
1/19/2006 Copyright E-TrolZ, Inc. 1 of 20

Functional Programming in
Embedded System Design

Al Strelzoff
CTO, E-TrolZ

Lawrence, Mass.
al.strelzoff@e-trolz.com

1/19/2006 Copyright E-TrolZ, Inc. 2 of 20

Hard Real Time Embedded Systems MUST:

• Be highly Dependable. Zero failures.
• Do what they’re supposed to do.
• Not ever crash.
• Integrate complex hardware and software.
• Ensure behavior by some means before they are run.

1/19/2006 Copyright E-TrolZ, Inc. 3 of 20

What Designers Want

• No run time exceptions:
– No null pointers.
– No out of range arrays.
– No class casts.
– No arithmetic exceptions - most difficult.

• Well specified execution semantics.
• No distinction between hardware and software.
• Implicit parallelism.
• Compatibility with existing languages if possible.

1/19/2006 Copyright E-TrolZ, Inc. 4 of 20

Look to the Basics of Computer Science

• Functional Programming. Examples: Haskell and pH.
• Build execution semantics into the language.

– Cycle based execution from sampling theory and
synchronous computing.

– Set the cycle rate based on input data streams.
– Leads to synthesizable Verilog subset and

synchronous dataflow graphs.
• Must be a net-list language so that we can map a

program to one or more processors or to hardware.

1/19/2006 Copyright E-TrolZ, Inc. 5 of 20

Take Out the Garbage

• All instantiation at initialization.
• After instantiation

– Software: the program runs in a cyclical loop at a
fixed rate (or set of rates) on one or more processors.

– Hardware: the design is mapped to RTL(Verilog).
• The design is statically analyzable before being run.
• Analyzable side effects.

1/19/2006 Copyright E-TrolZ, Inc. 6 of 20

Why Not Just Haskell?

• Layout syntax is not industrial strength.
• No clear treatment of memory and state.
• Input/Output?
• Object oriented design?

– Inheritance.
– Types and Type Classes.

1/19/2006 Copyright E-TrolZ, Inc. 7 of 20

Introduce a Special Memory Function

• A “register” sources and/or sinks data each cycle.
• Single assignment rules:

– Write once in a cycle. New value updated at the
end of cycle.

– Multiple reads during a cycle(old value only).
• Synchronous, unblocked reads and writes.
• Registers are instantiated only at initialization.
• Input and Output are memory mapped to Registers.

1/19/2006 Copyright E-TrolZ, Inc. 8 of 20

Execution Cycle
• Fetch data from each input and from registers and place

it at the input to all functions.
• Execute all functions.
• Not lazy evaluation.
• Store the produced values away in the appropriate

registers.
• Conventional “drivers” must then fill and empty these

registers outside the functional program.

1/19/2006 Copyright E-TrolZ, Inc. 9 of 20

What if the Input Data rates vary widely?

• No interrupts.
• Multiple “Tasks” each cycle at a different rate.
• Inter-task communication by rate adapting filters.
• System model is locally synchronous and globally

asynchronous.

1/19/2006 Copyright E-TrolZ, Inc. 10 of 20

System Modeling with Finite State Machines

• Each Task can be represented as a Finite State
Machine.

• The State is contained in the registers of each task.
• State changes only at an execution cycle boundary.
• Leads to a design model of concurrent FSM’s.

1/19/2006 Copyright E-TrolZ, Inc. 11 of 20

Software Implementation on a Stack

• The compiler converts C-like expressions to postfix.
• Execute the postfix directly on a simple stack machine.
• Is this Forth? Almost!

– No user written postfix.
– Strongly typed (like Haskell).

• Stack machines are small, efficient and a target for soft
cores in an FPGA.

1/19/2006 Copyright E-TrolZ, Inc. 12 of 20

Hardware Implementation

• The front end of the compiler is the same!
• Only difference is that for hardware, the “interpreter”

unwinds the postfix code into structural Verilog.
• Can we do without synthesis?
• For parallel processing, a complex mapping problem

remains.

1/19/2006 Copyright E-TrolZ, Inc. 13 of 20

Types and Type Classes

• Type Classes:
– Members can be sub TypeClasses or Types
– Abstract, not instantiated.
– Lists methods that must be supplied by its Types.

• Types:
– Are Instantiated.
– Supply constructor and methods required by its Type

Class.
• Sub-types differentiate with relations on property values

of types.

1/19/2006 Copyright E-TrolZ, Inc. 14 of 20

Polymorphism and Inheritance

• Simple tree like single inheritance.
• Parametric polymorphism.
• No class casts.
• Simplified form of Object Oriented Design.

1/19/2006 Copyright E-TrolZ, Inc. 15 of 20

Partitioning an Embedded Architecture

Separate Soft from Hard Real Time Measurement and Control

This Slide Courtesy of E-TrolZ, Inc., www.e-trolz.com.

Real Time
Control

FPGA

File management
Communications

Conventional OS

Measurement

Input/Output

Conventional
Programming Functional

Programming

Control
DSP

USB
Ethernet

1/19/2006 Copyright E-TrolZ, Inc. 16 of 20

A Simple if – else branch executing. The return value is on the stack.

1/19/2006 Copyright E-TrolZ, Inc. 17 of 20

A “for” loop looks just like C.

1/19/2006 Copyright E-TrolZ, Inc. 18 of 20

A Recursive Factorial Function.

1/19/2006 Copyright E-TrolZ, Inc. 19 of 20

A Shape Type Class. Each Type provides its own Area implementation.
Sub-Types provide relations on the properties of their parent Types.

1/19/2006 Copyright E-TrolZ, Inc. 20 of 20

Summary

• Start with Functional programming (Haskell).
• Add a “memory” function; a non-blocking register.
• Instantiation followed by cyclical execution determined

by the sampling rate.
• A type system whose instantiated objects have “state”.
• Simplified object and inheritance model.
• C like syntax. But not C or Java compatible.
• Execute on simple stack machine(s) or translate into

hardware.

	Functional Programming in Embedded System Design
	Hard Real Time Embedded Systems MUST:
	What Designers Want
	Look to the Basics of Computer Science
	Take Out the Garbage
	Why Not Just Haskell?
	Introduce a Special Memory Function
	Execution Cycle
	What if the Input Data rates vary widely?
	System Modeling with Finite State Machines
	Software Implementation on a Stack
	Hardware Implementation
	Types and Type Classes
	Polymorphism and Inheritance
	Partitioning an Embedded Architecture
	Summary

