Self-Healing Nanoscale Architectures on 2-D Nano-fabrics

Teng Wang and Csaba Andras Moritz University of Massachusetts, Amherst twang@ecs.umass.edu

February 3, 2006

From Devices to Nano Computing

- We are trying to answer questions like
 - □ What are the challenges when building nanoscale circuits and architectures?
 - Can the density advantages of nanodevices be preserved at system level?
 - □ What would be the capabilities of such systems compared to CMOS?
 - □ Influence device/manufacturing research

Self Assembly of FETs and Metallic Interconnects on Nanoarray

Scale bar: 5nm

Scale bar: 1um

Wu et al., Nature Vol. 430, pp. 61, 2004

Scale bar: 10nm

Dynamic NASIC Tile and Pipeline

- Nano-Latch provides implicit latching on the SiNW
 - Dynamic circuit style with prechargeevaluate-hold control (see papers)
 - □ Solution for temporary data storage
 - □ Used to build pipelined structures
 - high-density stream processing

NASICs without Fault Tolerance

Logic: *f=ab+cd*

Without fault tolerance:

- Any fault can make the whole nanotile faulty
- We explored several approaches
- Built-in redundancy

2-level Redundancy – Example

With duplicated rows:

- Breaks between duplicated columns are masked by AND plane in the next stage
- Similar for breaks on the left from columns

Pull-up/down NW for Fault Tolerance

- Weak pull-up/down NWs for the case that 2-level redundancy can not handle
- Tradeoff better fault tolerance with lower speed and power consumption

Pull-up/down NW for Fault Tolerance

- Weak pull-up/down NWs for the case that 2-level redundancy can not handle
- Tradeoff better fault tolerance with lower speed and power consumption

Architecture of WiSP-0

- WiSP-0 is the initial version of WiSP.
 - Supports simple ISA: nop, movi, mov, add, mul
 - Hazards exposed to compiler
 - Implements 5-stage pipeline on 5 NASIC nanotiles

Schematic of WiSP-0

Floorplan of WiSP-0

Defect Effect on Yield

Comparison with CMOS

Conclusions

- Self-healing technique improves the yields of WISP considerably.
 - □ Better than 10% at 10% defect rate
- Self-healing technique eliminates the needs of decoder for reconfiguration, defect map extraction, and micro-nano alignment.
 - □ Significant challenge with no credible solution as yet
- Self-healing Nanoscale Architectures have great density advantage over deep sub-micron CMOS technology (11X at 18 nm).

End

Copyright - Teng Wang , ECE, UMass Amherst