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Abstract. A system for reconstructing 3-D vascular structures from two
orthogonally projected images is presented. The formidable problem of
matching segments between two views is solved using knowledge of the
epipolar constraint and the similarity of segment geometry and connec-
tivity. The knowledge is represented in a rule-based system, which also
controls the operation of several computational algorithms for tracking
segments in each image, representing 2-D segments with directed graphs,
and reconstructing 3-D segments from maiching 2-D segment pairs. Un-
certain reasoning governs the interaction between segmentation and
matching; it also provides a framework for resolving the matching am-
biguities in an iterative way. The system was implementad in the C lan-
guage and the C Language Integrated Production System {CLIPS) expert
system shell. Using video images of a tree model, the standard deviation
of reconstructed centerlines was estimated to be 0.8 mm (1.7 mm) when
the view direction was parallel {perpendicular} to the epipolar plane. Fea-
sibility of clinical use was shown using x-ray angiograms of a human
chest phantom. The correspondence of vessel segments between two
views was accurate. Computational time for the entire reconstruction
process was under 30 s on a workstation. A fully automated system for
two-view reconstruction that does not require the a priori knowledge of
vascular anatorny is demonstrated.

Subject terms: two-view reconstruction; knowledge-based approach; medical
imaging, three-dimensional vascular tree; segment maiching; rulod-based sys-
tem; biplane angiography.
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1 Introduction

This study is motivated by the need for determining 3-1D
structures of blood vessels from biplane angiograms. An-
glograms are x-ray images of blood vessels enhanced by
Intravascular infusion of an x-ray contrast agent. A biplanc
angiographic system contains two pairs of x-ray tubes and
image intensificrs such that two angiograms of the vascu-
lature from different angles can be obtained almost simul-
taneously. Although two views of any object reveal very
fittle about the object’s 3-D stiucture, it is often difficult to
increase the nnmber of simultaneous angiographic views
above two in clinical situations. This is because of the lim-
ited x-ray dose that a patient should receive and the con-
straint of space and access angle surrounding the patient,
especially in an intraoperative situation. The need for re-
constructing 3-1 vaseunlar structures arises from both
cardiology' and neurology.? The reconstructed 3-D images
would be useful for diagnosing blood vessel abnormalities
and for planning surgery. Because of the pumping motion
of the heart and/or the wash-out of the contrast agent, the
process to be imaged is often a dynamic one. A system to
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insage blood vessels must provide a relatively high temporal
resolution. Furthermore, the width of blood vessels is gen-
erally small compared to the size of some other organs.
Thus, the system must also provide a relatively high spatial
resolution. Other 3-D imaging modalities usually fall short
in these categories. For example, x-ray computer tomog-
raphy has a temporal resolution limitation.” Magnetic res-
onance imaging has a spatial resolution limitation. Its tem-
poral resolution also becomes limited when better image
quality is preferred at the sacrifice of prolonging acquisition
time.*

The two-view reconstruction problem is quite different
from the conventional tomographic reconstruction problem
in nature. There exist certain ambiguities that make the
solution to the two-view reconstruction problem nonunique.
Such ambiguities cxist even when the object to be recon-
structed is a skeletal structure without any velumetric de-
tail.” Nevertheless, medical experts often manage to extract
3-D information from biplane angiograms based on their
knowledge of the imaging modality, of the anatomy, and
from matching local and global features between the two
views. Garreau et al.® developed a knowiedge-based ap-
proach to this problem. Models based on the coronary artery
anatomy and view angles were used lor 3-D reconstruction
and labeling of vascular networks from biplane angiograms.
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The following problems with the model-based approach were
noted: (1) morphological changes of coronary arteries in-
duced by patients’ physiopathological states, (2) weak in-
teraction between the high (knowledge-based) and the low
(computational) level, and (3) lacking feedback from seg-
ment matching to process the original images. In this study,
we propose a fully automated approach that does not rely
on the a priori assumption of an object model. Signal-
processing algorithms and artificial intelligence techniques
are equally emphasized; signal-processing algorithms are
essential to segmenting and representing 2-D tree structures
in each view. However, incorrect segmentation is almost
inevitable because of overlapping vessel segments, inter-
ference from irrelevant anatomical structures, and the pres-
ence of various types of noise in the angiograms.” Artificial
intelligence techniques are essential to resolving the errors
in segmentation and the ambiguities in matching segments
between two views.

