Impact of Bionic Legs Technology: Improving Proper Gait Mechanics

Mark Manning
Brief History of Bionic Prosthesis

• 1960
 – Sensors were placed directly on vestigial limb
 • Used to pick up electrical impulses
 – Limitation: Impulses were being picked up from multiple muscles
 • Inhibited performance

• 1971 (Jaipur Foot)
 – Developed by an Indian surgeon
 • Viewed as the pinnacle of prosthetic science
 • Mimiced shape of foot, failed to return loss of function
History of Touch Bionics

• 1993 (David Gow- Bioengineering Centre)
 – Developed first partial hand system
 • 1998 (First Electronically Powered Shoulder)
• 2007 (Touch Bionics releases I-limb)
 – First Prosthetic Hand with articulating fingers
 • Silicone covering to mimic human skin
• April 2016 (Ossur partners with Touch Bionics)
 – Non-invasive orthopaedics
 • Improve mobility through braces & prosthetic limbs
Normal Gait Biomechanics

• Stance Phase
 – Heel Strike (lasts until foot on the ground)
 – Early Flat Foot (moment entire foot is on the ground: COG)
 • Allows foot to act as a shock absorber
 – Early Heel Rise (COG passes in front of neutral)
 • Foot becomes rigid lever, propels body forward
 – Toe Off (start of swing phase)

• Swing Phase
 – Running (involves ‘float’ phase= both feet elevated off the ground)
Common Foot/Ankle Prosthesis Currently on the Market:

• SACH (Solid Ankle-Cushion Heel)
 – Foam cosmetic foot shaped
 • Wedge cushion in the heel, compresses with each step
 – Internal supportive structure

• Single/Multi Axis Ankle
 – Hinged ankle joint
 • Rubber Bumpers absorbs ankle motion caused by body weight
 – Multi-axis: Permits rocking motion
 • Insufficient stored energy return
Foot/Ankle Prosthesis: Utilizing in Stored Energy

- ID25, IC40, Genesis II, Talux Foot
- Luxon DP, Modular III, Variflex Flex Foot
 - Internal structure acts as a spring mechanism
 - Spring stores energy
 - Energy is returned to amputee, provides forward propulsion as ‘toes’ leave ground
 - Terrain adapting features
 - Absorb irregularities on ground
 - Improve performance on inclined surface
Common Prosthetic Knees for Artificial Limbs

• Single Axis Constant Friction Knee
 – Set for each patient’s walking speed
 • Stiffens if person walks slower

• Pneumatic & Hydraulic Swing Control Knee
 – Uses principles of fluid mechanics
 • Varies resistance as user changes walking speed
 • Prosthetic always remains in the correct position during heel contact
Limitations on Normal Gait Mechanics

• Carbon-Fiber Based Prosthetics
 – Devices are overly stiff leading to chronic back problems
 – Spring mechanism replaces normal gait
 • Shift in balance can lead to joint problems
 – Cannot mimic natural gait patterns
 • Causes patients to compensate by using other muscle groups
 – Can eventually leads to muscle degeneration and osteoarthritis
First Step in Bionic Legs: BiOM Ankle System

- Developed by Hugh Herr at MIT
 - Biomechatronics Group
- Works independently from the brain
- Simulates action of ankle, Achilles tendon and calf muscles
 - Propels patient upwards and forward with each step
 - Robotics replace muscle and tendon function in the lower limb
- Components:
 - Lithium, Polymer Battery
 - Microprocessors
 - Sensors
Advancements in Prosthetic Technology

• Carbon-fiber spring controls each step
 – Toe-Off (battery-powered motor)
 – Heel Strike (loads spring w/ Potential Energy)

• Algorithm measures the angle and speed of each successive heel strike
 – Provides user with the ability to adjust to real-time changes in terrain
Advantages from the BiOM Ankle System

• Energy return
 – BiOM: 100-200% of body's potential energy (generated from heel strike) is returned to the system
 – Passive Carbon-Fiber: only returns roughly 50-90% of the patients downward energy

