

1

Activity Analyzer with voice-Guidance
for Independent Living Environments

(AAGILE)

Josh Harvey, Tanya Wang

11/2/2012

2

Abstract
The purpose of the project is to develop an interactive, portable device capable of

monitoring motion as well as provide user feedback to promote continued exercise. The

intended utility of the Activity Analyzer is testing whether or not audio and digital

feedback promotes higher levels of exercise in the elderly population, particularly when

the audio feedback is comprised of personalized messages recorded by loved ones.

The device uses a microprocessor interfaced with a voice record chip, as well as a three

dimensional accelerometer for motion input and detection. The onboard microprocessor

is used to evaluate physical performance, determine which messages to be played at

specified times, as well as save all messages and scores (including a time stamp) to the

onboard EEPROM. A prototype of the Activity Analyzer has been successfully

constructed.

Origin of problem
The idea behind the project was presented to us by Dr.Burbank from the nursing

department at URI for an elderly family member. Today’s technology driven world has

provided us with many ways of monitoring activity, ranging from pedometers, GPS

enabled distance tracker apps, and even Nike+ shoe inserts. The neglected aspect of

this activity monitoring is that the elderly population doesn’t get integrated into these

devices very easily. The elderly population has more trouble understanding technology,

and can be very forgetful. The idea behind AAGILE is to target the needs of the elderly

patient in the following ways: Loud and customized voice feedback to make reminders

more personal, single-button interface making control of the device extremely user

friendly, Sensitivity controls targeting the patient’s activity threshold, and customized

GUI interface for easy time-based activity monitoring.

Realistic Constraints
The greatest concern for this project is to increase mobility and overall health of the

elderly population. With this in mind, the health, and safety of this product is the number

one concern. The power source and all equipment are enclosed in a self-contained unit

with no leads to the outside. The input provided to the unit is through a 3 axis

accelerometer, as well as a single push-button input, and the output is a series of

custom pre-recorded voice recording. The recordings are set at a reasonable volume

within safe constraints. The mobile unit is powered by a single 9V rechargeable battery,

and is regulated with a series of voltage regulators. The docking unit has a separate

charging unit which also meets all safety constraints. The entirety of one mobile unit is

estimated to cost under $70 and with mass manufacturing will that price.

3

International Electrotechnical Commission Safety Standards
IEC provides constraints safety constraints IEC 60601-1-6, (Third Edition)

The following clauses are related to the project: (4.1, 4.1.1, 4.1.2, 5, 5.1, 5.2, 5.5, 5.8,

6, 7)

The AAGILE must be usable under normal use, and possible user error.

Provide documentation relating to usage, transportation, maintenance, installation.

Provide documentation of usability and performance provided in usability engineering file.

Usability specifications determining user interaction, such as daily use/charging times, possible user

scenarios, possible user errors, primary operating functions.

Medical device is to be compared to usability validation plan.

Necessary training materials provided for operating functions

Bill of Materials
Processor PIC18F452 $8.20 1

 Accelerometer LIS302SG $7.17 1
 Voice chip ISD1750PY $7.60 1
 Serial LCD 16x2 Sparkfun LCD-09066 $24.95 1
 USB to serial Sparkfun BOB-00718 $14.95 1
 Battery/charger Batterymart C-RLI-9600-SET $28.95 1
 Box (AAVID) Digikey 377-1167-ND: 4.1x2.23x2 $4.50 1
 Box (docking) Jameco 18914: 4.875x2.5x1.5 $3.95 1
 Prototyping

boards X 2 $6.00 1
 Connector 15-

pos Female 609-2802-ND $2.50 1
 Connector 15-

pos Male 609-4042-ND $1.34 1

Switches
Power, sliding switches, IDC
connectors $10.00 1

 Others Other electronic components $5.00
 JK flip flop 4027

1

 555 timer

1
 inverter 4069

1

 5V regulator LM7805

1
 Multiplexor MC14066

1

 4MHz Crystal

1
 Op Amps LM386n03

2

 3.3V regulator 3302e

1
 Mechanical

Switch EDR292A0500

1
 Diode Zener

1

 Speaker

1

4

Project Management
The overall management of the project is balanced between both team members, Josh Harvey and

Tanya Wang. The troubleshooting of software problems is Josh’s expertise, and that of hardware is

Tanya’s. Each member is responsible for creating a functional mobile unit.

IRB approval
The IRB approval is required for trials with healthy young individuals, as well as testing with the targeted

elder population. Documentation is provided in the appendix.

5

Schematics

Start-up Correction Schematic

6

7

Methods
The microprocessor of choice for this device is the PIC18F452 (Microchip Technology, Chandler, AZ). This

processor is interfaced with the ISD1750 (Winbond) voice record (VR) chip, which is capable of recording up to 60

to 100 seconds worth of message time (dependent on the load resistor chosen). To enable an efficient

communication, a serial-parallel interface (SPI) is established between the processor and VR chip.

For detecting motion a three-dimensional accelero-meter (LIS302sg, STmicro-electronics) is used. The

accelerometer is capable of outputting motion signals in the x, y, and z directions. To eliminate discontinuities from

the varying x, y, and z baselines, the outputs are averaged together through a resistive network and sent to the

analog-to-digital converter (ADC) of the PIC processor.

8

There are two components to this project, the Activity Analyzer mobile unit and the docking system (both

depicted individually in Fig. 1). The mobile unit contains the accelerometer, PIC processor, VR chip, and speaker.

The docking system contains an LCD display, push buttons to interact with the mobile unit while docked, digital

switch, USB device, and microphone input. While docked, the docking system is used to alter settings such as time

of day, when messages are played, which messages are played, and how sensitive the accelerometer decoding

algorithm is (all through a DB15 connection). The user can also record new messages, erase old ones, and send the

data in the EEPROM of the PIC to a computer via USB.

B. Software Development

The software implemented for the PIC processor is comprised of four major components: the user menu

controls, SPI communication, motion detection and scoring algorithm, and finally the memory storage algorithm.

Figure 2 depicts a flow graph of these four major software components, as well as how they interact amongst one

another in the code.

For ease of use, it is important for the device to have an intuitive menu interface. The user menu control is set

up in correspondence with two exterior push buttons: one to scroll and one to select. The user can select several

different menus from the LCD screen, including a menu to set time, a menu to record, erase, play, or set play

times, a menu to send the data via USB to a computer, and a menu to set the sensitivity of motion detection to

name a few.

By scrolling and selecting (once you enter a menu, the user has the option to select exit), the user can easily

maneuver through all the option available to them. It is also worth noting

that most of these opera-tions are controlled by sub functions outside of the main loop in code. This means adding

functions or changing current functions is easier for the developer as the framework to do so is already in place.

Both the processor and the VR chip are capable of SPI communication. The processor requires most significant

bit first and the VR chip requires least significant bit first. To maintain compatibility, the reversed bits are defined

as protocol functions in the code such that the VR chip receives LSB first. In order to use the VR chip, the power up

command and clear INT command must be sent prior to sending the SPI command for the desired action. After

the action is implemented (play, rec, erase, forward message, set_play, set_rec, set_erase) the power down

command should be sent. When a message is recorded on the VR chip the device stores starting and ending points

which can be read via play and rec pointers. Alternatively, set_rec, set_play, and set_erase commands can be

implemented to record, play, and erase messages from memory location A to memory location B. This method

allows for more control over message length and can be used to optimize memory usage of the VR chip.

An integral part of the device involves the data received by the processor from the 3D accelerometer. One

major issue involved with accelerometers is the drift of baseline voltage: this baseline voltage will drift both with

age and orientation. To counter drift, an algorithm using a 16-point averaging filter can be used. The PIC will fill a

16-point array with 16 bytes of data from the ADC and then average the value (baseline voltage) of the sixteen

points. The sampling rate is set at 1150 Hz. Thus, the 16-point buffer represents a time frame of 14 ms. This

average value will then be able to act as threshold for motion detection, i.e. any peaks of voltage over the average

voltage plus some voltage (threshold) will cause the PIC to recognize motion and increment a scoring counter. This

array is then emptied and refilled periodically, allowing the threshold to change with the baseline voltage and any

possible drift that arises.

9

Another functional component of the Activity Analyzer algorithm is data storage: saving the scores and

messages played (with a time stamp) to be extracted and analyzed at the end of the day. However, the PIC18F452

is only comprised of 256 bytes of EEPROM, making one day’s worth of storage impossible, considering each score

would need 3 bytes: one for the score, one for the hour, and one for the minute. The solution to this problem was

to ‘split’ every bite in two, using the 4 most significant bits and 4 least significant bits individually. This, although

complex and tedious, allowed us to essentially double the memory storage capability of the processor while

maintaining a five-minute temporal resolution for the scoring algorithm.

Finally, the user can upload data from the EEPROM of the PIC onto a personal computer (PC) via the USB port. A

program on the PC, created by using the C# language, is able to take in all the data, split the incoming bytes, and

plot all the scores on a score vs. time scale. This allows the user to visualize the amount of exercise throughout the

day.

References

[1] P.M. Burbank and D. Riebe. Promoting Exercise and Behavior Change in Older Adults: Interventions and Transtheoretical

Model. NY: Springer, 2002.

[2] K. Rafferty, T. Alberg, H. Greene, Y. Sun, and P.M. Burbank. Development of an activity analyzer with voice directions for
exercises. 38th Annual Northeast Bioengineering Conference, Temple University, Philadelphia, PA, March 16-18, 2012.

[3] P.M Burbank,. Y Sun, and P.M. Burbank. Evaluation of the Device Effectiveness of the Activity Analyzer with Voice
Individualized Direction. 2012

PIC 18F452 Code
// __ /
// AAVID Project code: Version 1.0 /
// Instructor: Dr. Ying Sun
 /
// Contributors: Kyle Rafferty, Timothy Alberg, Ron Greene
/
// Completed: 18 August 2011
 /
// /
// The following code uses a PIC18f452 microcontroller and a ISD1750 /
// voice recording chip. This code establishes an accurate clock (gains approx/
// 1 second every 2.5 hours) and a series of menus that may be navigated by the/
// use of two push buttons, one for scroll and one for select. Menu features /
// include setting the clock, recording 8 messages, and the ability to program /
// times at which to play any of the first 7 messages (message 8 is the /
// reminder message and automatically plays after an hour of inactivity. /
// The PIC also has an algorithm to take in data from the accelerometer and /
// save it to the EEPROM. This save will be in the form of a score and a time /
// stamp (hour and minute). At the end of the day, the data can be retrieved /
// via usb to the AAVID GUI and will be plotted. Along with the motion data /
// being saved, the messages will also be saved to memory along with the time /

10

// they were played to see if there is any correlation to messages being played/
// and an increase in motion. We have also extensively commented the following /
// code in hopes that, if and when this code needs to be updated, it will be /
// understood and therefore easy to update.
 /
// Future work would include making functions for the redundant message code /
// (i.e. the same code copied 8 times for all 8 messages) and calling the /
// functions in the main to make the code more efficient. /
// __ /

// _______________________ Declare Chip Type to Compiler ________________________ /
#pragma chip PIC18f452
#define PU 0x8000
#define CLR_INT 0x2000
#define PD 0xE000
#define SET_PLAY 0x0100
#define SET_REC 0x8100
#define SET_ERASE 0x4100
#define message1_start 0x0800
#define message1_stop 0xEA00
#define message2_start 0x1A00
#define message2_stop 0x2500
#define message3_start 0xA500
#define message3_stop 0x8F00
#define message4_start 0x4F00
#define message4_stop 0x7C80
#define message5_start 0xFC80
#define message5_stop 0xEA80
#define message6_start 0x1A80
#define message6_stop 0xF680
#define message7_start 0x0E80
#define message7_stop 0xE180
#define message8_start 0x1180
#define message8_stop 0xF980
#define START_ADDR 0x00;
// ________________________ Define prototype functions __________________________ /
void _highPriorityInt (void);
char Read_adc(void);
void Delay_ms(char x);

// _____________________________ Global variables _______________________________ /
bit pm, message_timer, update_display, scroll, select, usb, replay, no_play, relay_flag, relay_flag1;
char second, minute, hour, message_timer_count_short, message_timer_count_long,
 button_delay, ad_input, scroll1;
uns8 relay_time, relay_time1;
unsigned long millisec, time_return, counter;

// _____________ Define High Priority Interrupt Service Routine _________________ /

11

#pragma origin 0x8
interrupt highPriorityInterrupt (void) {
 #pragma fastMode
 _highPriorityInt (); }
void _highPriorityInt (void) {
checkflags:
 if (TMR0IF == 1) {
 TMR0IE = 0;
 TMR0IF = 0;
 TMR0H = 0xFC;
 TMR0L = 0x36;
 ad_input = Read_adc();
 if(counter != 0) counter --;
 if (button_delay != 0) button_delay--;
 if (millisec < 999) millisec++;
 else if (second < 59){
 update_display = 1;
 millisec = 0;
 second++;
 relay_time++;
 relay_time1++;
 if (message_timer) {
 message_timer_count_short++;
 message_timer_count_long++; }
 else message_timer_count_short = message_timer_count_long = 0;}
 else if (minute < 59) {
 update_display = 1;
 millisec = 0;
 second = 0;
 minute++;
 no_play = 1;}
 else if (hour < 12) {
 update_display = 1;
 millisec = 0;
 second = 0;
 minute = 0;
 hour++;
 if (hour == 12) pm = !pm; }
 else {
 update_display = 1;
 millisec = 0;
 second = 0;
 minute = 0;
 hour = 1; }
 TMR0IE = 1; }
 if(INT0IF == 1){
 INT0IF = 0;
 if(button_delay == 0){