In this study, our attention is focused on the orthogonal
views. When the separation angle between the view direc-
tions is 90 deg, the information about the 3-D structures is
at its maximum; however, the correspondence problem is
most difficult to solve. The solution for orthogonal views
can be generalized for other viewing geometries including
stereoscopic views and oblique views, which are obtained
with more than one view-rotation axis. In this paper, first,
the problem of two-view reconstruction is stated. Second,
the proposed approach and the system architecture are out-
lined. Third, a detailed description of the various compu-
tational algorithms and the production rules is provided.
Then, the system performance of reconstructing a tree model
and a coronary artery phantom is presented. Finally, dis-
cussion and conclusions are given.

2 Two-View Reconstruction Problem

We attempted to reconstruct a 3-D tree structure from two
images obtained with a 90-deg separation of the view di-
rections. The skeletal structure (centerlines) of the tree is
of primary interest. The cross sections along the centerline
of a segment are approximated by circular disks. The pres-
ence of ambiguities in matching segments between two views
makes the two-view reconstruction problem formidable. As
demonstrated by the example in Fig. 1, two possible 3-D
structures for the given pairs of orthogonal views exist. This
ambiguity is caused by the fact that the tree contains a node
spawning off two symmetric child segments. Furthermore,
the two child segments span the same range on the axis
around which the view direction is rotated. Matching a
segment in one view to a segment in the other view relies
mainly on the epipolar constraint. The epipolar constraint
forces a matching segment pair to span the same range on
the view-rotation axis. Thus, the symmetric child segments
in Fig. 1 cause a matching ambiguity if one relies exclu-
sively on the epipolar constraint for clues. It can be shown
that, for a binary tree containing m nodes whose subtrees
are symmetric, a total of 2™ possible matchings of segments
between the two views exist.> Nevertheless, in the case of
vascular imaging, the probability of having a symmetric
subtree is not likely to be high, and additional information
such as the size of the vessel is often available to help resolve
this type of ambiguity.
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Fig. 1 Ambiguity in the two-view reconstruction problem. Two pos-
sible solutions are shown for the same given pair of orthogonal views.
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Fig. 2 With the conventional approach of tomographic reconstruc-
tion, transaxial frames are first reconstructed individually; then, the
interframe continuity is explored.

For the classic problem of tomographic reconstruction,
projections from many angles around a view-rotation axis
are obtained. As shown in Fig. 2, each frame perpendicular
to the view-rotation axis can be uniquely reconstructed from
the multiple projections. Then, the object’s 3-D structure is
rendered by exploring the interframe continuity along the
view-rotation axis. This 3-D imaging approach is a two-
step process in which 2-D slices are independently formed
before the 3-D rendering. For the two-view reconstruction
problem under investigation, however, the object’s con-
nectivity along the view-rotation axis provides crucial in-
formation for recognizing the segment correspondence. Thus,
the process for determining segment positions on a 2-D slice
(the matching problem) should not be independent of the
process for exploring the object’s connectivity (the tracking
and segmentation problem). In our proposed approach to
this problem, we emphasize (1) manipulation of directed
graphs for representing segment connectivity, (2) provision
for interaction between segmentation and matching, and
(3) use of uncertain reasoning in dealing with matching
ambiguities.

3 Proposed Solution

There are two major components in the proposed system:
(1) low-level computational algorithms implemented in the
C language and (2) high-level production rules implemented
in the C Language Integrated Production System (CLIPS).®
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Fig. 3 Process flow diagram of the rule-based system for fully au-
tomated reconstruction of 3-D tree structures from two orthogonal
views.

