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Neural Reconfigurable Architectures

systems
@ On demand incorporation of neural components
@ Maintain computational capacity with fewer
systems/components -
@ Reexamine dependence on interconnectedness ( ‘
@ Goal: Design and build proof-of-concept printed SO
circuit board with interconnected neurons exhibiting . i e
realistic and variable firing patterns (at right, simulated)
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Before We Go Any Further, Consider ...
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A Few Current Players @

Stanford Neurogrid
IBM TrueNorth (DARPA)

°
°
@ GaTech FPAA
@ Hasler, Indiveri, Boahen (as a very small
subset)
@ Easy to read background by Hasler
(GaTech), Indiveri (Univ. Zurich INI)
@ Massive research in analog vice digital
transistors (MOSFETS), memristors,
neuristors
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Basic Stuff
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Animals —— -

Lymnaea stagnalis
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Aplysia californica Dissection ey
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Aplysia californica Visceral Ganglion
Artwork by J. DiCecco
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Aplysia Action Potential Patterns

R15 Aplysia californica with ACH Buccal Ganglion B2 Apiysia with Hy

=250

40 50 B0 T0 80
time (s}

n DiCecco, PhD and Jason Gaudette, PhD Novel Reconfigurable Computing Architectures for Neural Information Proce:



University of Rhode Island ECBE ECBE Graduate Seminar

Lymnaea Dissection

hn DiCecco, PhD and Jason Gaudette, PhD Novel Reconfigurable Computing Architectures for Neural Information Proce



University of Rhode Island ECBE ECBE Graduate Seminar

Lymnaea Action Potential Patterns
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Hodgkin-Huxley

The Hodgkin-Huxley equations are given by:

C(Z,—\t/ = linj — Bnam’h(V — Vo) — gxn*(V = Vi) —g(V = Vi) (1)
I (V)L )~ BV o
I V)L m) (V) @)
V)L ) BV @

Where C‘ff—‘{, %, ‘f,—’;’, % are the total current flow across the membrane,
potassium channel activation, sodium channel activation, and sodium channel
inactivation, respectively. L is the leak current. « and 3 are the rate constants for

the respective ion channels.
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Hodgkin-Huxley

B 0.01(V + 55)
(V) 1— exp[—(V + 55)/10] ®)
Ba(V) = 1.125exp[—(V + 65)/80] (6)
B 0.1(V + 40)
am(V) 1— exp[—(V + 40)/10] ")
Bm(V) = 4exp[—(V +65)/18] 8)
ap(V) = 0.07exp[—(V + 65)/20] (9)
BalV) = 1 (10)

1+ exp[—(V + 35)/10]

The values of the constants are:

C = 1, 8Na = 120, VNa = 50, 8K — 36, VK = —77, 8L = 03, an VL = —b4

In these equations voltages are in mV/, current densities in uA/cm2, capacitance
in F /cm? and time in ms.
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Reducing HH - Izhikevic

There exists a relationship between gating variables n(t) and h(t) (K™
activation and Na™ inactivation, resp.) such that n(t) + h(t) ~ 0.84.

Plotting the variables on the (n, h) plane reveals that the relationship can
be better described by h =0.89 — 1.1n.

By substituting this relationship for h and assuming that the activation
kinetics of the Na™ current is instantaneous (m = m(V)), :

dv

Co = I — gnam>.(0.89 — 1.1n)(V — V) — gen*(V — Vi) — gu(V — VL)(11)
dn _ noo(v) —n
de — Tu(V) (12)

B it = 0
08 3 -
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Nullcline - Briefly

The decision to fire or not fire is made at the resting state, which is at the
intersection of the nullclines (or zero growth isoclines). This intersection is
the location(s) of the fixed point(s) of the dynamical systems.
Approximating the nullclines in this region of phase space is sufficient for
maintaining the subthreshold dynamics of the system.

da) 1O

recovery variable, u

= i
=80 -0 40 =20 (1] 20 =70 =60 =50 -0
membrane potential, ¥ imV) membrane potential, V{(mV})