12

 usb = !usb;
 scroll = !scroll;
 button_delay = 200;
 goto checkflags;}}
 if(INT1IF == 1){
 INT1IF = 0;
 if(button_delay == 0){
 select = !select;
 button_delay = 200;
 goto checkflags;}}
 if(INT2IF == 1){
 INT2IF = 0;
 if(button_delay == 0){
 replay = !replay;
 button_delay = 200;
 goto checkflags;}}}

// __________________________ Define SetupADC Function __________________________ /
void Setup_adc (char channel) {
 TRISA = 0xFF;
 ADCON1 = 0x00;
 ADCON0 = (channel << 3) + 0x41;
 ADIE = 0;
 ADIF = 0; }

// __________________________ Define Read_adc Function __________________________ /
char Read_adc () {
 char adc_value;
 GO = 1;
 while(!ADIF) continue;
 adc_value = ADRESH;
 return adc_value; }

// _________________________ Define Setup_spi Function __________________________ /
void Setup_spi () {
 SSPEN = 0;
 SSPSTAT = 0xC0;
 SSPCON1 = 0x20;
 SSPIE = 0;
 TRISC = 0x90; }

// _______________________ Define Spi_read_byte Function ________________________ /
char Spi_read_byte () {
 char value;
 value = SSPBUF;
 return value; }

// _______________________ Define Spi_write_byte Function _______________________ /

13

void Spi_write_byte (char value) {
 SSPBUF = value;
 while (SSPIF == 0);
 SSPIF = 0; }

// ______________________ Define Spi_write_2bytes Function ______________________ /
void Spi_write_2bytes (unsigned long value) {
 char byte1, byte2;
 unsigned long value1, value2;
 value1 = value & 0xFF00;
 byte1 = value1 >> 8;
 value2 = value & 0x00FF;
 byte2 = value2;
 SSPBUF = byte1;
 while (SSPIF == 0);
 SSPIF = 0;
 SSPBUF = byte2;
 while (SSPIF == 0);
 SSPIF = 0; }

// ________________________ Define Setup_USART Function _________________________ /
void Setup_USART () {
 TRISC = 0x80;
 SPBRG = 25;
 TXEN = 1;
 SYNC = 0;
 CREN = 1;
 SPEN = 1;
 BRGH = 1; }

// _________________________ Define Transmit Function ___________________________ /
void Transmit (char value) {
 while (!TXIF) continue;
 TXREG = value;
 while (!TXIF) continue; }

// _______________________ Define Clear_screen Function _________________________ /
void Clear_screen () {
 Transmit (254);
 Transmit (0x01); }

// _________________________ Define Backlight Function __________________________ /
void Backlight (char state) {
 Transmit (124);
 if (state) Transmit (0x9D);
 else Transmit (0x81); }

// _______________________ Define Set_position Function _________________________ /

14

void Set_position (char position) {
 Transmit(254);
 Transmit(128 + position); }

// ________________________ Define Print_line Function __________________________ /
void Print_line (const * string, char num_chars) {
 char counter;
 for (counter = 0; counter < num_chars; counter++) Transmit (string [counter]); }

// _________________________ Define EEPROM READ _________________________________ /
char readEEPROM (void) {
 #asm //Command tells compiler following code is assembly
 BCF EECON1, EEPGD; //Clear bit 7 of EECON1 register: access EEPROM
 BCF EECON1, CFGS; //Clear bit 6 of EECON1 register: access EEPROM memory
 BSF EECON1, RD; //Set bit 0 of EECON1 register: initiates EEPROM read
 MOVF EEDATA, 0; //Move EEDATA from EEPROM memory into buffer register W
 #endasm //End assembly code
 return EEDATA; } //Return the value of EEDATA (data saved in memory)

// _________________________ Define EEPROM WRITE ________________________________ /
void writeEEPROM (char value) {
 EECON1 = 0x04; //EECON1 = 0000x0100: set WREN bit to allow write
 EEDATA = value; //Store EEDATA to buffer value
 GIE = 0; //Disable all interrupts: can't have write sequence interrupted
 EECON2 = 0x55; //Set EECON2 = 0101.0101 (0x55) and then EECON2 =
 EECON2 = 0xAA; //1010.1010 (AA) as handshake procedure
 WR = 1; //Set write bit = 1 to initiate write of value into memory
 WREN = 0; //End write sequence once write complete
 Delay_ms(10); //Allow time to complete
 GIE = 1; } //Enable global interrupts again

// _________________________ Define EEPROM Location Increment ____________________ /
char INCEEPROM (void) {
 #asm //Command tells compiler following code is assembly
 BCF EECON1, EEPGD; //Clear bit 7 of EECON1 register: access EEPROM
 BCF EECON1, CFGS; //Clear bit 6 of EECON1 register: access EEPROM memory
 BSF EECON1, RD; //Set bit 0 of EECON1 register: initiates EEPROM read
 MOVF EEDATA, 0; //Move EEDATA from EEPROM memory into buffer register W
 INCFSZ EEADR, 1; //Increment memory address
 #endasm //End assembly code
 return EEADR; } //Return EEADR

// _________________________ Define Specify Location Increment ___________________ /
char SpecifyEEPROM (char value) {
 EEADR = value; //Input hex value to move to that value in memory
 return EEADR; } //Ex: SpecifyEEPROM(0x05) will move EEADR to 0x05 in mem.

// ______________________ Define Print_2dig_num Function ________________________ /

15

void Print_2dig_num (char value, char position) {
 char tens, ones;
 Set_position (position);
 tens = value / 10;
 Transmit (tens + 48);
 position++;
 Set_position (position);
 ones = value - tens * 10;
 Transmit (ones + 48); }

// __________________________ Define Delay_ms Function _________________________ /
void Delay_ms (char x) {
 char y;
 for (; x > 0 ; x--)
 for (y = 0; y < 165 ; y++); }

// __________________________ Define Delay_sec Function _________________________ /
void Delay_sec (char x) {
 char magicmicro;
 unsigned long milli;
 for (;x > 0; x--)
 for (milli = 0; milli < 1000; milli++)
 for (magicmicro = 0; magicmicro < 158; magicmicro++); }

// __________________________ Define Set_time Function___________________________ /
void Set_time () {
 bit set_am_pm, am_pm_choice, set_hour, set_minute;
 char set_hour_mode, hour_choice, set_minute_mode, minute_choice;
 uns16 am_pm_selection, hour_selection, minute_selection;
 set_am_pm = 1;
 update_display = 1;
 am_pm_choice = set_hour = set_minute = 0;
 set_minute_mode = minute_choice = 0;
 am_pm_selection = minute_selection = 0;
 set_hour_mode = hour_choice = hour_selection = 12;
 while (set_am_pm) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Set AM/PM:", 9);
 Set_position (64);
 Print_line (" : m",9);
 Print_2dig_num (minute_selection,69);
 Print_2dig_num (hour_selection,66);
 Set_position (71);
 if (am_pm_choice) Print_line ("p",1);
 else Print_line ("a",1);
 update_display = 0; }

16

 if (scroll) {
 scroll = 0;
 am_pm_choice = !am_pm_choice;
 update_display = 1; }
 if (select) {
 select = 0;
 set_am_pm = 0;
 if (am_pm_choice) am_pm_selection = 1;
 else am_pm_selection = 0;
 am_pm_choice = 0;
 set_hour = 1;
 update_display = 1;}}
 while (set_hour) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Set Hours:", 10);
 hour_choice = set_hour_mode;
 Set_position (64);
 Print_line (" : m",9);
 Print_2dig_num (minute_selection,69);
 Print_2dig_num (hour_choice,66);
 Set_position (71);
 if (am_pm_selection == 1) Print_line ("p",1);
 else Print_line ("a",1);
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 set_hour_mode++;
 if (set_hour_mode == 13) set_hour_mode = 1;
 update_display = 1; }
 if (select) {
 select = 0;
 set_hour = 0;
 hour_selection = set_hour_mode;
 set_hour_mode = 1;
 set_minute = 1;
 update_display = 1;}}
 while (set_minute) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Set Minutes:", 12);
 minute_choice = set_minute_mode;
 Set_position (64);
 Print_line (" : m",9);
 Print_2dig_num (minute_choice,69);
 Print_2dig_num (hour_selection,66);

17

 Set_position (71);
 if (am_pm_selection == 1) Print_line ("p",1);
 else Print_line("a",1);
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 set_minute_mode++;
 if (set_minute_mode == 60) set_minute_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 set_minute = 0;
 minute_selection = set_minute_mode;
 set_minute_mode = 0;
 update_display = 1;}}
 am_pm_selection = am_pm_selection << 12;
 hour_selection = hour_selection << 8;
 time_return = am_pm_selection + hour_selection;
 time_return = time_return + minute_selection; }

// _________________________ Define Message_select Function _____________________ /
char Message_select() {
 bit message_select;
 char message_select_mode, message_selection;
 message_select = 1;
 message_select_mode = 0;
 while (message_select) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Select Message", 14);
 Set_position (64);
 if (message_select_mode == 0) Print_line ("Exit", 4);
 else {
 Print_line ("Message", 7);
 Print_2dig_num (message_select_mode, 73); }
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 message_select_mode++;
 if (message_select_mode == 8) message_select_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 message_select = 0;
 if (message_select_mode == 0) message_selection = 1;
 else message_selection = message_select_mode;
 update_display = 1; } }

18

 return message_selection; }

// ________________________ Define Play_message Function ________________________ /
void Play_message (unsigned long message_start, unsigned long message_stop) {
 PORTB.3 = relay_flag = 1;
 relay_time = 0;
 PORTD.0 = 0;
 Spi_write_2bytes (PU);
 PORTD.0 = 1;
 PORTD.0 = 0;
 Spi_write_2bytes (CLR_INT);
 PORTD.0 = 1;
 PORTD.0 = 0;
 Spi_write_2bytes (SET_PLAY);
 Spi_write_2bytes (message_start);
 Spi_write_2bytes (message_stop);
 Spi_write_byte (0x00);
 PORTD.0 = 1;
 PORTD.0 = 0;
 Spi_write_2bytes (PD);
 PORTD.0 = 1; }

// _______________________ Define Record_message Function _______________________ /
void Record_message (unsigned long message_start, unsigned long message_stop) {
 PORTD.0 = 0;
 Spi_write_2bytes (PU);
 PORTD.0 = 1;
 PORTD.0 = 0;
 Spi_write_2bytes (CLR_INT);
 PORTD.0 = 1;
 PORTD.0 = 0;
 Spi_write_2bytes (SET_REC);
 Spi_write_2bytes (message_start);
 Spi_write_2bytes (message_stop);
 Spi_write_byte (0x00);
 PORTD.0 = 1;
 PORTD.0 = 0;
 Spi_write_2bytes (PD);
 PORTD.0 = 1; }

// ________________________ Define Erase_message Function ________________________ /
void Erase_message (unsigned long message_start, unsigned long message_stop) {
 PORTD.0 = 0;
 Spi_write_2bytes (PU);
 PORTD.0 = 1;
 PORTD.0 = 0;
 Spi_write_2bytes (CLR_INT);
 PORTD.0 = 1;

19

 PORTD.0 = 0;
 Spi_write_2bytes (SET_ERASE);
 Spi_write_2bytes (message_start);
 Spi_write_2bytes (message_stop);
 Spi_write_byte (0x00);
 PORTD.0 = 1;
 PORTD.0 = 0;
 Spi_write_2bytes (PD);
 PORTD.0 = 1; }

// ________________________________ main program ________________________________ /
void main () {
 T0CON = 0x88;
 INTCON = 0xA0;
 TRISB = 0x07;
 TRISD = 0x00;
 INTEDG0 = INTEDG1 = INTEDG2 = 0;
 INT0IE = INT1IE = INT2IE = 1;
 Setup_adc(0);
 char i, hour1, minute1, ARHG, array[16], motion, data, data0, data1, score,
 messagenum, exercise, messageaddr, messageaddr1, messageaddr2, next_mess;
 uns8 set_sensitivity_mode;
 unsigned long average, threshold, total;
 bit low, medium, high, set_sensitivity;
 bit TimeF, baseline, mincheck, exercise1f, exercise2f, stop_save;
 bit play1, play2, play3, play4, play5, play6, play7, play8, messageplay;
 uns16 replay_count, exercisecounter;
 total = average = threshold = button_delay = 0;
 motion = baseline = mincheck = usb = TimeF = 0;
 data = data0 = data1 = counter = next_mess = hour1 = minute1 = exercise = scroll1 = 0;
 low = medium = high = set_sensitivity = 0;
 bit clock, main_menu, set_clock,
 set_play_times, edit_messages, message, view_data, message_edit_timer,
 play_time1, play_time1_clock, play_time1_message_select, play_time1_pm,
 play_time2, play_time2_clock, play_time2_message_select, play_time2_pm,
 play_time3, play_time3_clock, play_time3_message_select, play_time3_pm,
 play_time4, play_time4_clock, play_time4_message_select, play_time4_pm,
 play_time5, play_time5_clock, play_time5_message_select, play_time5_pm,
 play_time6, play_time6_clock, play_time6_message_select, play_time6_pm,
 play_time7, play_time7_clock, play_time7_message_select, play_time7_pm,
 play_time8, play_time8_clock, play_time8_message_select, play_time8_pm,
 start_edit, slot1, slot2, slot3, slot4, slot5, slot6, slot7, slot8;
 char main_menu_mode, set_play_times_mode,
 play_time1_mode, play_time1_hour, play_time1_minute,
play_time1_message_selection,
 play_time2_mode, play_time2_hour, play_time2_minute,
play_time2_message_selection,