A global database is used to store facts about the tree struc-
ture, which are found as the tracking process proceeds. The
global database also provides a common ground for com-
munication between the computational algorithms and the
production rules. Figure 3 shows the process flow diagram.
In the tracking stage, the 2-D tree structure in each image
is extracted by using a recursive tracking algorithm. In the
segmentation stage, the 2-D tree structure is decomposed
into fundamental segments. A fundamental segment is one
that cannot be further decomposed. A possible combination
of fundamental segments is attempted and a directed graph
is formed for representing the tree connectivity. In the
matching stage, domain-specific knowledge, such as the
epipolar constraint and the width and connectivity of seg-
ments, is used. Certainty factors are computed to assess the
goodness of a segment matching, the matching of a segment
in one view to a particular segment in the other view. All
certainty factors are combined for a tree matching, the col-
lection of segment matchings for all segments in the tree
structure. The certainty factors also provide clues as to where
a problem exists for the current tree matching and what
might improve the situation. By feeding matching difficul-
ties back to the segment-combination stage, interaction be-
tween the segmentation in each view and the correspondence
between views is allowed. The segmentation-matching it-
eration terminates when the total certainty factor ceases to
improve. In the reconstruction stage, the tree matching that
corresponds to the highest total certainty factor is used to
reconstruct a 3-D tree structure.

4 Computational Algorithms

Computational algorithms perform the following tasks:
(1) tracking of the tree segments in an image, (2) decomposing
of the tracking result into fundamental segments,
(3) generating of a direct-graph representation for the seg-
ment connectivity, (4) reconstructing the 3-D centerlines
and cross sections from the matching segment pairs, and
(5) projecting of the reconstructed 3-D tree model onto a
given view. These algorithms are implemented in C-language
procedures, which can be called on and used directly as
commands in the CLIPS shell.

4.1 Recursive Tracking of 2-D Tree Structures

Recursive tracking is performed for each input image to
obtain a 2-D structural description as detailed as possible,
understanding that error in the structural description is un-
avoidable because of the presence of noise and overlapping
segments. A previously developed tracking algorithm® is
used to identify the 2-D tree structure starting from a given
root node. The core of the algorithm is an adaptive tracking
procedure that detects the centerline, lumen width, and di-
rection of a major vessel segment. The tracking procedure
sequentially detects the incremental sections along a vessel
segment using an extrapolation-update scheme. The extrap-
olation-update process is guided by a matched filter applied
to a scan line that is perpendicular to the current search
direction and at a look-ahead distance away. Next, bifur-
cation points where side branches launch off from the major
segment are detected. The tracking and branch-point detec-
tion procedures are recursively implemented for each de-
tected branch point. To prevent repetitive tracking over the
same segment, a detection-deletion scheme is employed.
After a segment and all branch points on it have been iden-
tified, the segment is deleted from the image and filled with
the background pixel values surrounding the segment. The
result of this recursive programming is a breadth-first search
that identifies the entire 2-D tree structures.'® Each tracked
segment is parameterized and stored as facts in the global
database according to the following format:

(segment_table
(start_point sx sy)
(end_point ex ey)
(start_direction sd)
(end_direction ed)
(average_width aw)

)

The point-by-point information along the entire segment is
also saved in a separate data structure.

4.2 Manipulation of Segments

The recursive tracking delineates a 2-D tree structure in
each view. However, there is usually room for improvement
in this preliminary description of structure. At a crossover,
where two segments appear overlapping in the image, the
tracking path follows the segment that presents the strongest
signal to the tracking algorithm. Thus, the segment con-
nectivity determined by the tracking process may not reflect
the actual connectivity. The direction of each incident seg-
ment at a crossover provides useful information to reveal
the actual connectivity. Although the tracking algorithm

OPTICAL ENGINEERING / October 1992 / Vol. 31 No. 10 / 2199



LIU and SUN

does determine the direction for every point of the segment
centerline, this direction information is usually not reliable
near a terminal (i.e., start, end, branch, or crossover) point.
To improve the direction estimates, we perform an eigen-
vector fit to the first five points of a terminal. Let (x;,
y),i=1,2,...,5, be the coordinates of these five points and
(X, y) be their center of mass. The covariance matrix C is
computed according to:

> 1 —x%)* D i1 —T)i— )

c= Y X i
10N -%) i 0i—F)?

