1/19/2006

Functional Programming in
Embedded System Design

Al Strelzoff
CTO, E-TrolZ

Lawrence, Mass.
al.strelzoff@e-trolz.com

Copyright E-TrolZ, Inc.

1 of 20

Hard Real Time Embedded Systems MUST:

« Be highly Dependable. Zero failures.

Do what they're supposed to do.

* Not ever crash.

* Integrate complex hardware and software.

« Ensure behavior by some means before they are run.

1/19/2006 Copyright E-TrolZ, Inc. 2 of 20

What Designers Want

« No run time exceptions:
— No null pointers.
— No out of range arrays.
— No class casts.
— No arithmetic exceptions - most difficult.
« Well specified execution semantics.
* No distinction between hardware and software.
* Implicit parallelism.
« Compatibility with existing languages if possible.

1/19/2006 Copyright E-TrolZ, Inc. 3 of 20

Look to the Basics of Computer Science

« Functional Programming. Examples: Haskell and pH.
« Build execution semantics into the language.

— Cycle based execution from sampling theory and
synchronous computing.

— Set the cycle rate based on input data streams.

— Leads to synthesizable Verilog subset and
synchronous dataflow graphs.

* Must be a net-list language so that we can map a
program to one or more processors or to hardware.

1/19/2006 Copyright E-TrolZ, Inc. 4 of 20

Take Out the Garbage

All instantiation at initialization.
After instantiation

— Software: the program runs in a cyclical loop at a
fixed rate (or set of rates) on one or more processors.

— Hardware: the design is mapped to RTL(Verilog).
The design is statically analyzable before being run.
Analyzable side effects.

1/19/2006 Copyright E-TrolZ, Inc. 5 of 20

Why Not Just Haskell?

Layout syntax is not industrial strength.
No clear treatment of memory and state.
Input/Output?

Obiject oriented design?

— Inheritance.

— Types and Type Classes.

1/19/2006 Copyright E-TrolZ, Inc. 6 of 20

Introduce a Special Memory Function

A “register” sources and/or sinks data each cycle.
Single assignment rules:

— Write once in a cycle. New value updated at the
end of cycle.

— Multiple reads during a cycle(old value only).
Synchronous, unblocked reads and writes.
Registers are instantiated only at initialization.

Input and Output are memory mapped to Registers.

1/19/2006 Copyright E-TrolZ, Inc. 7 of 20

Execution Cycle

* Fetch data from each input and from registers and place
it at the input to all functions.

 EXxecute all functions.
* Not lazy evaluation.

« Store the produced values away in the appropriate
registers.

« Conventional “drivers” must then fill and empty these
registers outside the functional program.

1/19/2006 Copyright E-TrolZ, Inc. 8 of 20

What if the Input Data rates vary widely?

* No interrupts.
« Multiple “Tasks” each cycle at a different rate.
 Inter-task communication by rate adapting filters.

« System model is locally synchronous and globally
asynchronous.

1/19/2006 Copyright E-TrolZ, Inc. 9 of 20

System Modeling with Finite State Machines

« Each Task can be represented as a Finite State
Machine.

« The State is contained in the registers of each task.
« State changes only at an execution cycle boundary.
« Leads to a design model of concurrent FSM's.

1/19/2006 Copyright E-TrolZ, Inc. 10 of 20

Software Implementation on a Stack

* The compiler converts C-like expressions to postfix.
« Execute the postfix directly on a simple stack machine.
 Is this Forth? Almost!

— No user written postfix.

— Strongly typed (like Haskell).

« Stack machines are small, efficient and a target for soft
cores in an FPGA.

1/19/2006 Copyright E-TrolZ, Inc. 11 of 20

Hardware Implementation

* The front end of the compiler is the same!

« Only difference is that for hardware, the “interpreter”
unwinds the postfix code into structural Verilog.

« Can we do without synthesis?

» For parallel processing, a complex mapping problem
remains.

1/19/2006 Copyright E-TrolZ, Inc. 12 of 20

Types and Type Classes

« Type Classes:

— Members can be sub TypeClasses or Types

— Abstract, not instantiated.

— Lists methods that must be supplied by its Types.
 Types:

— Are Instantiated.

— Supply constructor and methods required by its Type
Class.

« Sub-types differentiate with relations on property values
of types.

1/19/2006 Copyright E-TrolZ, Inc. 13 of 20

Polymorphism and Inheritance

Simple tree like single inheritance.
Parametric polymorphism.

No class casts.

Simplified form of Object Oriented Design.

1/19/2006 Copyright E-TrolZ, Inc. 14 of 20

Partitioning an Embedded Architecture

USB
Ethernet

Conventional
Programming

File management
Communications

Conventional OS

Functional
Programming

Real Time
Control

FPGA

Control
DSP

Measurement

Input/Output

Separate Soft from Hard Real Time Measurement and Control

This Slide Courtesy of E-TrolZ, Inc., www.e-trolz.com.

1/19/2006

Copyright E-TrolZ, Inc.

15 of 20

F Machine Compiler/Interpreter

File Edit Project Function wWindow

==l

> = »

) §

&

B &

Function PC Instruction Cipe —
u} initialized g .
— - - » = J_ntl Case?Z (boolean b)) {
Case2 2 imp if false |2 i: if(b) {
[EEEEA 2 [2 i return b5;//comment
Casel 4 return .
= 1 oelze |
iCased (5] return 3 return 3; =
EE
10: }
11:
1z: }
13:
14:
15:
16:
17:
15:
19:
z0:
Data Code I Func‘tionsl F‘rojec:tl T\,-'pesl al: =
— fehe Rl
4] HBis ’
Symbol I walue I 7.~| Compilation of Case2 suceeded
E] |3 |ir'|t Casez.fun i=s loading
Cazsez loaded successfully
-
4] | ;
Caseﬂ

Fstat| P D X GHHECNWMSS Y IORSAEETAQ

A Simple if — else branch executing. The return value is on the stack.