20

 play_time3_mode, play_time3_hour, play_time3_minute,
play_time3_message_selection,
 play_time4_mode, play_time4_hour, play_time4_minute,
play_time4_message_selection,
 play_time5_mode, play_time5_hour, play_time5_minute,
play_time5_message_selection,
 play_time6_mode, play_time6_hour, play_time6_minute,
play_time6_message_selection,
 play_time7_mode, play_time7_hour, play_time7_minute,
play_time7_message_selection,
 play_time8_mode, play_time8_hour, play_time8_minute,
play_time8_message_selection,
 edit_messages_mode, message_mode,
 view_data_mode, dummy_delay, start_byte1, start_byte2, end_byte1, end_byte2;
 unsigned long time, time_pm_copy, edit_message_start, edit_message_stop;
 edit_message_start = edit_message_stop = 0;
 scroll = select = main_menu = set_clock = pm =
 set_play_times = edit_messages = message = message_edit_timer = 0;
 view_data = play_time1 = play_time2 = play_time3 = play_time4 = play_time5 = play_time6 =
play_time7 = play_time8 =
 play_time1_clock = play_time1_message_select = play_time2_clock = 0;
 play_time2_message_select = play_time3_clock =
 play_time3_message_select = play_time4_clock =
 play_time4_message_select = play_time5_clock =
 play_time5_message_select = play_time6_clock =
 play_time6_message_select = play_time7_clock =
 play_time7_message_select = play_time8_clock =
 play_time8_message_select = 0;
 clock = slot1 = slot2 = slot3 = slot4 = slot5 = slot6 = slot7 = slot8 = 1;
 main_menu_mode = set_play_times_mode = set_play_times_mode =
 edit_messages_mode = play_time1_mode = messagenum = 0;
 play1 = play2 = play3 = play4 = play5 = play6 = play7 = play8 = exercise1f = exercise2f = 0;
 replay_count = exercisecounter = 0;
 replay = messageplay = relay_flag = relay_flag1 = 0;
 set_sensitivity_mode = 0;
 ///Set Clock///
 hour = 12;
 minute = 4;
 second = 30;
 ///////////////
 messageaddr = messageaddr1 = messageaddr2 = 0x00;
 play_time1_minute = play_time1_message_selection =
 play_time2_mode = play_time2_minute = play_time2_message_selection = 0;
 play_time3_mode = play_time3_minute = play_time3_message_selection = 0;
 play_time4_mode = play_time4_minute = play_time4_message_selection = 0;
 play_time5_mode = play_time5_minute = play_time5_message_selection = 0;
 play_time6_mode = play_time6_minute = play_time6_message_selection = 0;
 play_time7_mode = play_time7_minute = play_time7_message_selection = 0;

21

 play_time8_mode = play_time8_minute = play_time8_message_selection = 0;
 message_mode = message_timer_count_short = message_timer_count_long = 0;
 view_data_mode = 0;
 play_time1_hour = play_time2_hour = play_time3_hour = play_time4_hour =
 play_time5_hour = play_time6_hour = play_time7_hour = play_time8_hour = 12;
 time = 0;
 no_play = 1;
 stop_save = 0;
 Setup_USART();
 Backlight(0);
 Setup_spi();
 Delay_sec (2);
 Clear_screen();
 Set_position(0);
 Print_line(" URI BME 2011", 13);
 Set_position(64);
 Print_line(" AAVID Project", 14);
 Delay_sec (2);
 PORTB.3 = 0;

// ____________________ Return to last mem. loc. if turn off___________________ /
//When the device powers on after being turned off, we want to make sure we return
//to the correct spot in memory so as not to lose any data that may be already
//saved into the EEPROM. To do this, we read in the values stored into memory
//from 3 different locations; 0x00, 0xFE, and 0xFF. If all three values are 0xFF,
//then we know there is nothing saved to memory, and we make the pointer value
//(mem loc 0xFF) equal to 0x00. If mem loc 0xFF equals 0xFF and memory locations
//0x00 and 0xFE do not (i.e. there is data stored there) then we can assume that
//the memory is full and has not been erased. We notify the user of this and do
//save anything to memory until the user has erased memory. Lastly, it could just
//be that the device turned off. If this is the case, we return to the mem loc that
//the pointer is pointing to.
 SpecifyEEPROM(0xFF);
 messageaddr = readEEPROM();
 Delay_ms(100);
 SpecifyEEPROM(0x00);
 messageaddr1 = readEEPROM();
 Delay_ms(100);
 SpecifyEEPROM(0xFE);
 messageaddr2 = readEEPROM();
 if (messageaddr == 0xFF && messageaddr1 == 0xFF && messageaddr2 == 0xFF){
 SpecifyEEPROM(0xFF);
 writeEEPROM(0x00);
 SpecifyEEPROM(0x00);
 messageaddr = 0x00;}
 else if ((messageaddr == 0xFF) && (messageaddr1 != 0xFF) && (messageaddr2 != 0xFF))
stop_save = 1;
 else SpecifyEEPROM(messageaddr);

22

// ____________________________ Start of While Loop ___________________________ /
 while(1) {
 PORTD.3 = 0; //PORTD.2 and PORTD.3 are for Digital Switch: This allows
 PORTD.2 = 1; //for usb upload as both LCD and usb use same line from PIC
 if (messageplay == 1) replay_count ++;

// ___________________ Turn off PORTB when no message play ____________________ /
 if (relay_flag == 1 && relay_flag1 == 0) {
 if (relay_time > 20) {
 PORTB.3 = 0;
 relay_flag = relay_flag1 = 0;}}
 if (relay_flag == 1 && relay_flag1 == 1) {
 if (relay_time > 120) {
 PORTB.3 = 0;
 relay_flag = relay_flag1 = 0;}}
// if (relay_flag == 1){
// relay_time = 0;
// if (relay_time > 20){PORTB.3 = relay_flag = 0;}}
// if (relay_flag1 == 1){
// PORTB.3 = 1;
// relay_time1 = 0;
// if (relay_time1 > 120){PORTB.3 = relay_flag1 = 0;}}

// __________________ Stop saving to memory when reach 0xFF ___________________ /
//If data storage ever reaches memory location 0xFF, we want to stop it from
//saving anything else to memory as it will wrap around to 0x00 and overwrite
//any previous memory. Bit stop_save has to be 0 to save anythinf to memory.
 if
((minute==1||minute==6||minute==11||minute==16||minute==21||minute==26||minute==31||min
ute==36||minute==41||
 minute==46||minute==51||minute==56)&&second==30){
 readEEPROM();
 messageaddr = EEADR;
 if (messageaddr == 0xFF) stop_save = 1;}

// ____________________________ Setup for Scoring _____________________________ /
//Motion detection algorithm: Every few seconds, a 16 point array will be populated
//with 16 consecutive data points from the accelerometer. These points are then
//averaged into the value 'average'. We then compare all incoming data to this
//average and compare it to a threshold. If data is 3 points higher than threshold,
//then we increase motion counter. This algorithm takes drift of accelerometer into
//account as average is constantly recalculated around the current acc. data
 if(counter == 0){
 total = 0;
 for(i=0; i<16; i++) array[i] = ad_input;
 for(i=0; i<16; i++) total += array[i];
 average = total/16;

23

 counter = 250; }
 data0 = ad_input;
 threshold = average + 3;
 if(data0 < threshold)baseline = 0;
 if((data0 > threshold) && baseline == 0){
 baseline = 1;
 motion++;
 Delay_ms(70); }

 if((minute==1||minute==6||minute==11||minute==16||minute==21||minute==26||minute==
31||minute==36||minute==41||
 minute==46||minute==51||minute==56)&&TimeF==1)TimeF = exercise2f = 0;

// ____________________________ Score/Save Motion _____________________________ /
//Save to memory every minutes: we had to choose five minute resolution for mem.
//space reasons. Every time we save data to memory, we need to save the score,
//hour, and minute for data analysis at the end of the day. The EEPROM of the
//PIC has 256 bytes of memory. Using a full byte of memory for score, hour, and
//minute would only allow for 7 hours of storage. To get around this, we created
//an algorithm that only uses half of a byte for each, or one and a half bytes
//per storage which doubles the memory storage capability.

 if((minute==0||minute==5||minute==10||minute==15||minute==20||minute==25||minute==
30||minute==35||minute==40||
 minute==45||minute==50||minute==55)&& TimeF==0 && stop_save == 0){
 TimeF = 1; //Flag used to make sure we only save data once
 counter = 0;
 Delay_ms(70);
//The following are different sensitivity settings for people with more motion
 if (high == 0 && medium == 0 && low == 0) high = 1;
 if (high == 1){
 if(motion >= 0 && motion <= 30) motion = 1;
 if(motion > 30 && motion <= 60) motion = 2;
 if(motion > 60 && motion <= 90) motion = 3;
 if(motion > 90 && motion <= 120) motion = 4;
 if(motion > 120 && motion <= 150) motion = 5;
 if(motion > 150 && motion <= 180) motion = 6;
 if(motion > 180 && motion <= 210) motion = 7;
 if(motion > 210 && motion <= 240) motion = 8;
 if(motion > 240 && motion <= 270) motion = 9;
 if(motion > 270) motion = 10;
 score = motion;}
 if (medium == 1){
 if(motion >= 0 && motion <= 45) motion = 1;
 if(motion > 45 && motion <= 90) motion = 2;
 if(motion > 90 && motion <= 135) motion = 3;
 if(motion > 135 && motion <= 180) motion = 4;
 if(motion > 180 && motion <= 225) motion = 5;

24

 if(motion > 225 && motion <= 270) motion = 6;
 if(motion > 270 && motion <= 315) motion = 7;
 if(motion > 315 && motion <= 360) motion = 8;
 if(motion > 360 && motion <= 405) motion = 9;
 if(motion > 405) motion = 10;
 score = motion;}
 if (low == 1){
 if(motion >= 0 && motion <= 60) motion = 1;
 if(motion > 60 && motion <= 120) motion = 2;
 if(motion > 120 && motion <= 180) motion = 3;
 if(motion > 180 && motion <= 240) motion = 4;
 if(motion > 240 && motion <= 300) motion = 5;
 if(motion > 300 && motion <= 360) motion = 6;
 if(motion > 360 && motion <= 420) motion = 7;
 if(motion > 420 && motion <= 480) motion = 8;
 if(motion > 480 && motion <= 540) motion = 9;
 if(motion > 540) motion = 10;
 score = motion;}
//The following code is used to determine what should be save to memory and
//the actual saving of that data. Explaining how it works can be complicated
//so the variables are named to to represent their function. Going through
//the code and writing a flow chart is the best way to understand what is
//being done. There is a lot of manipulation of memory and data to break the
//bytes in memory in half. Also, it should be noted that the scores and times
//are stored in decimal form. This allowed us to debug more efficiently as we
//did not have to convert everything from hex to decimal. Last note: The mem.
//is stored as follows: score, hour, minute. to find the minute, multiply
//whatever is stored in memory by five.
//Example from memory: 1C 34 C4. This would mean that their was a score of 1
//at 12 (C) fifteen (3*5) and a score of 4 at 12 (C) 20 (4*5)
 readEEPROM();
 if(EEDATA == 255){
 mincheck = 0;
 hour1 = hour; minute1 = minute;
 if(score == 1) score = 16;
 if(score == 2) score = 32;
 if(score == 3) score = 48;
 if(score == 4) score = 64;
 if(score == 5) score = 80;
 if(score == 6) score = 96;
 if(score == 7) score = 112;
 if(score == 8) score = 128;
 if(score == 9) score = 144;
 if(score == 10) score = 160;
 data = score + hour1;
 if(score == 16) exercise++; }
 if(EEDATA != 255){
 mincheck = 1;