(1

The best fit line goes through the center of mass, and its
direction is defined by the eigenvector that corresponds'' to
the larger eigenvalue of matrix C.

To improve the 2-D structural description, the tracked
segments are first separated into fundamental segments and
then recombined at crossovers. By definition, a fundamental
segment must not contain any branch or crossover point
between the two terminals. An example in Fig. 4 illustrates
the process of manipulating the structural description. In
Fig. 4(a), a directed graph that reflects the path of recursive
tracking is shown. This directed graph first goes through a
separation process. The result of this process is shown in
Fig. 4(b), with all start, end, crossover, and branch points
treated as individual nodes. A crossover is a point in the
image where two or more spatially separate segments appear
overlapping. In the present analysis, we assume that a cross-
over node has exactly four incident segments. This restric-
tion, however, can casily be relaxed with the expansion of
the knowledge base to deal with the rarely occurring case
of more than four incident segments at a crossover. The
crossover node is removed by joining the appropriate pairs
of fundamental segments. The pairing of segments is based
on the continuation of the segments’ centerlines and eigen-
vectors. A node with two incident segments can also occur
as a result of severe stenosis or abrupt change in segment
direction; the two fundamental segments are joined and the
node is removed. After the process of combining segments,
the final directed graph is shown in Fig. 4(c).

4.3 Reconstruction of 3-D Tree Structures

Once the tree matching is identified, reconstruction of the
3-D tree structure is done segment by segment. The recon-
struction of each 3-D segment is accomplished using back
projection on a point-by-point basis. For simplicity, we
assume a parallel-beam geometry. To satisfy the epipolar
constraint, a matching segment pair must span the same
range on the view-rotation axis. If a minor discrepancy is
observed, the terminal points are adjusted by the following
rules. The terminal of one segment is extended by incor-
porating additional points to match up with the correspond-
ing terminal of the opposing segment. Matching centerline
points usually begins at the highest point of a centerline.
This point may or may not be a terminal. Matching is done
sequentially along the two centerlines and is keyed to the
vertical coordinate. When the vertical coordinate of one
centerline changes and the vertical coordinate of the other
centerline does not follow, extra points are added. In the
case where the vertical range spanned by the segment is
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Fig. 4 Example of the directed-graph representation for a tree struc-
ture (a) delineated by the recursive tracking process, (b) after sep-
aration into fundamental segments, and (c) after combining seg-
ments at the crossover point.

small (less than a given threshold), the segment is considered
lying in a horizontal direction. For horizontal segments,
matching always begins at a terminal and proceeds sequen-
tially along the matching centerlines. At each point of the
3-D centerline the cross section is represented by a circular
disk; the radius of the circle is defined by the average of
the two segment widths at the matching centerline points.

5 Production Rules

The production rules are responsible for (1) directing the
flow of the reconstruction process, (2) reconciling an in-
consistency between the two views possibly caused by a
segmentation error, (3) matching segment pairs between the
two views, (4) evaluating certainty factors for matching seg-
ment pairs, and (5) generating an alternative of segment
combination that may improve the total certainty factor. The
production rules follow the format: IF conditions THEN
actions, and are implemented in CLIPS, which has a built-
in forward chaining inference engine.