1/19/2006

Copyright E-TrolZ, Inc.

J JPadF‘ro-F... | |~ et

F Machine ... |g‘ 6:04 P

16 of 20

F Machine Compiler Interpreter — |I:I| Xl
File Edit Project Function ‘Window
> | > | T = >
Function | PC | nstruction | operana |
u] initialized 1: int Loop {(int =) §
|Loog 1 push n =: int n = 5:
|Loog 2 pushin = EE int s = 0;
|Loogp 3 = A: for(int i=0;i<mn;
=3 =
|Loop 4 push = =) = SEEEE
|Loop S pushn o 7 return =;
ILDDp [=] = = 1
ILDDF:I i pu=h i =
|Loog = pushn] 10:
ILDDp =] = 11:
|Loop 10 push = ig :
Lo 11 push = 14 |-
15:
Loog 13 + 16:
|Loag 14 = 17:
|Loog 15 push i 1&:
|Loog 16 ++ 19:
|Loop 17 push i g? :
ILDDp 15 push ! .
ILDDF:I 19 = 23
|LDD|:- 20 jrnp it true -11 e
ILDDp 21 pu=sh = =5:
|Loogp 22 returh Z6:
! =7 -
Data Code I Func:tin:insl F"rnjectl Types I fl . | _._I_I
Syrmbol walue Type | jLoopz2 open for editing
w 5 |ir'|‘t Loop open for editing
= o |ir‘|t A | Loop.fun is loading
= 0 it Loop loaded successfully
=1
Loo

1/19/2006

A “for” loop looks just like C.

Copyright E-TrolZ, Inc.

17 of 20

RI=1E%
File Edit Project Funckion Wwindows
3|§b EH M| f = ““
Function I P I In=struction I Ciperand — El =
O initializecd 1: ﬁnt FactZ|int n) {
|Fact2 1 push 21 if(n == 0) {
Factz 2 pushn 3: return 1:
|Factz 3 - o b oelse {)
[Factz 4 imp if falze . \ return n * Factz(n-1):
|Fan:t2 =] pushn 7 }
kamz =] return o
|Fact2 7 push 9:
Fact2 g push 10:
11:
1LZg
13:
1l4:
15:
1la

if; | .

FactZ.fun iz loading

FactZ loaded successfully

FactZ open for editing

| 2

4
Fan:tzl
A Recursive Factorial Function.
1/19/2006 Copyright E-TrolZ, Inc.

18 of 20

F Machine Compiler/Interpreter ;Iilil

File Edit Projeck Function ‘Window

| S 2 L = i
E-2 Functions e =
i . \ .
I_:ne;iner é Tvpes Shape = Cir | Tri | Rec {
3:—iﬂjmmm if float Area:
e arim 5t Types Cir(float r) = Cl | C2 {
—® anou gf Area = 3.14 * r * r;
— # Digln .
B e g; SubType C1 {
) User 1a: Area > 10.0;
— % Caze 11: }
—# Balfdd 1z:
—® Baladdz ii SubType CZ2 |
o el 1s: Area <= 10.0;
— # Fik 16:
— # condl l”.-‘; }
— & doit 1a: }
Db Lo Type Tri(float b,float h) |
—® goo 2l: Area = 0.5 * b * h;
. ey BEa
—# Loop 23 ¥
—# Square e Type Reci(float 1,float w) {
% Cesel 26: Area = 1 * w;
—# sh 27:
—® 5q3§fez 28: SubType Sgr(float 1) { | |
—® Fact2 29: wo o= 1:
— & cazel? 305
—eu 52t ;
SEs }
4
SIS }
S6:
S7a
1= H
DatalCode Functignglprojec:t 395 -
o]]| v | _>l_I
[4 I w_.;-.lﬁ Shape open for editing i’

th;'start“@l_cj Y EHIOO RS & 2EHOSE saBGYEeE TR | @ rade... | e [Tz gava - Micros...l) &9 PM

A Shape Type Class. Each Type provides its own Area implementation.
Sub-Types provide relations on the properties of their parent Types.

1/19/2006 Copyright E-TrolZ, Inc. 19 of 20

Summary

« Start with Functional programming (Haskell).
« Add a "memory” function; a non-blocking register.

 Instantiation followed by cyclical execution determined
by the sampling rate.

« A type system whose instantiated objects have “state”.
« Simplified object and inheritance model.
« C like syntax. But not C or Java compatible.

« Execute on simple stack machine(s) or translate into
hardware.

1/19/2006 Copyright E-TrolZ, Inc. 20 of 20

	Functional Programming in Embedded System Design
	Hard Real Time Embedded Systems MUST:
	What Designers Want
	Look to the Basics of Computer Science
	Take Out the Garbage
	Why Not Just Haskell?
	Introduce a Special Memory Function
	Execution Cycle
	What if the Input Data rates vary widely?
	System Modeling with Finite State Machines
	Software Implementation on a Stack
	Hardware Implementation
	Types and Type Classes
	Polymorphism and Inheritance
	Partitioning an Embedded Architecture
	Summary