• Reaction to Changes in Environment
 – Microprocessors and sensors:
 – Allows BiOM to mimic the body’s natural motion
BiOM Ankle System: Human Impact

• Improving Amputee Patients overall Quality of Life
 – Replaces loss of muscle function
 – Exhibits less stress of the prosthetic and user

• Allows normal/proper gait mechanics
 – Stimulates natural human motion
 • Improves balance and sustains muscular function
Future Research for the BiOM Ankle System

• Improvements in normal gait motion
 – Ability to walk further(distance) and faster(speed)
 • Body expends less energy
 – Decrease muscle fatigue and pain experienced by users

• Allow rapid, real-time response to changes
 – Improve balance
 – Reduces the risk of falling
Revolutionary Research in Neurologically Controlled Prosthesis

• Greater difficulty replacing functional control in lower extremity prosthetics
 – Less conscious control required for lower extremity movement
 – Self-controls occurs through innate reflexes
 • Triggered by the spinal cord
 • Automatically adjusted by neuromuscular system
Development of the IMES (Implanted Myoelectric Sensor)

• Alfred Mann Foundation
 – Implanted to remnant muscles in limb
 • Coiled Wire-receiver (picks up impulses and transmitted wirelessly to robotic limb computer)

• Robotic Limb and IMES
 – Cybinetic spinal cord
 • Delivers unconsicous command to prosthesis
 • Enables instantaneous control of movmements
 – Reflexes delivers myoelectric impulses which control the Bionic prosthetic
Ossur Sensor-Linked Limbs

• Components
 – IMES Sensors (embedded in muscle tissue)
 • Adjusts angle of foot during diff. points in stride
 – Proprio Foot (motorized battery powered ankle)

• Readily compatible with bionic feet, knees and legs
 – Computerized smart limbs
 • Capable of real-time learning
 • Self-adjusting gait patterns
 – Adapts to changes in terrain and speed
Subconscious Control over a Prosthetic Limb

• Prosthesis moves based on the location of the activated sensors
 – Sensors are implanted in either the front or rear of the prosthesis
 • Respond to impulses generated in local muscle tissue

• Electrical impulse is delivered from the brain to the base of the leg
 – Sensors transmit signal wirelessly to proprio foot
Improvements in Gait Mechanics with Ossur Sensor-Linked Limbs

- Commands reach the foot before residual muscles are able to contract
 - Prevents unnatural lag from occurring
 - Patient elicits subconscious, real-time control
 - Allows quicker more natural response time and movement
 - Re-distributes patient's body weight
- Preventing further complications due to muscular compensation
Sensor-Linked Limb: Maintaining Muscular Functioning

• Patient is required to actively use remaining lower leg muscles
 – Reverses deterioration of muscle fibers from occurring in amputee patients
 – Restores some level of functioning in the limb
 – Promotes muscle growth, muscle endurance and stamina
Ossur: Minimizing Invasive Surgical Interventions

• Surgery Intervention
 – 15 minute procedure conducted by an orthopedic surgeon
 – Less than 1 cm incisions made to place sensors within muscle tissue
 • Sensors don't have to be attached to specific nerves
 – Powered by a magnetic coil
 • Eliminates need to replace battery
Limitations in the Field of Bionics

• BiOM T2
 – Cost: $40,000
 • Ossur Sensor-Linked Limb (TBD)
 • Over 900 BiOM ankle systems currently being used
 • Military Veterans (50%)
 – Insurance
 • Reduces prevalence of:
 – Dependence on painkillers (potential drug abuse)
 – Osteoarthritis treatments
Future Research

• Large Scale Clinical trials
 – 3-5 years away from released to public
• Non-invasive surgical options
• Full user-control over device
• Increase accessibility for amputee patients
 – Important in preventing muscle atrophy from occurring
Works Cited

• Slater, Matthew. "Is This the Future of Robotic Legs?" *Smithsonian Magazine*. Smithsonian, Nov. 2014. Web. 6 Nov. 2016.