5.1 Taxonomy of Rules

The knowledge base contains 94 rules. They are summarized
as follows:

e 11 control rules to direct the flow of the reconstruction
process

® 2 tracking rules to initiate and terminate the tracking
processes

¢ 14 terminal rules to adjust positions of segment ter-
minal points and, if necessary, to combine nodes that
are within a close vicinity

e 6 segmentation rules to parse the tracked tree structures
into fundamental segments

e 11 combination rules to handle the problems of cross-
over and discontinuity, and to generate a directed-
graph representation

e 19 correspondence rules to create a solution space for
the correspondence problem, to initiate the computa-
tion of certainty factors, and to identify the best pos-
sible matching of segments between the two views

¢ 23 feedback rules to identify matching problems based
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on the certainty factors and to suggest possibie ways
of segment combination for improving certainty

& 6 retraction rules to allow another possible segment
combination by retracting certain existing facts

& 2 reconstruction rules to inifiate the 3-1) reconstruction
and to project the reconstructed 3-D structure onto a
user-specified view plane.

5.2 Sampie Rufes

1t is obviously impossible to describe every rule in detail
here. However, we present two rules as examples. The rules
were chosen to exemplify how the knowledge is represented
and how the computational algorithms are incorporated into
the rule-based system. The first sample nule is responsible
for detecting two segments at a crossover. It is activated by
the coexistence of the following facts: (1) a particuiar view
is selected; (2) segment vl has an ending point 7p1 and an
ending direction vector 741; {3) segiment 7v2 has the starting
peint 7pl and a starting direction vector 7d2; (4) segment
7v3 has a starting point ¥p3s and an cnding point 7p3e;
{§) segment ?v4 has a starting point 7pds and an ending
point Tpde; (6) points 7pl, 7p3s (or 7p3ey,and Ppds {or Tpde)
are identical;, and (7) phase difference between vectors 7dl
and ?d2 are within a range. When fired, the rule causes the
action of asserting a segment combination fact. The follow-
ing codes define this rule.

(defrule detect..combining..scgments

{which..view ?view_id}

{segment..table (id 2vIYend_point 7pl)}end._direction
1))

(segment_table (id v2)(start.point 7pl)(start.direction
22

(segiment _table (id 7v3)(start_poiat Yp3s)(ead..point Ip3e))

(segment..table (id 2vd)(start..point “pds)end..point "pde)}

{and (= Tpl Mp3e) (== ple Tpds))
{and (= pl "p3e) (== Tp3e Ipde);
(and {== 7p1 7p3s) (= 2p3s Ypde)) ))
(test {<C abs{ — 21 7d2) RANGE) )
=
(assert (connect.end.of _segment 7vi to..start..
of .segment 2v2) 3

)

The second example is responsibic for joining two segroents.
It is activated by the coexistence of the following facts: (1) a
particular view is selected, (2) there is a call for connecting
the end of segrment 7v1 to the start of segment 72, (3) segment
vl has a complete description ia the segment table, and
(4} segmeat T2 has a complete description in the segment
table. When fired, the rule causes the following action:
{1} remove the call for joining these two segments; (2) delete
segment 7v2 from the segment table; and (3} call a C sub-
rowtine to join the fwo segments by adjusting centerline,
start’end points, and average width in the global database.
The foliowing codes define this rule.

{defrule join._two.segments
{which..view Tview.. i)
Hactl << — (connect.cnd.of_segment My} to_start.
of _segment 7v2)

(segment..table (id Tvi)(start.point 7spi{start.direction
Isd))

Hacr2 < {(segment_table (id 7v2) (end_point 7¢p)
(end_direction ?ed)average _width Yaw))

=

(retract Yactl Hucr2)

(C-join.segment vl 2sp 2sd 22 Yep Ted Taw Pview.,
id)

3

6 Uncertainty in Segment Correspondence

Reasoning under uncertainty is an important feature ol this
system for solving the problemn of segiment correspondence.
Uncertainty arises Irom ambiguities in matching, faults in
tracking 2-ID tree structures, and crrors in combining fun-
damental segments at crossovers. Five different certainty
factors are computed to quantify the goodness of eacl seg-
ment matching. A certainty factor (CF) takes a value be-
tween —1 and 1,where CF=1 means absofutely positive,

tally uncertain. For matching segmenf / in one view to
segment j in the other view, CFu(i,j), k=1,2,....5, arc used
to assess the goodness of matching in five diflereat cate-
gorics. These categories are the parent segments’ refation,
the number of segments in subtree, the depth on the directed
graph, the average segment width {aw), and the overlapping
range on the vertical (view-rotation) axis.