25

 hour1 = hour; minute1 = minute;
 readEEPROM();
 data = (EEDATA - 15) + score;
 if(score == 1) exercise++; }
 writeEEPROM(data);
 Delay_ms(100);
 INCEEPROM();
 Delay_ms(100);
 readEEPROM();
 if(EEDATA == 255 && mincheck == 0){
 hour1 = hour; minute1 = minute;
 if(minute1 == 0) minute1 = 15;
 if(minute1 == 5) minute1 = 31;
 if(minute1 == 10) minute1 = 47;
 if(minute1 == 15) minute1 = 63;
 if(minute1 == 20) minute1 = 79;
 if(minute1 == 25) minute1 = 95;
 if(minute1 == 30) minute1 = 111;
 if(minute1 == 35) minute1 = 127;
 if(minute1 == 40) minute1 = 143;
 if(minute1 == 45) minute1 = 159;
 if(minute1 == 50) minute1 = 175;
 if(minute1 == 55) minute1 = 191;
 data = minute1; }
 if(EEDATA == 255 && mincheck == 1){
 hour1 = hour; minute1 = minute;
 if(hour1 == 1) hour1 = 16;
 if(hour1 == 2) hour1 = 32;
 if(hour1 == 3) hour1 = 48;
 if(hour1 == 4) hour1 = 64;
 if(hour1 == 5) hour1 = 80;
 if(hour1 == 6) hour1 = 96;
 if(hour1 == 7) hour1 = 112;
 if(hour1 == 8) hour1 = 128;
 if(hour1 == 9) hour1 = 144;
 if(hour1 == 10) hour1 = 160;
 if(hour1 == 11) hour1 = 176;
 if(hour1 == 12) hour1 = 192;
 if(minute1 == 0) minute1 = 0;
 if(minute1 == 5) minute1 = 1;
 if(minute1 == 10) minute1 = 2;
 if(minute1 == 15) minute1 = 3;
 if(minute1 == 20) minute1 = 4;
 if(minute1 == 25) minute1 = 5;
 if(minute1 == 30) minute1 = 6;
 if(minute1 == 35) minute1 = 7;
 if(minute1 == 40) minute1 = 8;
 if(minute1 == 45) minute1 = 9;

26

 if(minute1 == 50) minute1 = 10;
 if(minute1 == 55) minute1 = 11;
 data1 = hour1 + minute1; }
 if(mincheck == 0)writeEEPROM(data);
 if(mincheck == 1){
 writeEEPROM(data1);
 Delay_ms(100);
 INCEEPROM(); }
 messageaddr = EEADR;
 SpecifyEEPROM(0xFF);
 Delay_ms(100);
 writeEEPROM(messageaddr);
 Delay_ms(100);
 SpecifyEEPROM(messageaddr);
 Delay_ms(100);
 motion = 0; }

//_________________________Play message if no motion/1 hr________________________ /
//Everytime the PIC stores a score of 1 to memory, the exercise counter is incremented.
//If ever exercise is greater than 11 (or one hour of no motion), then message 8
//will be played as a reminder to exercise. If played, the message number will be
//saved to memory. To differentiate motion data from message data in the EEPROM, an
//FF will always preceed the message in memory. For Ex: 11 01 11 FF 83 12 FF ...
//This would say score of 1 @ 1:00, 1 @ 1:05, then message 8 was played sometime
//@ 1:05, and the motion then went up to 3 @ 1:10. If, however, their is exercise
//within the hour (i.e. score > 1), the exercise counter will be reset to 0.
//*Note: their are several flags in this code (exercise1f & exercise2f) to make sure
//the message is only played once. For more information on how this done, you will
//need to trace them through the code.
 if (exercise > 11){
 exercise1f = 1;
 exercisecounter++;}
 if (exercisecounter == 1) exercise2f = 1;
 if (exercisecounter != 1) exercise2f = 0;
 if (exercise > 11 && exercise1f == 1 && exercise2f == 1 && stop_save == 0 &&
(minute==0||minute==5||minute==10||minute==15||

 minute==20||minute==25||minute==30||minute==35||minute==40||minute==45||minute==
50||minute==55)){
 Delay_ms(100);
 exercise2f = 0;
 Play_message (message8_start, message8_stop);
 messageaddr = EEADR;
 SpecifyEEPROM(0xFF);
 Delay_ms(100);
 writeEEPROM(messageaddr);
 Delay_ms(100);
 SpecifyEEPROM(messageaddr);

27

 readEEPROM();
 if(EEDATA == 255){
 INCEEPROM();
 data = 143;
 Delay_ms(100);
 writeEEPROM(data);}
 if(EEDATA != 255){
 INCEEPROM();
 data = 248;
 writeEEPROM(data);
 Delay_ms(100);
 INCEEPROM();}}

//_________________________Reset Exercise Counter to Zero________________________ /
 if (score > 1) exercise = exercise1f = exercisecounter = 0;

// ____________________________ if (clock) sequence _____________________________ /
 if (clock) {
 if (update_display) {
 Clear_screen();
 Set_position(0);
 Print_line(" Clock Mode",12);
 Set_position(64);
 Print_line(" : : m",12);
 Print_2dig_num(second,72);
 Print_2dig_num(minute,69);
 Print_2dig_num(hour,66);
 Set_position(74);
 if (pm) Print_line ("p",1);
 else Print_line("a",1);
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 clock = 0;
 main_menu = 1;
 update_display = 1; }
 if (select) {
 select = 0;
 clock = 0;
 main_menu = 1;
 update_display = 1;}}

// ___________________________ if (main_menu) sequence __________________________ /
 if (main_menu) {
 if (update_display) {
 Clear_screen();
 Set_position(0);
 Print_line("Main Menu", 9);

28

 Set_position(64);
 switch (main_menu_mode) {
 case 0:
 Print_line("Exit", 4);
 break;
 case 1:
 Print_line("Set Clock", 9);
 break;
 case 2:
 Print_line("Edit Play Times", 14);
 break;
 case 3:
 Print_line("Edit Messages", 13);
 break;
 case 4:
 Print_line("USB Data Upload", 15);
 break;
 case 5:
 Print_line("Erase Memory", 12);
 break;
 case 6:
 Print_line("Sensitivity", 11);
 break;}
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 main_menu_mode++;
 if (main_menu_mode == 7) main_menu_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 main_menu = 0;
 switch (main_menu_mode) {
 case 0:
 clock = 1;
 break;
 case 1:
 set_clock = 1;
 break;
 case 2:
 set_play_times = 1;
 break;
 case 3:
 edit_messages = 1;
 break;
 case 4:
 Clear_screen();
 Set_position(0);

29

 Print_line("Sending Data...", 15);
 while(EEADR != 0xFF){
 PORTD.3 = 1;
 PORTD.2 = 0;
 Delay_ms(10);
 ARHG = readEEPROM();
 Transmit(ARHG);
 INCEEPROM(); }
 Delay_ms(10);
 SpecifyEEPROM(0x00);
 usb = 0;
 main_menu = 1;
 break;
 case 5:
 Clear_screen();
 Set_position(0);
 Print_line("Erasing...", 10);
 SpecifyEEPROM(0x00);
 while(EEADR != 0xFF){
 writeEEPROM(0xFF);
 INCEEPROM();}
 SpecifyEEPROM(0xFF);
 writeEEPROM(0x00);
 SpecifyEEPROM(0x00);
 messageaddr = 0x00;
 stop_save = 0;
 main_menu = 1;
 break;
 case 6:
 set_sensitivity = 1;
 break;}
 main_menu_mode = 0;
 update_display = 1;}}

// __________________________ if (set_clock) sequence ___________________________ /
 if (set_clock) {
 Set_time();
 time_pm_copy = time_return >> 12;
 if (time_pm_copy == 1) pm = 1;
 else pm = 0;
 hour = time_return >> 8;
 hour = hour & 0x0F;
 minute = time_return;
 minute = time_return & 0x3F;
 second = 0;
 set_clock = 0;
 main_menu = 1;
 update_display = 1;}

30

// _____________________ if (set_play_times) sequence ___________________________ /
 if (set_play_times) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 switch (set_play_times_mode) {
 case 0:
 Print_line ("Edit Play Times", 15);
 Set_position (64);
 Print_line ("Exit", 4);
 break;
 case 1:
 Print_line ("Edit Play Time 1", 16);
 Set_position (64);
 Print_line (" : m",7);
 Print_2dig_num (play_time1_minute,67);
 Print_2dig_num (play_time1_hour,64);
 Set_position (69);
 if (play_time1_pm == 1) Print_line ("p",1);
 else Print_line("a",1);
 Set_position (74);
 Print_line ("Msg", 3);
 Print_2dig_num (play_time1_message_selection, 78);
 break;
 case 2:
 Print_line ("Edit Play Time 2", 16);
 Set_position (64);
 Print_line (" : m",7);
 Print_2dig_num (play_time2_minute,67);
 Print_2dig_num (play_time2_hour,64);
 Set_position (69);
 if (play_time2_pm == 1) Print_line ("p",1);
 else Print_line("a",1);
 Set_position (74);
 Print_line ("Msg", 3);
 Print_2dig_num (play_time2_message_selection, 78);
 break;
 case 3:
 Print_line ("Edit Play Time 3", 16);
 Set_position (64);
 Print_line (" : m",7);
 Print_2dig_num (play_time3_minute,67);
 Print_2dig_num (play_time3_hour,64);
 Set_position (69);
 if (play_time3_pm == 1) Print_line ("p",1);
 else Print_line("a",1);
 Set_position (74);

31

 Print_line ("Msg", 3);
 Print_2dig_num (play_time3_message_selection, 78);
 break;
 case 4:
 Print_line ("Edit Play Time 4", 16);
 Set_position (64);
 Print_line (" : m",7);
 Print_2dig_num (play_time4_minute,67);
 Print_2dig_num (play_time4_hour,64);
 Set_position (69);
 if (play_time4_pm == 1) Print_line ("p",1);
 else Print_line("a",1);
 Set_position (74);
 Print_line ("Msg", 3);
 Print_2dig_num (play_time4_message_selection, 78);
 break;
 case 5:
 Print_line ("Edit Play Time 5", 16);
 Set_position (64);
 Print_line (" : m",7);
 Print_2dig_num (play_time5_minute,67);
 Print_2dig_num (play_time5_hour,64);
 Set_position (69);
 if (play_time5_pm == 1) Print_line ("p",1);
 else Print_line("a",1);
 Set_position (74);
 Print_line ("Msg", 3);
 Print_2dig_num (play_time5_message_selection, 78);
 break;
 case 6:
 Print_line ("Edit Play Time 6", 16);
 Set_position (64);
 Print_line (" : m",7);
 Print_2dig_num (play_time6_minute,67);
 Print_2dig_num (play_time6_hour,64);
 Set_position (69);
 if (play_time6_pm == 1) Print_line ("p",1);
 else Print_line("a",1);
 Set_position (74);
 Print_line ("Msg", 3);
 Print_2dig_num (play_time6_message_selection, 78);
 break;
 case 7:
 Print_line ("Edit Play Time 7", 16);
 Set_position (64);
 Print_line (" : m",7);
 Print_2dig_num (play_time7_minute,67);
 Print_2dig_num (play_time7_hour,64);

32

 Set_position (69);
 if (play_time7_pm == 1) Print_line ("p",1);
 else Print_line("a",1);
 Set_position (74);
 Print_line ("Msg", 3);
 Print_2dig_num (play_time7_message_selection, 78);
 break;
 case 8:
 Print_line ("Edit Play Time 8", 16);
 Set_position (64);
 Print_line (" : m",7);
 Print_2dig_num (play_time8_minute,67);
 Print_2dig_num (play_time8_hour,64);
 Set_position (69);
 if (play_time8_pm == 1) Print_line ("p",1);
 else Print_line("a",1);
 Set_position (74);
 Print_line ("Msg", 3);
 Print_2dig_num (play_time8_message_selection, 78);
 break; }
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 set_play_times_mode++;
 if (set_play_times_mode == 9) set_play_times_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 set_play_times = 0;
 switch (set_play_times_mode) {
 case 0:
 main_menu = 1;
 break;
 case 1:
 play_time1 = 1;
 break;
 case 2:
 play_time2 = 1;
 break;
 case 3:
 play_time3 = 1;
 break;
 case 4:
 play_time4 = 1;
 break;
 case 5:
 play_time5 = 1;
 break;

33

 case 6:
 play_time6 = 1;
 break;
 case 7:
 play_time7 = 1;
 break;
 case 8:
 play_time8 = 1;
 break;}
 set_play_times_mode = 0;
 update_display = 1;}}

// ________________________ if (play_time1) sequence ____________________________ /
 if (play_time1) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Edit Play Time 1", 16);
 Set_position (64);
 if (play_time1_mode == 0) Print_line ("Exit", 4);
 else if (play_time1_mode == 1) Print_line ("Edit Time", 9);
 else Print_line ("Select Message", 14);
 update_display = 0;}
 if (scroll) {
 scroll = 0;
 play_time1_mode++;
 if (play_time1_mode == 3) play_time1_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 play_time1 = 0;
 if (play_time1_mode == 0) set_play_times = 1;
 else if (play_time1_mode == 1) play_time1_clock = 1;
 else play_time1_message_select = 1;
 play_time1_mode = 0;
 update_display = 1;}}