John DiCecco, PhD and Jason Gaudette, PhD Novel Reconfigurable Computing Architectures for Neural Information Proce



University of Rhode Island ECBE ECBE Graduate Seminar

Nullcline - Briefly

Using these nullclines the subthreshold and spike initiation dynamics can be
approximated by the system:

dv

dr TfP(V len) (U Umln) (13)
d
d_: = Tes(V — Vo)u (14)

where T¢ and T describe the fast and slow time scales. This system
models the upstroke of an action potential. To model the downstroke the
system is reset at Vmax (V, u) <= (Vieset, U + Ureser), whenV = Vax. p
and s are non-negative scaling coefficients derived from ionic time
constants.
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Reducing HH - Izhikevic

A typical Vpin value of -60mV (human cortical) has been experimentally
derived:

dv

dv )

= 004V2 448y 4144 —u+] (16)
~ 0.04V?+5V +140 —u+ 1/ (17)

du

- = vV — 1

7 a(bV — u) (18)

v

if VV > 30mV, then { “c
u+—u+d

a (Ts), b (s), c and d are dimensionless parameters, V is the membrane
potential and v is the membrane recovery variable, accounting for K+
current and Na™ inactivation. u also provides negative feedback to v.
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Izhikevic Model Software Simulation (MATLAB®)

Izhikevich Model Steady Beater
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Izhikevich NN Software Simulation (MATLAB®)

200 400 600 800 1000
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Basis for MOSFETs as Model for Differential Equation

One of the more basic electrical engineering concepts is that of current through a
capacitor:

dv
I(t) = Y1

where C is Capacitance in Farads. (Incidentally, this is the same equation for
current through a lipid bilayer.)

By placing capacitors (or other energy storing units) in certain configurations, we
can both describe systems with differential equations as well as solve them. It

should be clear that in order to find the voltage across the capacitor, we need to
integrate the current:

This exactly what a capacitor does! And if ions are "injected" into a cellular
membrane, the "sum" is analogous to the integration of charge.
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Basis for MOSFETs as Model for Differential Equation

Lots of capacitors in MOSFETSs, the gate capacitance in the oxide Cox being the primary
driver for current through the drain:

Ip = pCox ¥(Vgs — Y85 — V1) Vps, for Vps > 0, Ves > Vr, Vgp > V7, linear region
——
KP
Ip = p1Cox 31 (Ves — V1)*(1 + M(Vbs — Vbsat)), Vs > (Vs — V1), Ves > Vr, sat
——
Kp
Transconductance parameter (Kp) is similar in many ways to the conductance

parameters in the HH model (gna, gk, gL). We can achieve specific W/L ratios with
specific transconductance coefficients.

g . Intrinsic distributed (r-c) section

| lh
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Wijekoon - Izhikevich Model e
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Circuits Imitate Life o @

hn DiCecco, PhD and Jason Gaudette, PhD Novel Reconfigurable Computing Architectures for Neural Information Proce



ECBE Graduate Seminar

University of Rhode Island ECBE

Circuits Imitate Life @

Lymnaea stagnalizs RPD1 Steady Beater
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University of

Wijekoon Circuit
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Figure: Adaptation (much bigger)
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Circuit Simulation

Transient Analysis

: = = ; @ Spice simulation has proven
successful but ...

Transient Analysis

T @ Various neuronal firing patterns
LG have been captured but

simulation requires heavy
- » ) computational power
@ Designed circuit based on COTS
MOSFETS
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COTS MOSFET Neuron

@ Still only 14 transistors (6
P-FETS, 8 N-FETS)

e Fully COTS

@ Current Efforts to go to SMD
and multiplicity
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Our Hardware vs MATLAB®

Izhikevich Model Steady Beater
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Step Response e~

Regular spiking and low threshold spiking (interneurons)
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Step Response e~

Fast spiking and Phasic spiking (stimulation detection)
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Impulse Response

@ After an impulse is transmitted to a
neuron, a small sub-threshold
oscillation occurs.