6.1 Certainty Factors

We determine CF,{i,j) by whether the parent of segment /
matches the pareat of segment J:

1, if their pareats match
CRi(ij)= P 0

0, otherwise .

We determine CEx{i.j) by how well the total aumber of
segments in subtree (ns) of segment { compares with that
of segment j:

.. ins; ~ ns;l
T Sy ... W 3
CRl)=1-2 maximum{ns;,ns;) )

We determine CFa(Z,/) by whether segment § and segment
J are at the same depth (dp) fron: the root node on their
directed graphs:

|dp; — dpji

“Fafi fyes ]2 X - .
Chip=1-2 maximum(dp;,dp;)

4)

We determine CFE4{/,j} by how well the average width (aw)
of segment { matches that of segment J.

minimum (aw;,aw;)
maximum(aw;, aw;)

CRs(ij)=2X {5

We determine CFs{i.j) by how well the range oa the verti-
cal axis spanned by segment i matches that spanned by seg-
ment j:

. In(, )
CFs{i jym 2 X ——2=—1 | 6
s (N ©
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where In(i,j) is the length of the overlapping portion of
segment i and segment j as projected onto the vertical axis,
and /y(i,j) is the length of the total range spanned by segment
i and segment j on the vertical axis. A prerequisite for
accepting the matching of a particular segment pair is that
CFs must be greater than zero. In other words, a possible
tree matching will be immediately discarded if it contains
a matching segment pair that has an overlapping length less
than 50% of their total span on the vertical axis. This con-
straint effectively reduces the search space.

6.2 Combining of Certainty Factors

Certainty factors are combined at two levels. First, for each
segment matching the five certainty factors (CF;, CFa, ...,
CFs) are combined into one, denoted by CFieg. Second, for
the entire tree matching all CFgep's are further combined
into a total certainty factor, denoted by CFiee, which is
associated with the goodness of the tree matching. Let CF,
and CF, denote two certainty factors to be combined, and
let CF. denote the resulting certainty factor. The following
formulas govern the combining of two certainty factors:®

CF,+CF, —CF, X CFp, if CF,>0, CF,>0
CF,={ CFa+CFy+CF,XCF;, if CF,<0, CFp<0 (7)
1 = min(|CF,|.|CFy|)’

otherwise .

These formulas have the properties of associativity and com-
mutativity. Thus, they can be applied for combining mul-
tiple certainty factors. No matter what order is chosen for
combining the pairs, the final result is always the same.

6.3 Segmentation-Matching Interaction

Another important feature of this system is an incremental
approach to the solution of segment correspondence. This
is accomplished by feeding the higher-level matching result
back to the lower-level segmentation. First, the problematic
pair of segment matching is identified. Then, the related
fundamental segments are recombined and the modification
is incorporated into the current tree matching for another
evaluation. The rationale behind this approach is that match-
ing of major segments is usually obvious and of high cer-
tainty. It is the side branches and overlapping branches that
frequently cause matching difficulties. Thus, it makes sense
to keep the highly certain matching pairs and only change
the highly uncertain matching pairs. At present, matching
problems are fed back to the segment combining stage, but
not the recursive tracking stage. Nevertheless, even with
this provision, a large class of matching problems can be
solved. A matching problem is often caused by incorrectly
separating and combining segments at crossovers, branch
points, and stenotic sections, and only occasionally by in-
complete or inconsistent tracking between the two views.
Iteration is implemented to allow feedback from the match-
ing stage to the segmentation stage. Certainty factors serve
two purposes in this feedback loop: (1) to provide infor-
mation about which segment pair and which of the five
categories causc uncertainty in the tree matching and (2) to
signal when the iteration should stop.