// ________________________ if (play_time1_clock) sequence ______________________ /
 if (play_time1_clock) {
 Set_time();
 time_pm_copy = time_return >> 12;
 if (time_pm_copy == 1) play_time1_pm = 1;
 else play_time1_pm = 0;
 play_time1_hour = time_return >> 8;
 play_time1_hour = play_time1_hour & 0x0F;
 play_time1_minute = time_return;
 play_time1_minute = time_return & 0x3F;
 play_time1_clock = 0;

34

 play_time1 = 1;
 update_display = 1; }

// ____________________ if (play_time1_message_select) sequence _________________ /
 if (play_time1_message_select) {
 play_time1_message_selection = Message_select();
 play_time1_message_select = 0;
 play_time1 = 1; }

// _________________________ if (play_time2) sequence ___________________________ /
 if (play_time2) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Edit Play Time 2", 16);
 Set_position (64);
 if (play_time2_mode == 0) Print_line ("Exit", 4);
 else if (play_time2_mode == 1) Print_line ("Edit Time", 9);
 else Print_line ("Select Message", 14);
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 play_time2_mode++;
 if (play_time2_mode == 3) play_time2_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 play_time2 = 0;
 if (play_time2_mode == 0) set_play_times = 1;
 else if (play_time2_mode == 1) play_time2_clock = 1;
 else play_time2_message_select = 1;
 play_time2_mode = 0;
 update_display = 1;}}

// ________________________ if (play_time2_clock) sequence ______________________ /
 if (play_time2_clock) {
 Set_time();
 time_pm_copy = time_return >> 12;
 if (time_pm_copy == 1) play_time2_pm = 1;
 else play_time2_pm = 0;
 play_time2_hour = time_return >> 8;
 play_time2_hour = play_time2_hour & 0x0F;
 play_time2_minute = time_return;
 play_time2_minute = time_return & 0x3F;
 play_time2_clock = 0;
 play_time2 = 1;
 update_display = 1; }

35

// ____________________ if (play_time2_message_select) sequence _________________ /
 if (play_time2_message_select) {
 play_time2_message_selection = Message_select();
 play_time2_message_select = 0;
 play_time2 = 1; }

// _________________________ if (play_time3) sequence ___________________________ /
 if (play_time3) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Edit Play Time 3", 16);
 Set_position (64);
 if (play_time3_mode == 0) Print_line ("Exit", 4);
 else if (play_time3_mode == 1) Print_line ("Edit Time", 9);
 else Print_line ("Select Message", 14);
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 play_time3_mode++;
 if (play_time3_mode == 3) play_time3_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 play_time3 = 0;
 if (play_time3_mode == 0) set_play_times = 1;
 else if (play_time3_mode == 1) play_time3_clock = 1;
 else play_time3_message_select = 1;
 play_time3_mode = 0;
 update_display = 1;}}

// ________________________ if (play_time3_clock) sequence ______________________ /
 if (play_time3_clock) {
 Set_time();
 time_pm_copy = time_return >> 12;
 if (time_pm_copy == 1) play_time3_pm = 1;
 else play_time3_pm = 0;
 play_time3_hour = time_return >> 8;
 play_time3_hour = play_time3_hour & 0x0F;
 play_time3_minute = time_return;
 play_time3_minute = time_return & 0x3F;
 play_time3_clock = 0;
 play_time3 = 1;
 update_display = 1; }

// ____________________ if (play_time3_message_select) sequence _________________ /
 if (play_time3_message_select) {
 play_time3_message_selection = Message_select();

36

 play_time3_message_select = 0;
 play_time3 = 1; }

// __________________________ if (play_time4) sequence __________________________ /
 if (play_time4) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Edit Play Time 4", 16);
 Set_position (64);
 if (play_time4_mode == 0) Print_line ("Exit", 4);
 else if (play_time4_mode == 1) Print_line ("Edit Time", 9);
 else Print_line ("Select Message", 14);
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 play_time4_mode++;
 if (play_time4_mode == 3) play_time4_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 play_time4 = 0;
 if (play_time4_mode == 0) set_play_times = 1;
 else if (play_time4_mode == 1) play_time4_clock = 1;
 else play_time4_message_select = 1;
 play_time4_mode = 0;
 update_display = 1;}}

// ________________________ if (play_time4_clock) sequence ______________________ /
 if (play_time4_clock) {
 Set_time();
 time_pm_copy = time_return >> 12;
 if (time_pm_copy == 1) play_time4_pm = 1;
 else play_time4_pm = 0;
 play_time4_hour = time_return >> 8;
 play_time4_hour = play_time4_hour & 0x0F;
 play_time4_minute = time_return;
 play_time4_minute = time_return & 0x3F;
 play_time4_clock = 0;
 play_time4 = 1;
 update_display = 1; }

// ____________________ if (play_time4_message_select) sequence _________________ /
 if (play_time4_message_select) {
 play_time4_message_selection = Message_select();
 play_time4_message_select = 0;
 play_time4 = 1; }

37

// ________________________ if (play_time5) sequence ____________________________ /
 if (play_time5) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Edit Play Time 5", 16);
 Set_position (64);
 if (play_time5_mode == 0) Print_line ("Exit", 4);
 else if (play_time5_mode == 1) Print_line ("Edit Time", 9);
 else Print_line ("Select Message", 14);
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 play_time5_mode++;
 if (play_time5_mode == 3) play_time5_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 play_time5 = 0;
 if (play_time5_mode == 0) set_play_times = 1;
 else if (play_time5_mode == 1) play_time5_clock = 1;
 else play_time5_message_select = 1;
 play_time5_mode = 0;
 update_display = 1;}}

// ________________________ if (play_time5_clock) sequence ______________________ /
 if (play_time5_clock) {
 Set_time();
 time_pm_copy = time_return >> 12;
 if (time_pm_copy == 1) play_time5_pm = 1;
 else play_time5_pm = 0;
 play_time5_hour = time_return >> 8;
 play_time5_hour = play_time5_hour & 0x0F;
 play_time5_minute = time_return;
 play_time5_minute = time_return & 0x3F;
 play_time5_clock = 0;
 play_time5 = 1;
 update_display = 1; }

// ____________________ if (play_time5_message_select) sequence _________________ /
 if (play_time5_message_select) {
 play_time5_message_selection = Message_select();
 play_time5_message_select = 0;
 play_time5 = 1; }

// ________________________ if (play_time6) sequence ____________________________ /
 if (play_time6) {
 if (update_display) {

38

 Clear_screen ();
 Set_position (0);
 Print_line ("Edit Play Time 6", 16);
 Set_position (64);
 if (play_time6_mode == 0) Print_line ("Exit", 4);
 else if (play_time6_mode == 1) Print_line ("Edit Time", 9);
 else Print_line ("Select Message", 14);
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 play_time6_mode++;
 if (play_time6_mode == 3) play_time6_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 play_time6 = 0;
 if (play_time6_mode == 0) set_play_times = 1;
 else if (play_time6_mode == 1) play_time6_clock = 1;
 else play_time6_message_select = 1;
 play_time6_mode = 0;
 update_display = 1;}}

// ________________________ if (play_time6_clock) sequence ______________________ /
 if (play_time6_clock) {
 Set_time();
 time_pm_copy = time_return >> 12;
 if (time_pm_copy == 1) play_time6_pm = 1;
 else play_time6_pm = 0;
 play_time6_hour = time_return >> 8;
 play_time6_hour = play_time6_hour & 0x0F;
 play_time6_minute = time_return;
 play_time6_minute = time_return & 0x3F;
 play_time6_clock = 0;
 play_time6 = 1;
 update_display = 1; }

// ____________________ if (play_time6_message_select) sequence _________________ /
 if (play_time6_message_select) {
 play_time6_message_selection = Message_select();
 play_time6_message_select = 0;
 play_time6 = 1; }

// ________________________ if (play_time7) sequence ____________________________ /
 if (play_time7) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Edit Play Time 7", 16);

39

 Set_position (64);
 if (play_time7_mode == 0) Print_line ("Exit", 4);
 else if (play_time7_mode == 1) Print_line ("Edit Time", 9);
 else Print_line ("Select Message", 14);
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 play_time7_mode++;
 if (play_time7_mode == 3) play_time7_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 play_time7 = 0;
 if (play_time7_mode == 0) set_play_times = 1;
 else if (play_time7_mode == 1) play_time7_clock = 1;
 else play_time7_message_select = 1;
 play_time7_mode = 0;
 update_display = 1;}}

// ________________________ if (play_time7_clock) sequence ______________________ /
 if (play_time7_clock) {
 Set_time();
 time_pm_copy = time_return >> 12;
 if (time_pm_copy == 1) play_time7_pm = 1;
 else play_time7_pm = 0;
 play_time7_hour = time_return >> 8;
 play_time7_hour = play_time7_hour & 0x0F;
 play_time7_minute = time_return;
 play_time7_minute = time_return & 0x3F;
 play_time7_clock = 0;
 play_time7 = 1;
 update_display = 1; }

// ____________________ if (play_time7_message_select) sequence _________________ /
 if (play_time7_message_select) {
 play_time7_message_selection = Message_select();
 play_time7_message_select = 0;
 play_time7 = 1; }

// ________________________ if (play_time8) sequence ____________________________ /
 if (play_time8) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Edit Play Time 8", 16);
 Set_position (64);
 if (play_time8_mode == 0) Print_line ("Exit", 4);
 else if (play_time8_mode == 1) Print_line ("Edit Time", 9);

40

 else Print_line ("Select Message", 14);
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 play_time8_mode++;
 if (play_time8_mode == 3) play_time8_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 play_time8 = 0;
 if (play_time8_mode == 0) set_play_times = 1;
 else if (play_time8_mode == 1) play_time8_clock = 1;
 else play_time8_message_select = 1;
 play_time8_mode = 0;
 update_display = 1;}}

// ________________________ if (play_time8_clock) sequence ______________________ /
 if (play_time8_clock) {
 Set_time();
 time_pm_copy = time_return >> 12;
 if (time_pm_copy == 1) play_time8_pm = 1;
 else play_time8_pm = 0;
 play_time8_hour = time_return >> 8;
 play_time8_hour = play_time8_hour & 0x0F;
 play_time8_minute = time_return;
 play_time8_minute = time_return & 0x3F;
 play_time8_clock = 0;
 play_time8 = 1;
 update_display = 1; }

// ____________________ if (play_time8_message_select) sequence _________________ /
 if (play_time8_message_select) {
 play_time8_message_selection = Message_select();
 play_time8_message_select = 0;
 play_time8 = 1; }

// ________________________check for play times _________________________________ /
 if (pm == play_time1_pm && hour == play_time1_hour && minute ==
 play_time1_minute && second == 0 && no_play == 1) {
 no_play = 0;
 if (play_time1_message_selection == 1){
 Play_message (message1_start, message1_stop);
 messagenum = play1 = messageplay = 1;
 replay_count = 0;}
 if (play_time1_message_selection == 2){
 Play_message (message2_start, message2_stop);
 messagenum = 1; play2 = 1; messageplay = 1;
 replay_count = 0;}

41

 if (play_time1_message_selection == 3){
 Play_message (message3_start, message3_stop);
 messagenum = 1; play3 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time1_message_selection == 4){
 Play_message (message4_start, message4_stop);
 messagenum = 1; play4 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time1_message_selection == 5){
 Play_message (message5_start, message5_stop);
 messagenum = 1; play5 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time1_message_selection == 6){
 Play_message (message6_start, message6_stop);
 messagenum = 1; play6 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time1_message_selection == 7){
 Play_message (message7_start, message7_stop);
 messagenum = 1; play7 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time1_message_selection == 8){
 Play_message (message8_start, message8_stop);
 messagenum = 1; play8 = 1; messageplay = 1;
 replay_count = 0;}
 Delay_ms(100);}
 if (pm == play_time2_pm && hour == play_time2_hour && minute ==
 play_time2_minute && second == 0 && no_play == 0) {
 no_play = 1;
 if (play_time2_message_selection == 1){
 Play_message (message1_start, message1_stop);
 messagenum = 2; play1 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time2_message_selection == 2){
 Play_message (message2_start, message2_stop);
 messagenum = 2; play2 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time2_message_selection == 3){
 Play_message (message3_start, message3_stop);
 messagenum = 2; play3 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time2_message_selection == 4){
 Play_message (message4_start, message4_stop);
 messagenum = 2; play4 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time2_message_selection == 5){
 Play_message (message5_start, message5_stop);
 messagenum = 2; play5 = 1; messageplay = 1;
 replay_count = 0;}

