Ideal and Resistive Nanowire Decoders

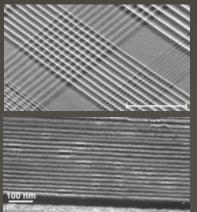
General Models for Nanowire Addressing

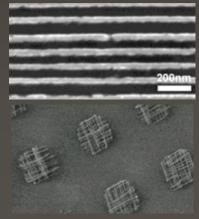
Eric Rachlin and John E. Savage Brown University CS Department February 03, 2006

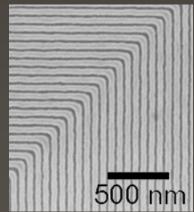
The Nanowire

- Sets of parallel NWs have been produced.
- Devices will reside at NW intersections.
- We must gain control over individual NWs.

SNAP NWs CVD NWs Directed Growth (Heath, Caltech) (Lieber, Harvard) (Stoykovich, UW)





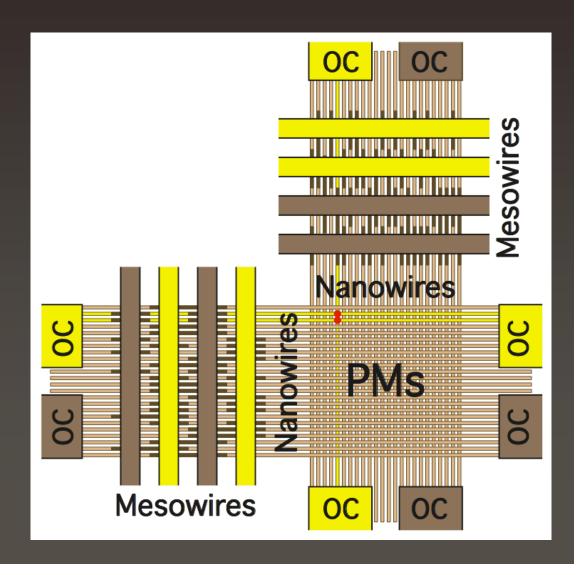


The Crossbar

The crossbar is currently the most feasible nanoscale architecture.

By addressing individual NWs, we can control programmable molecules at NW crosspoints.

Crossbars are a basis for memories and circuits.

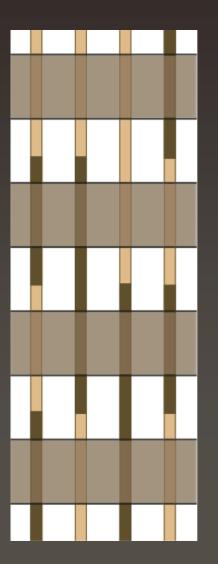


Nanowire Control

- Mesoscale contacts apply a potential along the lengths of NWs.
- Mesoscale wires (MWs) apply fields to across NWs, some of which form FETs.
- NW/MW junctions can form FETs using a variety of technologies:
 - → Modulation-doping
 - ⇒ Random Particle deposition
 - → Masking NWs with dielectric material

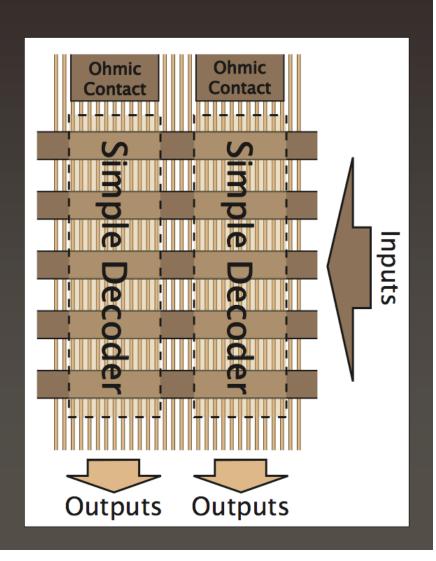
Simple NW Decoders

- A potential is applied along the NWs.
- M MW inputs control N NW outputs.
 Each MW controls a subset of NWs.
- When a MW produces a field, the current in each NW it controls is greatly reduced.
- Each MW "subtracts" out subsets of NWs. This permits M << N.
- Decoders are assembled stochastically and are difficult to produce if N large.



Composite Decoders

- A composite decoder uses multiple simple decoders to control many NWs.
- The simple decoders share MW inputs.
- This space savings allows for mesoscale inputs.

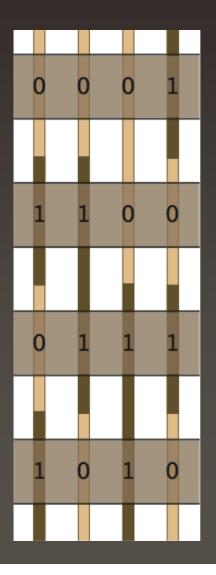


Ideal Decoders

- To analyze a decoder, we must model how MWs control NWs.
- In an ideal decoder, a MW's electric field completely turns off the NWs it controls.
 Other NWs are unaffected.
- This model is accurate if the FETs formed from MW/NW junctions have high on/off ratios.