At present, 23 rules are implemented for the provision
of feedback. The rules are activated on CF;=0 (parent

2202 / OPTICAL ENGINEERING / October 1992 / Vol. 31 No. 10

segments do not match), negative CF, (numbers of subtree
segments are not the same), or negative CF3 (they are not
at the same depth on the directed graph). The remedial action
is (1) to undo the current segment matching, (2) to combine
the fundamental segment in question either with its parent
segment or with its subtree, and (3) to rematch the resulting
segments. The stopping criterion of the iteration is either
all certainty factors are greater than zero or CFyee is not
improved after a recombination of segments.

7 Results

The system software was implemented on a Sun 4/490 sys-
tem (Sun Microsystem, San Jose, Calif.). The verification
and validation of the software were done in two parts. First,
digitized video images of a tree model were used. The tree
model was intentionally formed to result in overlapping
segments from several view directions so that the system’s
capability of combining and matching segments at crossover
points could be evaluated. Second, x-ray angiograms of a
chest phantom were used to evaluate the system’s appli-
cability to clinical situations.

The computational time obviously depends on the com-
plexity of the tree. In all cases described in the following,
the total computational time for tracking, segmentation,
matching, and reconstruction was under 30 s on the Sun
4/490 system.

7.1 Video Images of a Tree Model

Two mutually orthogonal images of the tree model were
input to the system. The orthogonal pair was obtained with
a video camera, before and after rotating the tree model by
90 deg around the vertical axis. Each image was digitized
to 256 X 256 X 8 bits. Figure 5 shows one example of the
0-deg view and the 90-deg view. The centerline structures
identified by the tracking algorithm are shown by white
pixels and superimposed with the original images for com-
parison. After the segment combination and correspon-
dence, a 3-D tree structure was produced. To verify the
reconstruction, the reconstructed 3-D structure was viewed
from three directions which were different from the original
directions (i.e., 0 and 90 deg on the epipolar plane). The
view directions we chose were (1) from 45 deg (2) from
—485 deg, and (3) from the bottom; the first two directions
are paralle] to the epipolar plane and the last is perpendicular
to the epipolar plane. A ray-tracing program was used to
give a 3-D perception for each reconstructed image. In Fig.
6, the actual images of the tree model at the aforementioned
view directions are shown at the top and the corresponding
reconstructed images are shown at the bottom. The result
indicated that the relative positions of segments in the tree
were accurately reflected in the reconstructed images. Thus,
the segment correspondence was correctly identified by the
rule-based system.

To evaluate the reproducibility of the system, the above
test was repeated three times; each time a different pair of
orthogonal images was used as the input. These results are
shown in Fig. 7. The three columns of images in Fig. 7
correspond to the three different tests performed. For each
test, five views from different directions are shown. In each
view, the reconstructed centerlines (white) are overlapped
with the actual image taken from the same view direction.
The 0- and 90-deg images were used as the input; they
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Fig. 5 Orthogonal images of a vascular model: {top) the 0-deg view,
faken at an arbitrary angle and {bottom} the 90-deg view. Each image
is digitized 0 256 x 256 x 8 bits.

naturally showed the siallest deviation between actual and
reconstructed images. The largest deviation was always found
in the bottom view. Because the bottom view pointed to a
direction perpendicuiar to the epipolar plane, it received the
least amount of 3-D information from the original input
images. To characterize these deviations quantitatively, a
skeletal structure was obtained from each actual image using
a thinning algorithm.’® The distance between a recon-
structed centeriine poin{ and the nearest point of the skeletal
structure in the actual image was determined for every peint
along the reconstructed centerlines. The (unhiased) standard
deviation of this distance {or the entire tree structure was
computed. These standard deviations were further averaged
across the three tests for each view direction. In Table |,
these standard deviations are shown in terms of pixels and

