Digital Filters

Digital filters

Finite impulse response (FIR) filter: A[n] has a finite numbers of terms.
Infinite impulse response (IIR) filter: A[#n] has infinite numbers of terms.

Causal filter: h[n]=0, forall n < 0.
Noncausal filter: 4[n]#0 , for at least one n < 0.

Stability
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FIR filters are always stable. IIR filters may or may not be stable.

Evaluating filter output by convolution
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This is a low-pass filter. For the square pulse input, o .
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the output is a charge-discharge curve that shows . 2 °°. . . %% °%° .
reduction of the high-frequency contents.



Example 2. We implement a 3-point FIR low-pass filter to smooth the data according to:

y[n]zi(x[n]+2x[n—1]+x[n—2])

If the sampling rate is 200 Hz, what is the cutoff frequency (3 dB roll-off) of this filter?

The impulse response as shown in figure is obtained by setting x[n]=06[n] .
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Take z-transform (ZT) of the filter equation above: 14 I
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The transfer function is given by
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The Fourier transform (FT) is the ZT evaluated on the unit circuit of the z-plane .
By replacing z=¢’" , we have

H(e™) = e_jw(1+€jw+€_jm) A |H(e7™)| = (1+cos w)2
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Using the Euler's formula cosmw= — e have
‘ e /O
H(e'") = (1+cosm) .
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The magnitude and phase of H (e’”) are: 0 ; 1800 3600
‘H(ej“’)| _ l(1+cosu)) 0 : 100 Hz 200 Hz

2 1.=36 Hz

$H(e") = o

The system has a linear phase response, which represents a group phase delay. The linear phase is
desirable because it does not introduce any phase distortion.

The DC gain of the filter is 1; H(e"0)|=(l+cos 0)/2=1 . The cutoff frequency £, is where the
gain drops to 1/ V2 ofthe DC gain.

1/N2 = 0.70794...; 20log,,0.70794 = —3 dB.

Let |H (&™) = %(I-FCOS(DC) = %,we have

cosw, = V2—1 = 1.414—1 = 0.414
o, = cos '0.414 = 1.114 radians/s = 65.5°/s.
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The sampling rate is 200 Hz, which corresponds to 27t or 360 . The cutoff frequency is:

f. = 200x65.5°/360° = 36 Hz. ) z-plane
J
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Pole-zero plot: H(z) = z +222+1 = & 2) . There are two e/0
4z 4z p
zeros at -1 and two poles at the origin on the z-plane. The red line 2 a
shows the vector from e’“ to the pole. The green line shows the R X 0 i -

vector from e’ to the pole. The magnitude of H(e’®)is
proportional to the green line squared over the red line squared, as
o goes from 0 to .

Digital filters implemented with a microprocessor

Digital filters can be implemented in real time by using a microprocessor system as shown. In order to
sample the data with a precise sampling interval, a timer is used to generate periodical interrupts. The
interrupts are processed by the microprocessor unit (MPU). A running buffer is set up in the memory to
store the present and previous input sample points. The filter should be implemented in the interrupt
service routine with the following pseudocode:

..................... Timer
MPU |«
x2 =x1;
x1 =x0; Memory
x0 =read from A/D; x[n] x(t)
y0=(x0 + x1 +x1 +x2)/4; -'::' xX[n+2] A/D
write y0 to D/A; > x[n+1]
- x[n] & y[n] V1)
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Example 3. In the continuous time, the derivative is defined as )c;t( ): lim x( ) Z(t ) . In the
At—0

discrete time, it is not possible to make A7—0 . The smallest At is the sampling period 7. Thus,
the backward difference is a discrete-time approximation of the derivative. Without losing
generality, we let 7= 1 and add a scale factor of 1/2.

y[n]:x[n]—x[n—l]