42

 if (play_time2_message_selection == 6){
 Play_message (message6_start, message6_stop);
 messagenum = 2; play6 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time2_message_selection == 7){
 Play_message (message7_start, message7_stop);
 messagenum = 2; play7 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time2_message_selection == 8){
 Play_message (message8_start, message8_stop);
 messagenum = 2; play8 = 1; messageplay = 1;
 replay_count = 0;}
 Delay_ms(100);}
 if (pm == play_time3_pm && hour == play_time3_hour && minute ==
 play_time3_minute && second == 0 && no_play == 0) {
 no_play = 1;
 if (play_time3_message_selection == 1){
 Play_message (message1_start, message1_stop);
 messagenum = 3; play1 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time3_message_selection == 2){
 Play_message (message2_start, message2_stop);
 messagenum = 3; play2 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time3_message_selection == 3){
 Play_message (message3_start, message3_stop);
 messagenum = 3; play3 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time3_message_selection == 4){
 Play_message (message4_start, message4_stop);
 messagenum = 3; play4 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time3_message_selection == 5){
 Play_message (message5_start, message5_stop);
 messagenum = 3; play5 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time3_message_selection == 6){
 Play_message (message6_start, message6_stop);
 messagenum = 3; play6 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time3_message_selection == 7){
 Play_message (message7_start, message7_stop);
 messagenum = 3; play7 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time3_message_selection == 8){
 Play_message (message8_start, message8_stop);
 messagenum = 3; play8 = 1; messageplay = 1;
 replay_count = 0;}

43

 Delay_ms(100);}
 if (pm == play_time4_pm && hour == play_time4_hour && minute ==
 play_time4_minute && second == 0 && no_play == 0) {
 no_play = 1;
 if (play_time4_message_selection == 1){
 Play_message (message1_start, message1_stop);
 messagenum = 4; play1 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time4_message_selection == 2){
 Play_message (message2_start, message2_stop);
 messagenum = 4; play2 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time4_message_selection == 3){
 Play_message (message3_start, message3_stop);
 messagenum = 4; play3 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time4_message_selection == 4){
 Play_message (message4_start, message4_stop);
 messagenum = 4; play4 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time4_message_selection == 5){
 Play_message (message5_start, message5_stop);
 messagenum = 4; play5 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time4_message_selection == 6){
 Play_message (message6_start, message6_stop);
 messagenum = 4; play6 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time4_message_selection == 7){
 Play_message (message7_start, message7_stop);
 messagenum = 4; play7 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time4_message_selection == 8){
 Play_message (message8_start, message8_stop);
 messagenum = 4; play8 = 1; messageplay = 1;
 replay_count = 0;}
 Delay_ms(100);}
 if (pm == play_time5_pm && hour == play_time5_hour && minute ==
 play_time5_minute && second == 0 && no_play == 0) {
 no_play = 1;
 if (play_time5_message_selection == 1){
 Play_message (message1_start, message1_stop);
 messagenum = 5; play1 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time5_message_selection == 2){
 Play_message (message2_start, message2_stop);
 messagenum = 5; play2 = 1; messageplay = 1;
 replay_count = 0;}

44

 if (play_time5_message_selection == 3){
 Play_message (message3_start, message3_stop);
 messagenum = 5; play3 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time5_message_selection == 4){
 Play_message (message4_start, message4_stop);
 messagenum = 5; play4 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time5_message_selection == 5){
 Play_message (message5_start, message5_stop);
 messagenum = 5; play5 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time5_message_selection == 6){
 Play_message (message6_start, message6_stop);
 messagenum = 5; play6 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time5_message_selection == 7){
 Play_message (message7_start, message7_stop);
 messagenum = 5; play7 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time5_message_selection == 8){
 Play_message (message8_start, message8_stop);
 messagenum = 5; play8 = 1; messageplay = 1;
 replay_count = 0;}
 Delay_ms(100);}
 if (pm == play_time6_pm && hour == play_time6_hour && minute ==
 play_time6_minute && second == 0 && no_play == 0) {
 no_play = 1;
 if (play_time6_message_selection == 1){
 Play_message (message1_start, message1_stop);
 messagenum = 6; play1 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time6_message_selection == 2){
 Play_message (message2_start, message2_stop);
 messagenum = 6; play2 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time6_message_selection == 3){
 Play_message (message3_start, message3_stop);
 messagenum = 6; play3 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time6_message_selection == 4){
 Play_message (message4_start, message4_stop);
 messagenum = 6; play4 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time6_message_selection == 5){
 Play_message (message5_start, message5_stop);
 messagenum = 6; play5 = 1; messageplay = 1;
 replay_count = 0;}

45

 if (play_time6_message_selection == 6){
 Play_message (message6_start, message6_stop);
 messagenum = 6; play6 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time6_message_selection == 7){
 Play_message (message7_start, message7_stop);
 messagenum = 6; play7 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time6_message_selection == 8){
 Play_message (message8_start, message8_stop);
 messagenum = 6; play8 = 1; messageplay = 1;
 replay_count = 0;}
 Delay_ms(100);}
 if (pm == play_time7_pm && hour == play_time7_hour && minute ==
 play_time7_minute && second == 0 && no_play == 0) {
 no_play = 1;
 if (play_time7_message_selection == 1){
 Play_message (message1_start, message1_stop);
 messagenum = 7; play1 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time7_message_selection == 2){
 Play_message (message2_start, message2_stop);
 messagenum = 7; play2 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time7_message_selection == 3){
 Play_message (message3_start, message3_stop);
 messagenum = 7; play3 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time7_message_selection == 4){
 Play_message (message4_start, message4_stop);
 messagenum = 7; play4 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time7_message_selection == 5){
 Play_message (message5_start, message5_stop);
 messagenum = 7; play5 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time7_message_selection == 6){
 Play_message (message6_start, message6_stop);
 messagenum = 7; play6 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time7_message_selection == 7){
 Play_message (message7_start, message7_stop);
 messagenum = 7; play7 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time7_message_selection == 8){
 Play_message (message8_start, message8_stop);
 messagenum = 7; play8 = 1; messageplay = 1;
 replay_count = 0;}

46

 Delay_ms(100);}
 if (pm == play_time8_pm && hour == play_time8_hour && minute ==
 play_time8_minute && second == 0 && no_play == 0) {
 no_play = 1;
 if (play_time8_message_selection == 1){
 Play_message (message1_start, message1_stop);
 messagenum = 8; play1 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time8_message_selection == 2){
 Play_message (message2_start, message2_stop);
 messagenum = 8; play2 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time8_message_selection == 3){
 Play_message (message3_start, message3_stop);
 messagenum = 8; play3 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time8_message_selection == 4){
 Play_message (message4_start, message4_stop);
 messagenum = 8; play4 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time8_message_selection == 5){
 Play_message (message5_start, message5_stop);
 messagenum = 8; play5 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time8_message_selection == 6){
 Play_message (message6_start, message6_stop);
 messagenum = 8; play6 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time8_message_selection == 7){
 Play_message (message7_start, message7_stop);
 messagenum = 8; play7 = 1; messageplay = 1;
 replay_count = 0;}
 if (play_time8_message_selection == 8){
 Play_message (message8_start, message8_stop);
 messagenum = 8; play8 = 1; messageplay = 1;
 replay_count = 0;}
 Delay_ms(100);}

// _______________________ Replay Message (3rd button) ________________________ /
//The play# variables are bits that are set when their corresponding messages
//have been played. For example, if message 2 is played, then play2 will be
//set to 1. If, once the message has been played, the replay button has been
//pressed (replay = 1), then the corresponding message will be replayed.
// if (play1 == 1 && replay == 1){
// replay = play1 = messageplay = 0 ;
// Play_message (message1_start, message1_stop);
// Delay_ms(100);}
// if (play2 == 1 && replay == 1){

47

// replay = play2 = messageplay = 0;
// Play_message (message2_start, message2_stop);
// Delay_ms(100);}
// if (play3 == 1 && replay == 1){
// replay = play3 = messageplay = 0;
// Play_message (message3_start, message3_stop);
// Delay_ms(100);}
// if (play4 == 1 && replay == 1){
// replay = play4 = messageplay = 0;
// Play_message (message4_start, message4_stop);
// Delay_ms(100);}
// if (play5 == 1 && replay == 1){
// replay = play5 = messageplay = 0;
// Play_message (message5_start, message5_stop);
// Delay_ms(100);}
// if (play6 == 1 && replay == 1){
// replay = play6 = messageplay = 0;
// Play_message (message6_start, message6_stop);
// Delay_ms(100);}
// if (play7 == 1 && replay == 1){
// replay = play7 = messageplay = 0;
// Play_message (message7_start, message7_stop);
// Delay_ms(100);}
// if (play8 == 1 && replay == 1){
// replay = play8 = messageplay = 0;
// Play_message (message8_start, message8_stop);
// Delay_ms(100);}

// _____________________ Play all Messages for Dr. Sun ________________________ /
 if (replay == 1){
 relay_flag1 = 1;
 Play_message (message1_start, message1_stop);
 Delay_ms(200);
 replay = 0;}

// _________________________ Save message play time ___________________________ /
//The following code is the algorithm to save the message number to EEPROM. The
//PIC first has to check whether the current memory location is empty (FF) or
// half full (#F) and then decide what number to save to memory. As described
//earlier in the code, the message number is always preceeded by FF. Once again,
//the best way to understand this algorithm is to go through it line by line
//and to draw out a flow chart.
 if(messagenum != 0 && stop_save == 0){
 readEEPROM();
 if(EEDATA == 255){
 INCEEPROM();
 if(messagenum == 1) messagenum = 31;
 if(messagenum == 2) messagenum = 47;

48

 if(messagenum == 3) messagenum = 63;
 if(messagenum == 4) messagenum = 79;
 if(messagenum == 5) messagenum = 95;
 if(messagenum == 6) messagenum = 111;
 if(messagenum == 7) messagenum = 127;
 if(messagenum == 8) messagenum = 143;
 data = messagenum;
 Delay_ms(100);
 writeEEPROM(data);}
 messagenum = 0;
 readEEPROM();
 messageaddr = EEADR;
 SpecifyEEPROM(0xFF);
 Delay_ms(100);
 writeEEPROM(messageaddr);
 Delay_ms(100);
 SpecifyEEPROM(messageaddr);}
 if(messagenum != 0 && stop_save == 0){
 readEEPROM();
 if(EEDATA != 255){
 INCEEPROM();
 if(messagenum == 1) messagenum = 241;
 if(messagenum == 2) messagenum = 242;
 if(messagenum == 3) messagenum = 243;
 if(messagenum == 4) messagenum = 244;
 if(messagenum == 5) messagenum = 245;
 if(messagenum == 6) messagenum = 246;
 if(messagenum == 7) messagenum = 247;
 if(messagenum == 8) messagenum = 248;
 data = messagenum;
 writeEEPROM(data);
 Delay_ms(100);
 INCEEPROM();}
 messagenum = 0;
 readEEPROM();
 messageaddr = EEADR;
 SpecifyEEPROM(0xFF);
 Delay_ms(100);
 writeEEPROM(messageaddr);
 Delay_ms(100);
 SpecifyEEPROM(messageaddr);}

// __________________________ if (edit_messages) sequence _______________________ /
 if (edit_messages) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Edit Messages", 13);

49

 Set_position (64);
 if (edit_messages_mode == 0) Print_line ("Exit", 4);
 else {
 Print_line ("Message", 7);
 Print_2dig_num (edit_messages_mode, 73); }
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 edit_messages_mode++;
 if (edit_messages_mode == 9) edit_messages_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 edit_messages = 0;
 if (edit_messages_mode == 0) main_menu = 1;
 else message = 1;
 update_display = 1;}}

// __________________________ if (set_sensitivity) sequence _____________________ /
 if (set_sensitivity) {
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Set Sensitivity", 15);
 Set_position (64);
 if (set_sensitivity_mode == 0) Print_line ("Exit", 4);
 if (set_sensitivity_mode == 1) {Print_line ("High", 4); medium = low = 0;
high = 1;}
 if (set_sensitivity_mode == 2) {Print_line ("Mid ", 4); high = low = 0;
medium = 1;}
 if (set_sensitivity_mode == 3) {Print_line ("Low ", 4); high = medium = 0;
low = 1;}
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 set_sensitivity_mode++;
 if (set_sensitivity_mode == 4) set_sensitivity_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 set_sensitivity = 0;
 main_menu = 1;
 update_display = 1; }}

// ______________________________ if (message) sequence _________________________ /
 if (message) {
 if (update_display) {
 Clear_screen ();

50

 Set_position (0);
 Print_line ("Message", 7);
 Print_2dig_num (edit_messages_mode, 9);
 Set_position (64);
 switch (message_mode) {
 case 0:
 Print_line ("Exit", 4);
 break;
 case 1:
 Print_line (" Play", 6);
 break;
 case 2:
 if ((edit_messages_mode == 1 && slot1 == 0) ||
 (edit_messages_mode == 2 && slot2 == 0) ||
 (edit_messages_mode == 3 && slot3 == 0) ||
 (edit_messages_mode == 4 && slot4 == 0) ||
 (edit_messages_mode == 5 && slot5 == 0) ||
 (edit_messages_mode == 6 && slot6 == 0) ||
 (edit_messages_mode == 7 && slot7 == 0) ||
 (edit_messages_mode == 8 && slot8 == 0))
 Print_line ("Record", 6);
 else Print_line (" Erase", 6);
 break; }
 update_display = 0; }
 if (scroll) {
 scroll = 0;
 message_mode++;
 if (message_mode == 3) message_mode = 0;
 update_display = 1; }
 if (select) {
 select = 0;
 switch (edit_messages_mode) {
 case 0: case 1:
 edit_message_start = message1_start;
 edit_message_stop = message1_stop;
 break;
 case 2:
 edit_message_start = message2_start;
 edit_message_stop = message2_stop;
 break;
 case 3:
 edit_message_start = message3_start;
 edit_message_stop = message3_stop;
 break;
 case 4:
 edit_message_start = message4_start;
 edit_message_stop = message4_stop;
 break;