@ |t is the precursor to bursting activity.

@ Caused by the interplay between the
slow Calcium T current and the
inward h-current.

@ Characterized by a barely
sub-threshold stimulation evoked by
an impulse stimulation.

@ Creates a significant delay between
stimulation and fire.

@ It is still not clear how or when the
brain uses it but is suggested that
latency encodes the strength of the
input.

John DiCecco, PhD and Jason Gaudette, PhD Novel Reconfigurable Computing Architectures for Neural Information Proce



University of Rhode Island ECBE Graduate Seminar

i
UNIVERSITY

(OF RHODE ISLAND

Impulse Response cecaion

Excitable systems are defined based
on two features: the coexistence of
resting and spiking states and the
existence of sub-threshold oscillations.

Our circuit exhibits both.

Bursts in response to a sufficiently
long hyperpolarizing current.

A long pulse of current invokes inward
h-current, resulting in a voltage sag,
and upon termination, generates a
spike.

Even if rebound depolarization does
not elicit a spike, it may increase the
excitability of the neuron.
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Current Confi

@ Code written to interface
single-computer board to
neuron through DAC

@ Uses SPI protocol

@ 16-bit resolution
"should" provide
necessary precision
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Technical Challenges

@ We have expertise available to us to march down the path of making a
MOSFET with variable gate transconductance if necessary, which, to
our knowledge, has not been attempted previously

@ We MAY be able to avoid this in the digital interface by bringing
multiple neurons into parallel and series configurations to effectively
change W/L ratios

@ Designing and fabricating the FPGA - will need collaboration here

@ Implementing neural network algorithms to test hardware

@ Restricted Boltzmann Machine (RBM) or Pulse-Coupled Neural
Network (PCNN)

@ Mapping the models for various systems (next slide) onto a suitable
number of neurons (and interneurons) with the correct dynamics

@ Compensating for vagaries in the production of the MOSFETS
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Vision

The ability to characterize the neuronal dynamics of a real biological
system of interest (a.k.a. wetware) and drop it into a processor chip
@ Biological systems of interest to replicate:
@ Sensorimotor control in fish
Vision in mammals, insects
Active acoustic sensing in bats, dolphins, whales
Passive acoustic sensing in owls, fish, insects, humans, etc
Olfactory sensing
Regulation of biochemical processes
General pattern matching circuits, i.e. human cortex

¢ © © ¢ ¢ ¢

@ Brain-machine interfacing

@ Basic motion control of prosthetics has already been demonstrated in
chimpanzees and humans
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Path Forward

@ Solve issue with lack of bursting activity
@ Fabricate circuit with multiple neurons with input/output interfaces - doing
Grow the model onto an approximately 50 neuron board
@ The ability to interconnect neurons will require some mechanical
(large) connections that will disappear with the FPGA implementation.
@ Examine connectedness
@ This is the real bottleneck
@ Accurate (or at least efficient) modeling of the synapse and information
coding
@ We cannot compete with large labs and their ability to fabricate
smaller, exotic, devices

@ Work to date is novel and publishable - no known example of a COTS
implementation of this circuit

@ Neuron interconnection dynamics will be the principal focus of follow-on funding

@ Modeling complete systems (neural networks) such as the wetware systems
highlighted on the previous slide is the principal cost driver in this funding request
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Final Thoughts —— -

At a conference during late 2009, IBM announced that it had used a
supercomputer to simulate a brain with complexity similar to that of a
cat’s. The project simulated 1 billion neurons that share 10 trillion
interconnections (synapses). But even with its abundant 144 terabytes of
storage and some 147,000 microprocessors, the %—petaf/op—per—second
computing grid ran the cat-brain model 83 times slower than a real cat’s
brain.

Today, TrueNorth (IBM), 1 million neurons, 256 million synapses, from 5.4
billion transistors and 4096 neurosynaptic cores, using just 70mW. Human
brain - 100 billion neurons, 100 trillion synapses, at 20W. We still have a
LONG way to go!
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