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Hard Real Time Embedded Systems MUST:

« Be highly Dependable. Zero failures.

Do what they're supposed to do.

* Not ever crash.

* Integrate complex hardware and software.

« Ensure behavior by some means before they are run.
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What Designers Want

« No run time exceptions:
— No null pointers.
— No out of range arrays.
— No class casts.
— No arithmetic exceptions - most difficult.
« Well specified execution semantics.
* No distinction between hardware and software.
* Implicit parallelism.
« Compatibility with existing languages if possible.
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Look to the Basics of Computer Science

« Functional Programming. Examples: Haskell and pH.
« Build execution semantics into the language.

— Cycle based execution from sampling theory and
synchronous computing.

— Set the cycle rate based on input data streams.

— Leads to synthesizable Verilog subset and
synchronous dataflow graphs.

* Must be a net-list language so that we can map a
program to one or more processors or to hardware.
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Take Out the Garbage

All instantiation at initialization.
After instantiation

— Software: the program runs in a cyclical loop at a
fixed rate (or set of rates) on one or more processors.

— Hardware: the design is mapped to RTL(Verilog).
The design is statically analyzable before being run.
Analyzable side effects.
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Why Not Just Haskell?

Layout syntax is not industrial strength.
No clear treatment of memory and state.
Input/Output?

Obiject oriented design?

— Inheritance.

— Types and Type Classes.
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Introduce a Special Memory Function

A “register” sources and/or sinks data each cycle.
Single assignment rules:

— Write once in a cycle. New value updated at the
end of cycle.

— Multiple reads during a cycle(old value only).
Synchronous, unblocked reads and writes.
Registers are instantiated only at initialization.

Input and Output are memory mapped to Registers.
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Execution Cycle

* Fetch data from each input and from registers and place
it at the input to all functions.

 EXxecute all functions.
* Not lazy evaluation.

« Store the produced values away in the appropriate
registers.

« Conventional “drivers” must then fill and empty these
registers outside the functional program.
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What if the Input Data rates vary widely?

* No interrupts.
« Multiple “Tasks” each cycle at a different rate.
 Inter-task communication by rate adapting filters.

« System model is locally synchronous and globally
asynchronous.
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System Modeling with Finite State Machines

« Each Task can be represented as a Finite State
Machine.

« The State is contained in the registers of each task.
« State changes only at an execution cycle boundary.
« Leads to a design model of concurrent FSM's.
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Software Implementation on a Stack

* The compiler converts C-like expressions to postfix.
« Execute the postfix directly on a simple stack machine.
 Is this Forth? Almost!

— No user written postfix.

— Strongly typed (like Haskell).

« Stack machines are small, efficient and a target for soft
cores in an FPGA.
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Hardware Implementation

* The front end of the compiler is the same!

« Only difference is that for hardware, the “interpreter”
unwinds the postfix code into structural Verilog.

« Can we do without synthesis?

» For parallel processing, a complex mapping problem
remains.
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Types and Type Classes

« Type Classes:

— Members can be sub TypeClasses or Types

— Abstract, not instantiated.

— Lists methods that must be supplied by its Types.
 Types:

— Are Instantiated.

— Supply constructor and methods required by its Type
Class.

« Sub-types differentiate with relations on property values
of types.
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Polymorphism and Inheritance

Simple tree like single inheritance.
Parametric polymorphism.

No class casts.

Simplified form of Object Oriented Design.
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Partitioning an Embedded Architecture

USB
Ethernet

Conventional
Programming

File management
Communications

Conventional OS

Functional
Programming

Real Time
Control

FPGA

Control
DSP

Measurement

Input/Output

Separate Soft from Hard Real Time Measurement and Control
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A Simple if — else branch executing. The return value is on the stack.
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A Shape Type Class. Each Type provides its own Area implementation.
Sub-Types provide relations on the properties of their parent Types.
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Summary

« Start with Functional programming (Haskell).
« Add a "memory” function; a non-blocking register.

 Instantiation followed by cyclical execution determined
by the sampling rate.

« A type system whose instantiated objects have “state”.
« Simplified object and inheritance model.
« C like syntax. But not C or Java compatible.

« Execute on simple stack machine(s) or translate into
hardware.
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