2
Plot |H (/™) and show the pole-zero plot.
/
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— &b
n= 2 124




The transfer function is obtained by taking the ZT of A[n].
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The first-order system has one zero at 1 and one pole at the origin, as
shown. To obtain the FT, let z=¢’” . We have
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Notice that for the continuous time, the LT of the derivative
is s and the magnitude of the FT is |H ()| = o, as shown
by the orange line. ® and sin(w/2) are close for low 0}
frequencies,, but deviate more for higher frequencies. 0 o i

Example 4. A low-pass filter can be implemented by averaging the present input with the previous
output. The result is an IIR filter. Show the filter equation, impulse response, transfer function,
pole-zero plot, an magnitude of the FT. If the sampling rate is 200 Hz, what is the 3-dB cutoff

frequency.

The filter equation is y[n]:x[”]"'%’[”_ 1]

follows: y[n] = %(x[n]—i—y[n—l]) = %(x[n]+%(x[n—l]+y[n—2])) =

. This equation is a recursion and can be expanded as

l(x[n]+l(x[n—l]+y[n—2])) — .
2 2
h[n]
%x[n]+%x[n—1]+%(x[n—2]+y[n—3]) 172 y
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The impulse response has infinite number of terms: ? A -
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hln] = %6[n]+%6[n—1]+%6[n—2]+... |



X(z)+z7'Y(z2)

Take ZT of the filter equation: Y (z)= 3 . We have A z-plane
J
Y _ .
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has ones zero at the origin and one pole at 1/2, as shown. =] 9 0 X 1
The FT is obtained by replacing z=e’" :
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The magnitude of the FT is:
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To find the 3-dB cutoff frequency, let
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w, = cos = 0.7227 radians/s = 0 1 =23 100Hz 200Hz
41.4° /s.

For a sampling rate of 200 Hz, this corresponds to f,=23 Hz.

Compared to the 2nd-order FIR low-pass filter that has a cutoff frequency of 36 Hz, this filter has
a lower cutoff frequency and a fast roll-off. However, unlike the FIR filters that have linear phase,
this FIR filter has a nonlinear phase and may introduce phase distortion.

Example 5. The above filter has a gain on 1/3 at the Nyquist frequency, which is half the sampling rate
or at w=m . Redesign the filter such that the gain is 0 at w=m

The filter design can be done with the pole-zero plot. If the zero ) z-plane
from the previous example is moved to -1, the gain should be f
brought down to 0 at w=m without any significant changes on
other properties of the filter.

The new pole-zero plot is shown on the right.

The transfer function is
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Y(z)(4-2z7") = X(z)(1+z7") = Y(z) = %(X(Z)+Z_]X(Z)+2Z_]Y<Z)) .

The filter equation in the time domain is:

e’
1
yln] = Z(x[n]+x[n—1]+2y[n-1]).
4 \ |-3¢8
The FT is:
joy _ l 1+€_jw 05
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The magnitude (as shown) is:
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To find the 3-dB cutoff frequency, let

1 \/(1 +cosw )’ +sin’
2 J(2-cosw) +sin*o

= % = (l+cosw)+sin’w = 2((2—cosw)*+sin*w) =

1+2cosmw+cos’w+sin‘w = 8—8cosmw+2cos’ w+2sin‘w =
10cosmw =8 = w, = cosl% = 0.6435 radians/s= 36.9° /s.

For a sampling rate of 200 Hz, this corresponds to f,=20.5 Hz.

Example 6. A 60-Hz notch filter is commonly used for removing the 60-Hz line noise from the signal.
Design a FIR 60-Hz notch filter.

The filter design can be done with the help of the pole-zero plot. If the
sampling rate is set at 240 Hz, m corresponds to 120 Hz and /2
corresponds to 60 Hz. Thus, a zero placed at mt/2 will sink the 60 Hz
noise. Another zero needs to be placed at -7/2 in order to ensure that
the coefficients of the filter equation are real number. Thus, we have a
second-order system. The two poles are placed at the origin such that
the filter is a FIR filter.

