks



9 of 12

Experimental Results: Failure Coverage

Exhaustive fault injection into a single routine: 
send_chunk
Exhaustive fault injection into special registers
Random fault injection into the entire code segment

93.9%95.6%Entire code segment

32.3%99.2%Registers

60.3%99.3%Routine: send_chunk

No impactCoverage



10 of 12

Performance Impact

The original Myrinet software: GM
The modified Failure Detection GM: FDGM
The MCP-level self-testing interval is set to 5 seconds

(a) (b)



11 of 12

Performance Impact For Different 
Self-Testing Intervals

Message length is 2KB
For the half-second interval

bandwidth is reduced by 3.4%
latency is increased by 1.6%

(a) (b)



12 of 12

Conclusion

The proposed ACST tests only active logical 
modules
Failure coverage: over 95% 
No appreciable performance degradation
Transparent to applications
The basic idea is generic – applicable to other 
fast network interfaces