51

 case 5:
 edit_message_start = message5_start;
 edit_message_stop = message5_stop;
 break;
 case 6:
 edit_message_start = message6_start;
 edit_message_stop = message6_stop;
 break;
 case 7:
 edit_message_start = message7_start;
 edit_message_stop = message7_stop;
 case 8:
 edit_message_start = message8_start;
 edit_message_stop = message8_stop;
 break; }
 switch (message_mode) {
 case 0:
 edit_messages_mode = 0;
 edit_messages = 1;
 message = 0;
 update_display = 1;
 break;
 case 1:
 Play_message (edit_message_start, edit_message_stop);
 message_edit_timer = 1;
 message = 0;
 update_display = 1;
 break;
 case 2:
 if ((edit_messages_mode == 1 && slot1 == 0) ||
 (edit_messages_mode == 2 && slot2 == 0) ||
 (edit_messages_mode == 3 && slot3 == 0) ||
 (edit_messages_mode == 4 && slot4 == 0) ||
 (edit_messages_mode == 5 && slot5 == 0) ||
 (edit_messages_mode == 6 && slot6 == 0) ||
 (edit_messages_mode == 7 && slot7 == 0) ||
 (edit_messages_mode == 8 && slot8 == 0)) {
 Record_message (edit_message_start,
edit_message_stop);
 if (edit_messages_mode == 1) slot1 = 1;
 if (edit_messages_mode == 2) slot2 = 1;
 if (edit_messages_mode == 3) slot3 = 1;
 if (edit_messages_mode == 4) slot4 = 1;
 if (edit_messages_mode == 5) slot5 = 1;
 if (edit_messages_mode == 6) slot6 = 1;
 if (edit_messages_mode == 7) slot7 = 1;
 if (edit_messages_mode == 8) slot8 = 1;
 message_edit_timer = 1;

52

 message = 0; }
 else {
 Erase_message (edit_message_start,
edit_message_stop);
 if (edit_messages_mode == 1) slot1 = 0;
 if (edit_messages_mode == 2) slot2 = 0;
 if (edit_messages_mode == 3) slot3 = 0;
 if (edit_messages_mode == 4) slot4 = 0;
 if (edit_messages_mode == 5) slot5 = 0;
 if (edit_messages_mode == 6) slot6 = 0;
 if (edit_messages_mode == 7) slot7 = 0;
 if (edit_messages_mode == 8) slot8 = 0; }
 update_display = 1;
 break; }}}

// _____________________ if (message_edit_timer) sequence _______________________ /
 if (message_edit_timer) {
 message_timer = 1;
 if (update_display) {
 Clear_screen ();
 Set_position (0);
 Print_line ("Message", 7);
 Print_2dig_num (edit_messages_mode, 9);
 Set_position (64);
 if (message_mode == 1) Print_line (" Play: sec", 13);
 if (message_mode == 2) Print_line ("Record: sec", 13);
 if ((edit_messages_mode == 1 || edit_messages_mode == 2 ||
edit_messages_mode == 3 || edit_messages_mode == 4) && message_timer_count_long < 19)
Print_2dig_num (message_timer_count_long,72);
 else if ((edit_messages_mode == 5 || edit_messages_mode == 6 ||
edit_messages_mode == 7 || edit_messages_mode == 8) && message_timer_count_short < 7)
Print_2dig_num (message_timer_count_short,72);
 else {
 message_timer = 0;
 message_timer_count_short = 0;
 message_timer_count_long = 0;
 message_edit_timer = 0;
 message = 1;
 message_mode = 1;
 update_display = 1; }
 update_display = 0;}}}}

53

Evaluation of the Device Effectiveness of the Activity Analyzer with

Voice Individualized Direction

Dr. Patricia Burbank
University of Rhode Island College of Nursing

Dr. Ying Sun
University of Rhode Island Department of Computer, Electrical, and Biomedical Engineering

Tanya Wang, Joshua Harvey
University of Rhode Island Department of Computer, Electrical, and Biomedical Engineering

Rachel Gingras
University of Rhode Island College of Nursing

Background

 The AAVID device was designed to create a portable tool that would provide feedback to

the elderly population and help enhance their daily physical activity. The purpose of this project

is to collect data and record the volunteer’s activity and inactivity and determine if the digital and

audio feedback plays correctly and the device is comfortable enough to wear on a daily basis.

The device is constructed of a microprocessor interfaced with a voice recording chip and an

accelerometer for audio and physical activity feedback. The microprocessor is programmed to

record the patient’s rate of daily motion and allows for personal messages to be played at specific

times.

 The microprocessor chosen for this device is the PIC18F452 8-bit microcontroller and is

interfaced with the Winbond voice recording chip ISD1750. The Winbond chip was chosen

because it has the capability of recording a message up to 100 seconds at a time. The chip also

allows for the external push button (the standalone mode) or the serial peripheral interface mode

which allow for communication between the microprocessor and the voice chip. The third chip

chosen is the LIS302SG three dimensional accelerometer from STmicroelectronics. These

components have been constructed on a breadboard and tested as a working circuit. The

microprocessor has also been programmed using C++ language using the MPLab development

tool. The purpose of the software is to constantly analyze the data of the rate of activity and

inactivity as well as the magnitude of motions taken from the accelerometer. It was also

programmed to have the opportunity to record voice messages from care takers or loved ones

when a period of immobility has occurred. An I/O port has been included on the unit to allow

for uploading the daily activity to a household computer, although it is not necessary for daily

use.

Significance

54

The AAVID device was designed and built for the use of regulating and enhancing

frequency of physical activity in the elderly population. The hopes for this project is perfect the

circuit so that it will positively impact the lives of our elderly population by encouraging a

healthy lifestyle through the use of smart voice playback technology and activity sensors. Some

uses in the future may also be for prerecorded reminders to take medications and have loved ones

record instructions for simple tasks like operating the stove. These uses not only will help the

individual enhance their lifestyle with increased exercise, but could also help overcome some of

the challenges the elderly face while continuing to live independently.

Specific Aims

 debug the circuit

 improve the functionality of the AAVID by upgrading the PIC processor

 Build the prototype

 Construct 3 prototypes for use in the study

 Obtain IRB approval for human study

 Conduct preliminary human study using volunteer URI engineering and nursing students

that are at least 18 years of age and in good physical health.

 Analyze results and review the participants’ data and completed questionnaire to
conclude whether or not the AAVID device works correctly and can be worn comfortably

on a daily basis.

Preliminary Results:

The result of the AAVID device thus far is that the circuitry on the breadboard including

the preprogrammed PIC processor is currently performing the desired tasks, and we have

successfully corrected the issues we were experiencing with the power to the circuit. The clock

in microprocessor is working, allowing a prerecorded message to be played at the desired set

time. We added a larger capacitor and a switch to correct the delay we were experiencing with

the 9 volt battery when the power was turned on. Also the speaker being used now is too large to

fit in the prototype, so another issue were are working on resolving is finding a smaller speaker

and correcting the speaker circuit to play the recording loud enough and at a tone low enough for

an elderly person with hearing loss to hear. At this stage in the project we are building a working

prototype to match the circuit on the breadboard.

Project Description:

The main circuitry and coding for the microprocessor have been completed for the

AAVID device. This part of the project will include building three prototypes matching the

circuit on the breadboard to be tested by the volunteer URI students in the study. Once the

mechanics of the device are finished, and the IRB is approved, we will finish building the

devices to be worn in a fanny pack around the waist by the volunteers and begin the preliminary

study. The researchers will include the Principle Investigator, Nursing Professor Patricia

Burbank, DNSC, RN, Co-Investigator and Biomedical Engineering professor, Dr. Ying Sun, as

well as three senior nursing students and three senior biomedical engineering students for this

step of the project. For the user trial we will be examining the activity results of ten volunteer

students who are at least 18 years of age and in moderate physical health, five of which will be

from the URI Engineering Department and five will be from the URI College of Nursing.

55

We will be recruiting students with the use of a flyer that will be hung in White Hall and

emailed to all undergraduate engineering students through the use of the URI Ugrads engineering

email list. The advertisement was designed to give a brief overview of the project and reassure

anyone interested that their participation is entirely voluntary. The students must be willing to

wear a small, portable, box-like device at the waistline, and able to engage in low-level physical

activity to participate in this research study.As the researchers, we will be looking for a diverse

group, both male and females within that age range who are in moderate physical shape where

any slight exercise requests would not cause any overexertion.

To begin we will obtain their daily schedule to personalize the messages at times that will

not interfere with their sleep schedule, class schedule, and other activities throughout the day.

The device will be programmed to play a number of messages throughout the day (only the

researchers will know the preset number) at preset times or when a period of inactivity has

occurred, encouraging the user to do moderate activity. These messages may be recorded using

multiple voices in order to test the device’s functionality. The content of the messages may vary

and include several types of messages such as: encouragement to engage in physical activity,

congratulations for engaging in physical activity, or instructions on exactly what type of

moderate physical activity to participate in. The AAVID will be kept in a fanny pack and worn

around the waist, and on the day the volunteer chooses to participate in the study, they must

continue to wear the device all day, keep it in the ON mode, and refrain from tampering with any

part of the device, as this may alter the data. At the end of the day the participants must report

back to the researchers so they may collect the data of their daily activity and fill out a simple

questionnaire about their experience with the device.

The clock and accelerometer in the circuit will record the duration of the activity

throughout the day. With these results we can conclude whether or not the messages are played

at the correct preset times and if the device is comfortable enough to be worn around the waist

for an entire day. We will collect the data of the daily physical activity using a predesigned

computer program. Using the previously constructed program, we will enter our data from the

AAVID I/O port to a graduate student’s computer so the data will remain confidential. From the

questionnaire and collected data, we will conclude whether or not any changes need to be made

to the circuitry or the way the device is worn.

Resources:

 For our portion of the project we are using the AAVID data and circuitry previously

constructed by Kyle Raferty and Tim Alberg as well as the PIC processor code completed by

Gabe Ausfresser. We are also using the IRB manual found on the University of Rhode Island

website to fully understand and complete all the paperwork and approvals necessary prior to

performing the human study.

References:

 Sun, Ying. Scope of Work: Development and Testing of an Activity Analyzer with Voice
Direction for Exercise.

 Rafferty, Kyle and Tim Alberg. Development of an Activity Analyzer with Voice
Direction for Exercise.

56

Development of an Activity Analyzer with Voice

Directions for Exercises

Kyle Rafferty, Timothy Alberg, Harold Greene, Gabriel Ausfresser, Ying Sun, PhD, Patricia Burbank, DNSc,

RN*

University of Rhode Island, Dept. of Electrical, Computer & Biomedical Engineering, Kingston, RI 02881,

USA; *University of Rhode Island, College of Nursing, Kingston, RI 02881, USA

57

Abstract – The purpose of the project is to develop an interactive, portable device capable of monitoring motion as well as provide user

feedback to promote continued exercise. The intended utility of the Activity Analyzer is testing whether or not audio and digital feedback

promotes higher levels of exercise in the elderly population, particularly when the audio feedback is comprised of personalized messages

recorded by loved ones. The device uses a microprocessor interfaced with a voice record chip, as well as a three dimensional accelerometer for

motion input and detection. The onboard microprocessor is used to evaluate physical performance, determine which messages to be played at

specified times, as well as save all messages and scores (including a time stamp) to the onboard EEPROM. A prototype of the Actitivity Analyzer

has been successfully constructed.

I. INTRODUCTION

As the elderly population in the United States continues to grow, one question that needs to

be asked is whether increased life expectancy will result in a decline of independence of our

older citizens. It is also well documented that physical activity in older adults will increase one’s

health and quality of life, while decreasing the probability of chronic diseases. A major problem

that arises, however, is that more than 40% of adults over the age of 65 (in the United States) do

not participate in any physical activity.

The Activity Analyzer looks to encourage exercises by providing individualized voice messages

from loved ones, along with daily feedback on the amount of exercise completed throughout the

day. Messages can be prerecorded by family members to encourage older adults to get up and

exercise during times of inactivity. Research has shown that, when intervening with older adults,

it is essential that family-level perspective be incorporated throughout the process of a physical activity program: this model is

referred to as the transtheoretical model of behavior change (TTM) [1]. Thus, the purpose of this device is to incorporate the TTM

research into a portable, wearable device to test whether family voiced encouragement will increase activity and promote healthy

living amongst older adults [1].

II. METHODS

A. Hardware Development

The microprocessor of choice for this device is the PIC18F452 (Microchip Technology, Chandler, AZ). This processor is interfaced

with the ISD1750 (Winbond) voice record (VR) chip, which is capable of recording up to 60 to 100 seconds worth of message time

(dependent on the load resistor chosen). To enable an efficient communication, a serial-parallel interface (SPI) is established

between the processor and VR chip.

