Trauma Pods

Tessa Arsenault, Biomedical Engineering, University of Rhode Island
BME 281 First Presentation, November 1, 2016 <tessa_arsenault@my.uri.edu>

Abstract—Summarize what this paper is about in less than 50 words. Try to be succinct but self-contained, addressing the “what,” “why,” and “how” questions, if possible.

I. INTRODUCTION

This project is about trauma pods and the military’s usage of them. The pods are to be able to give medical attention to fallen soldiers without putting the doctor at risk. The trauma pods go into the battlefield and surgeons perform the surgery from behind the scenes. This could save the lives of wounded soldiers and also of the medics who take care of them. The hours right after injury are critical to the soldier’s recovery and this machine would help to save their lives during these crucial hours, much earlier than they can now.

II. METHODS

In the initial stages of the trauma pod they created a machine that captured 3D patient scans, viewed simulated CT images to diagnose the injury, sutured a simulated bowel section, and placed a shunt in the groin of the simulated patient. A surgeon used spoken commands to direct the robot through the surgeries. The SRI team worked closely with physicians to understand the most critical steps in trauma care. SRI company has a lot of experience in robotic surgery making this process much easier.

III. RESULTS

The trauma pod does not have any specific data because it is a specific medical device. It has not been tested in the battlefield yet. The procedure listed before were all done by a surgeon using this trauma pod. He performed this with 100% accuracy through the machine. The project is still in work for being used in the actual battlefield. For a scientific paper, the results should be presented in this section, which is separated from the methods in the previous section and the discussion in the next section.

IV. DISCUSSION

In conclusion the trauma pod is something that if it is put into effect can greatly increase the life expectancy of an injured soldier. They are hoping to put this into use as soon as possible. SRI is working with General Dynamics Robotic Systems, Oak Ridge national laboratory, University of Texas, University of Washington, University of Maryland, and Robotic surgical Tech on this project. They have been the leading company in providing for the army’s needs and continue to do so with this project. The executive director of SRI says this has the capability of saving many lives. The ability for a surgeon to perform surgery more promptly and without the danger involved in actually entering the battlefield will change the way that medics in the army do things. As said before the most critical time of treating an injury is the first few hours and with this new innovation it would allow for them to be in contact with the patient within those hours. Getting to an injured soldier during a battle is dangerous and this solution would greatly benefit the military. The success of future trials is hopeful.

REFERENCES