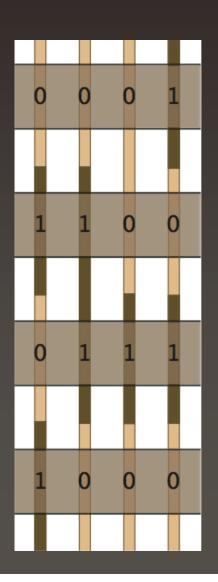
Binary Codewords

- In an ideal decoder, we associate an M-bit codeword, c_i, with each NW, n_i.
- The jth MW controls the ith NW if and only if the jth bit of c_i , c_{ij} , is 1.
- The *M*-bit decoder input, *A*, causes n_i to carry a current if and only if $A \cdot c_i = 0$.
- Codeword assignment is stochastic.
- Control over codewords is a key way to compare decoding technologies.



Codeword Interaction

- If $c_{bj} = 1$ where $c_{aj} = 1$, c_a implies c_b . Inputs that turn of n_a turn off n_b .
- A set of codewords, S, is
 addressable if some input turns off
 all NWs not in S.
- S = {c_i} is addressable if and only if no codeword implies c_i. S is addressed with input A = c_i.



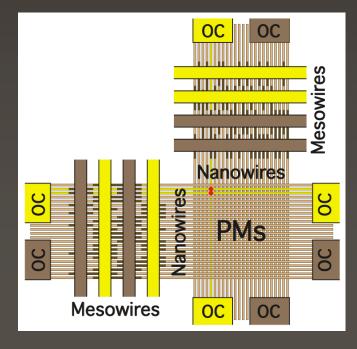
Decoders for Memories

 A B-bit memory maps B addresses to B disjoint sets of storage devices.

A D-address memory decoder

addresses *D* disjoint subsets of NWs.

 Equivalently, the decoder contains D addressable codewords.

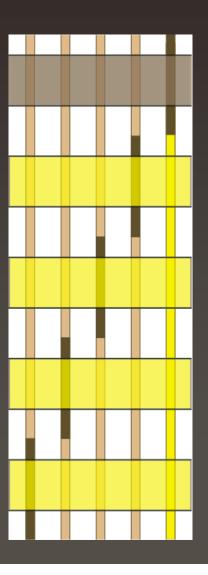


Resistive Decoders

- Decoders that rely on FETs are not ideal.
- MWs carrying a field increase each NW's resistance by some amount.
- In a **resistive decoder**, codewords are real-valued. In real-valued codeword r_i , r_{ij} is the resistance induced in n_i by the jth MW.
- On input *A*, *n*_i's resistance is *r*_{base} + *A*•*r*_i.

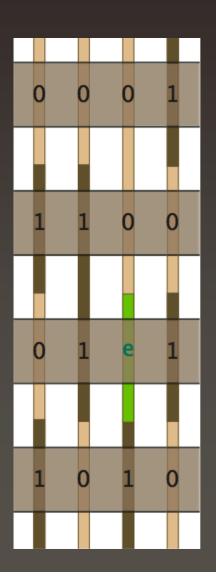
Ideal vs. Resistive

- In a resistive memory decoder the addressed NWs must output more current than the other NWs.
- Consider 1-hot codewords:
 - ⇒ The addressed wire has resistance < r_{base} + *Mr_{low}*
 - \Rightarrow Remaining wires have resistance > $(r_{base} + r_{high})/N$
- We require that r_{high} >> MNr_{low} and Nr_{base}
 - If $r_{ij} \leq r_{low}$, $c_{ij} = 0$.
 - If $r_{ij} \geq r_{high}$, $c_{ij} = 1$.
 - If $r_{low} < r_{ij} < r_{high}$, c_{ij} is an error.

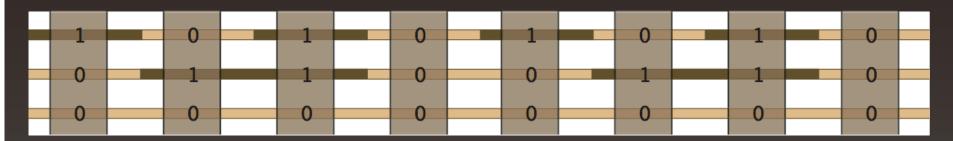


Ideal Decoders with Errors

- To apply the ideal model to resistive decoders, consider binary codewords with random errors.
- If $c_{ij} = e$, the jth MW increases n_i 's resistance by an unknown amount.
- Consider input A such that the j^{th} MW carries a field. A functions reliably if a MW for which $c_{ik} = 1$ carries a field.



Balanced Hamming Distance



- Consider two error-free codewords, c_a and c_b . Let $|c_a - c_b|$ denote the number of inputs for which $c_{aj} = 1$ and $c_{bj} = 0$.
- The balanced Hamming distance (BHD) between c_a and c_b is 2•min($[c_a c_b]$, $[c_b c_a]$).
- If c_a and c_b have a BHD of 2d + 2 they can collectively tolerate up to d errors.

Fault-Tolerant Random Particle Decoders

- In a particle deposition decoder, c_{ij} = 1
 with some fixed probability, p.
- If each pair of codeword has a BHD of at least 2d + 2, the decoder can tolerate d errors per pair.
- This holds with probability > 1- f when

$$M > \frac{(d + (d^2 + 4 \ln(N^2/f))^{1/2})^2}{4p(1 - p)}$$

Conclusion

- Any nanoscale architecture will require control over individual NWs.
- Stochastically assembled decoders can provide reliable control even if errors occur.
- Our decoder model applies to many viable technologies and provides conditions that decoders must meet.