For detecting motion a three-dimensional accelero-meter (LIS302sg, STmicro-electronics) is used. The accelerometer is capable

of outputting motion signals in the x, y, and z directions. To eliminate discontinuities from the varying x, y, and z baselines, the

outputs are averaged together through a resistive network and sent to the analog-to-digital converter (ADC) of the PIC processor.

There are two components to this project, the Activity Analyzer mobile unit and the docking system (both depicted individually in

Fig. 1). The mobile unit contains the accelerometer, PIC processor, VR chip, and speaker. The docking system contains an LCD

display, push buttons to interact with the mobile unit while docked, digital switch, USB device, and microphone input. While

docked, the docking system is used to alter settings such as time of day, when messages are played, which messages are played, and

how sensitive the accelerometer decoding algorithm is (all through a DB15 connection). The user can also record new messages,

erase old ones, and send the data in the EEPROM of the PIC to a computer via USB.

58

B. Software Development

The software

implemented for the PIC

processor is comprised of

four major components: the

user menu controls, SPI

communication, motion

detection and scoring

algorithm, and finally the

memory storage algorithm.

Figure 2 depicts a flow

graph of these four major

software components, as

well as how they interact amongst one another in the code.

For ease of use, it is important for the device to have an intuitive menu interface. The user menu control is set up in

correspondence with two exterior push buttons: one to scroll and one to select. The user can select several different menus from

the LCD screen, including a menu to set time, a menu to record, erase, play, or set play times, a menu to send the data via USB to a

computer, and a menu to set the sensitivity of motion detection to name a few.

By scrolling and selecting (once you enter a menu, the user has the option to select exit), the user can easily maneuver through

all the option available to them. It is also worth noting

that most of these opera-tions are controlled by sub functions outside of the main loop in code. This means adding functions or

changing current functions is easier for the developer as the framework to do so is already in place.

Both the processor and the VR chip are capable of SPI communication. The processor requires most significant bit first and the

VR chip requires least significant bit first. To maintain compatibility, the reversed bits are defined as protocol functions in the code

such that the VR chip receives LSB first. In order to use the VR chip, the power up command and clear INT command must be sent

prior to sending the SPI command for the desired action. After the action is implemented (play, rec, erase, forward message,

set_play, set_rec, set_erase) the power down command should be sent. When a message is recorded on the VR chip the device

stores starting and ending points which can be read via play and rec pointers. Alternatively, set_rec, set_play, and set_erase

commands can be implemented to record, play, and erase messages from memory location A to memory location B. This method

allows for more control over message length and can be used to optimize memory usage of the VR chip.

An integral part of the device involves the data received by the processor from the 3D accelerometer. One major issue involved

with accelerometers is the drift of baseline voltage: this baseline voltage will drift both with age and orientation. To counter drift, an

algorithm using a 16-point averaging filter can be used. The PIC will fill a 16-point array with 16 bytes of data from the ADC and then

average the value (baseline voltage) of the sixteen points. The sampling rate is set at 1150 Hz. Thus, the 16-point buffer represents a

time frame of 14 ms. This average value will then be able to act as threshold for motion detection, i.e. any peaks of voltage over the

average voltage plus some voltage (threshold) will cause the PIC to recognize motion and increment a scoring counter. This array is

then emptied and refilled periodically, allowing the threshold to change with the baseline voltage and any possible drift that arises.

Another functional component of the Activity Analyzer algorithm is data storage: saving the scores and messages played (with a

time stamp) to be extracted and analyzed at the end of the day. However, the PIC18F452 is only comprised of 256 bytes of EEPROM,

making one day’s worth of storage impossible, considering each score would need 3 bytes: one for the score, one for the hour, and

one for the minute. The solution to this problem was to ‘split’ every bite in two, using the 4 most significant bits and 4 least

significant bits individually. This, although complex and tedious, allowed us to essentially double the memory storage capability of

the processor while maintaining a five-minute temporal resolution for the scoring algorithm.

Fig. 3. The bread-

board prototype

(bottom) and the

soldered

prototype

packaged into the

mobile unit and

the docking

system (top).

59

Finally, the user can upload data from the EEPROM of the PIC onto a personal computer (PC) via the USB port. A program on the

PC, created by using the C# language, is able to take in all the data, split the incoming bytes, and plot all the scores on a score vs.

time scale. This allows the user to visualize the amount of exercise throughout the day.

III. RESULTS

As shown in Fig. 3, the hardware of the Activity Analyzer was first implemented on a breadboard to allow for ease of testing and

debugging. The four software components of the Activity Analyzer were successfully implemented. Once all components of the

device functioned as intended, including the data capture on a computer, the device was then prototyped into the docking system

and wearable mobile unit. The preliminary test results on human subjects were obtained in a separate study [2].

IV. DISCUSSION

This project involved the development of the Activity Analyzer; a device that is capable of providing individualized voice

encouragement for older adults to exercise. The Activity Analyzer was designed around the transtheoretical model of behavior

change [1] and looks to corroborate past research that indicates it is essential to provide family-level perspective throughout the

process of a physical activity program. This wearable device was the result of an interdisciplinary collaboration between engineering

and nursing. Future work will include building and testing more prototypes and eventually marketing this product for household use.

ACKNOWLEDGEMENTS

This study was supported in part by the Rhode Island Center for Nursing Excellence (RICNE) and a grant from the National

Institutes of Health (2R44NS048682-02A1, PI: Sun).

REFERENCES

[1] P.M. Burbank and D. Riebe. Promoting Exercise and Behavior Change in Older Adults: Interventions and Transtheoretical Model. NY: Springer,

2002.

[2] H. Greene, C. Dulude, A. Neves, Y. Sun, and P.M. Burbank. Performance evaluation of the activity analyzer. 38
th

 Annual Northeast

Bioengineering Conference, Temple University, Philadelphia, PA, March 16-18, 2012.

60

Performance Evaluation of the Activity Analyzer

Harold Greene, Courtney Dulude, Amanda Neves, Ying Sun, PhD, Patricia Burbank, DNSc, RN*

Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA;

*College of Nursing, University of Rhode Island, Kingston, RI, 02881, USA

Fig. 1. The mobile unit of the Activity Analyzer in a carrying

pouch strapped around the waist.

61

Abstract – The purpose of this study is to evaluate the performance of the Activity Analyzer used to monitor and

encourage physical activities of older adults. The Activity Analyzer is a wearable device designed to monitor the daily

activity and inactivity according to a pre-programmed time schedule. The device is also capable of playing back pre-

recorded messages to encourage exercises if periods of inactivity are detected under predefined conditions. At the end of

the day, the daily activity data with a time resolution of 5 minutes can be retrieved from the mobile unit via a docking

station for further analysis. The study provided preliminary test results from human subjects to evaluate the performance

and optimize parameters of the device. The result is useful as a guideline for a larger-scale human study to assess the

effectiveness of the device in terms of improving the daily activities for older adults.

I. INTRODUCTION

As baby boomers now represent nearly one-third of the total United States population, researchers are prompted

to find new ways to encourage a healthy lifestyle through increased physical activity in older adults. Research has

shown that older adults have the ability to adapt to exercise in much the same way as they did in their younger years,

and a regular exercise program can often slow age-related declines in health by reducing the risk of heart disease,

cancer, osteoporosis, bone fractures, high blood pressure, as well as help with arthritis and depression.

According to the Transtheoretical Model of Behavior Change (TTM) [1], helping relationships such as that of a

family member, play an important role in supporting behavior change. The Activity Analyzer developed in this

study uses family member participation to encourage older adults to stay active, through tracking of physical activity

levels, positive reinforcement, and voice personalization.

The purpose of this study is to conduct a pilot test for performance evaluation and parameter optimization

before the Activity Analyzer can be used in a larger-scale study involving older adults.

II. METHODS

A. Device Development

This device contains two main components – a mobile Activity Analyzer unit that is designed to be worn in a

pouch around the individual’s waist and a docking station. The mobile unit contains a microprocessor (PIC18F452,

Microchip Technology, Chandler, AZ) used to store data and interface with all other major components including a

voice recording integrated circuit chip (Winbond ISD1750) that can record and play back voice messages for a total

of duration of 60-100 seconds. An accelerometer (STmicroelectronics lis302sg) is used to detect 3-dimensional

motions (x, y, z directions). The x, y, and z signals are combined into one signal before it is acquired by the PIC

processor. The mobile unit also contains an amplifier and speaker used to output pre-recorded messages, as well as a

replay button in case the user needs to have a message repeated.

The second component, the docking station, contains a microphone that can be used by family members to

record messages, as well as an LCD screen for displaying a manual that can be navigated using two pushbuttons.

Using the LCD screen, caregivers can set the clock, record and erase messages, set the times at which these

messages are to be displayed, and listen to previously recorded messages. Another important part to the docking

station is the battery charger. This is used in combination with a series of switches to charge both the batteries for

the mobile Activity Analyzer unit and the docking stations. This allows both components to run continuously

without having to be turned off to charge. The docking station also contains a USB port that can be connected to a

host computer. Through this USB port, the data from the accelerometer stored in the EEPROM of the PIC processor

can be uploaded to the computer. The mobile Activity Analyzer unit and the docking station are connected through

a 15-pin DB connector and must remain connected when using the push buttons and LCD display in the docking

station to program the mobile unit [2].

B. Human Subject Testing

To develop an effective and ergonomic way for carrying the Activity Analyzer, we consulted faculty and

students from the College of Nursing who have worked with the older adults. It was important to consider factors

affecting functionality, convenience, appearance, comfort level, and user-friendliness for the older adult population.

As shown in Fig. 1, the Activity Analyzer is worn around the waist in a custom pouch with a strap and clip to make

it easy to be taken on and off. The design included durable fabric for the sides with a mesh material in the front for

the speaker, as well as a metal ring on the top so the replay button would be easily accessible.

62

Prior to the testing with human subjects, an approval from

the Institutional Review Board (IRB) at the University of

Rhode Island was obtained. The longer-term research

objective is to test the hypothesis that the Activity Analyzer

with voice messages recorded by loved ones can improve the activity level for community-dwelling older adults.

The present study conducts a preliminary test on a small set of young, healthy subjects to determine if the basic

function and comfort was sufficient before moving on to test older adults. The study also provides information about

parameter settings such as the threshold for motion detection, which affects the sensitivity of the Activity Analyzer.

III. RESULTS

Figure 2 shows the motion signals from the accelerometer in the x, y, and z directions. After summing up the

three motions signals, the combined signal is acquired by the PIC processor to assess the activity level. Figure 3

shows the combined signal for various types of activities. The initial sampling rate is sufficiently high to reveal the

shapes of the activity waveforms and to perform tasks such as the implementation of a pedometer, if needed. Then,

the activity level is integrated at a 5-minute interval to produce an activity score, which is between 0 and 15. The

data with the 5-minute temporal resolution are stored in the EEPROM, which can be retrieved later via the docking

station. Figure 4 shows three sample data sets illustrating the typical data collected by the Activity Analyzer during

activity testing. Data sets 1 and 2 display moderate household activity at two different sensitivity settings. A medium

sensitivity setting results in an activity score of 1-2 for sitting, 3-12 for short periods of household activity, such as

getting a glass of water or going to

the restroom, and a value of 13-15 for lengthier periods of activity, like preparing dinner or doing laundry. A low

sensitivity setting results in scores of 1, 2-5, and 6-13 respectively for the same activities. Data set 3 describes longer

periods of activity recorded at low sensitivity. The values for the peaks of 14 and 15 in the data set demonstrate

sustained periods of higher activity, such as walking for five minutes.

IV. DISCUSSION

The result of this study indicates that the performance of the Activity Analyzer is satisfactory and meets the

original design goals. The activity data stored at the 5-minute temporal resolution are sufficiently sensitive to discern

low, medium, and high levels of activities. Future work will include a larger scale study with an older adult

population to assess the effectiveness of improving the daily activity level with voice messages recorded by the

loved ones.

Fig. 2. Analog signals from the accelerometer showing

motions in the x, y, and z axes before combining.

Fig. 3. The combined x-y-z motion signal shown for various

types of activities.

Fig. 4. Three samples of the activity data at the 5-minute

temporal resolution retrieved from the Activity Analyzer.

63

ACKNOWLEDGEMENTS

The authors thank the three nursing students of the University of Rhode Island: Jessica Ball, Alexandra Perone,

and Heather Slevin, for their collaboration and helpful input to the design of the carrying pouch for the Activity

Analyzer. This study was supported in part by an undergraduate research grant from the University of Rhode Island

Division of Research & Economic Development, the Office of the Provost and VP for Academic Affairs, and the

Honors Program and a grant from the National Institutes of Health (2R44NS048682-02A1, PI: Sun).

REFERENCES

[1] P.M. Burbank and D. Riebe. Promoting Exercise and Behavior Change in Older Adults: Interventions and Transtheoretical

Model. NY: Springer, 2002.

[2] K. Rafferty, T. Alberg, H. Greene, Y. Sun, and P.M. Burbank. Development of an activity analyzer with voice directions for
exercises. 38th Annual Northeast Bioengineering Conference, Temple University, Philadelphia, PA, March 16-18, 2012.