= eti)y Ly -y

The transfer function is: H(z) = l( :

2 z—0)?
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2Y(z) = X(z)+z°X(z) = Y(z)= E[X(z)—kz*zX(Z)] A U

Filter equation: y[n] = %(x[n]er[n—Z]); Impulse response: h[n] = %(6[n]+6[n—2]).
For a sampling rate of 240Hz, there are 4 sample points on a 60 Hz sinusoidal wave. Every other

point has the opposite sign as shown. Thus, the averaging removes the 60 Hz wave .
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The FTis: H(e'") = ———— = ¢ = ¢ ’"cosw
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The magnitude is: |H (¢'”)| = |cosw| , as shown. || = |cos @ |
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Example 7. Combine the 60-Hz notch filter (example 6) with the 3-pint low-pass filter (example 2)

with a cascade configuration.

When two LTI systems are connected in cascade. The overall impulse response if the convolution
of the two individual impulse responses.

x,[n] y;[n] yo[n]

As shown in the figure, y,[n]=x,[n]® h,[n] and h[n] o
I 2
v nl=y[n] @hy(n].

Combining the two, we have

y,[n]=(x,[n]® h,[n])® h,[n] . Because the h[n] = hyn] © hy[n]
convolution satisfies the associative property, we have

J’2[n]:x1[n] ® (hl[n] @hz[nD:xl[n] ®@h(n].

Thus, h[n]=h,[n] @ h,[n].

(8[n]+28[n—1]+8[n—2])

B

Low-pass filter: 4, [n] =

60 Hz notch filter: h,[n] = %(6[n]+6[n—2])

Combined: ,[n] = %(6[11]—#26[74—1]+6[n—2]+6[n—2]+26[n—3]+6[4]) -

é(é[n]+26[n—1]+26[n—2]+28[n—3]+6[n—4])
Figure on the right shows how this can be i Aix] © Al
done graphically. " " i

|




Because convolution in the time domain is equivalent to multiplication in the frequency domain,
the overall transfer function is the product of the individual transfer functions.

H[z] = i[1+22_1+2_2]%[1+2_2] = %[1+22_1+22_2+22_3+2_4].
The filter equation is: y[n] = é(x[n]+2x[n—1]—|—2x[n—2]+2x[n—3]+x[n—4]).

e (cosw)(1+cosm)
2

The FTis: H(e'®) = (ef"'(”cosu))(e2

The magnitude of H (e’®) is given by:

[(cosw)(1+cos w) .

1 ()] = >

Example 8. Analyze the following filter: y[n] = x[n]—x[n—l]+%y[n—2].

Transfer function: Take ZT, we have

1 1- 7 +17-

J A
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-4 7J 1-Z
Y 1 1 4 | 1.2
H(z):X((Z)) _ 1 1z _ 1 l—z 1 . l—j'z
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Impulse response: Impulse response can be obtained 12017
by solving the recursion or by doing a long division as %gl 3 ll A
shown. From the long division, we have IR
1 16
n g +L:-:'5
(%)2 n:even hin] 4 ] _4": -
hln] = . | i§% " 16%
(T wioda i C i a?
—\— n.o 16~ fd
4 ? & )n | 5,1 6
* 1 ’ ‘.L -?’L,—i_{ﬁz 1
1 * 1 W Tw?



Frequency response: Obtain the FT by substituting z=e’” . We have

—Jjo i —jw
jo_ o

. 2 (€ Jo s ()
. — 2je? ( 7 ) jesin(F)
H( ) - 1 2 = 3 1 ej(,l) e—ju) = j
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H (&) = , which is plotted on | g, “15)

2
(%) +sin’

the right using the online graphing calculator at
<www.desmos.com/calculator>.

Pole-zero plot: The transfer function can be

written as: i
1-z7"
H(z) = 1 1 =
(1—5271)(1—*'5271) A -

(z—0)(z—1)

(z=5)(z+3)
The system has two poles and two zeros at:

11

Poles: )
Zeros: 0, 1

The pole-zero plot is shown on the right.