Actual

450 .-450

bottoy

Reconstructed

Fig. 6 Comparison between the actual views {top row) and the re-
constructed views {bottom row) at the 45-deg angle on the epipolar
plane (left), at the ~435-deg angle on the epipolar plane (middie},
and from the botiom (right}.

also converted to miliimeters based on the spatial resolution
of 0.3 mm/pixel. Also shown are the maximum deviations,
each averaged across the three tests for the given view
direction. There is an intrinsic deviation of 0.9 pixel (0.27
mm} between the centerlines determined by our tracking
algorithm and those determined by the thinning algorithm.

7.2 Angiograms of a Coronary Artery Phantom

To evaluate how the system performs on realistic vascular
images, angiograms of a human chest phantom (Humanoid
Systems, Carson, Calif.) were acquired using a single-plane
digital angiographic system (Unicath C, Angiographic De-
vices Corporation, Littieton, Mass.). Angiograins were ac-
guired from five different directions based on the viewing
geometry shown in Fig. 8. The chest phantom contained a
model of the human leff coronary artery including both the
left anterior descending branch and the circumflex branch.
Figure 9 shows the cranial 45-deg view and the left lateral
view, which were used as the orthogonal pair of input imn-
ages. The tracked vessel centerlines are superimposed. 1n
Fig. 10, the reconstrueted images are compared with the
aetual images at the three view directions, which are lying
on the caudal 45 deg plane. The results show that the relative
positions of the vessel segments are correctly represented
by the reconstructed structure.

8 Discussion

In summary, a fully automated system for reconsiructing
3-b vascular structures from two orthogonal views was de-
veloped. Computational algorithins were implemented to
segment the 2-D structure, to produce a directed-graph rep-
resentation, and fo reconstruct the 3-D free stmucture from
matching segment pairs, Production riles were implemented
to coordinate the computational algorithms, to resolve in-
consistency between the views, and to identify the most
probable correspondence of segments. The validity of the
system was tested with video images of a tree model and
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45°
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Test 2 Test 3

Fig. 7 In three separate tests (left, middle, and right) the reconstructed centerlines shown in white are
projected and overlapped with the actual view of the tree model at each corresponding angle.

angiograms of a human chest phantom. The system showed
a satisfactory performance; the correspondence of the major
segments identified by the vessel-tracking algorithm was
correctly determined in all cases. The standard deviation of
the reconstructed centerlines was estimated to be 0.8 mm
(1.7 mm) for a view direction parallel (perpendicular) to

2204 / OPTICAL ENGINEERING / October 1992 / Vol. 31 No. 10

the epipolar plane. The total processing time was under
30 s on a workstation. Compared to other similar knowl-
edge-based approaches,!?~'> the following features make
our system unique. (1) There is a high degree of interaction
between the high-level knowledge-based reasoning and the
low-level image processing; production rules and compu-
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Table 1 Standard and maximum deviations of reconstructed cen-
terline positions for 0.3 mm/pixel spatial resolution.

0° 90° 45° -45° bottom
S.D. (pixels/mm) 11/034 1.3/039 28/083 28/084 56/ 1.67

Maximum (pixels/mm) 4.1/12 47/14 97/29 95/28 235/71

LAO 45°
Cranial 45° l

/- Caudal 45°

LL 90° RAO 459

Fig. 8 Geometry for imaging the human chest phantom. Five an-
giograms were taken: cranial 45 deg, left lateral (LL) 80 deg, caudal
45 deg with no rotation, caudal 45 deg with a left 45 deg rotation
(LAO 45 deg), and caudal 45 deg with a right 45 deg rotation (RAO
45 deq).

tational algorithms are integrated in a single software sys-
tem. (2) Feedback from matching to segmentation is pro-
vided whereby the solution to segment correspondence is
incrementally improved. (3) Reasoning with uncertainty is
employed to deal with the fuzziness in matching segments;
certainty factors are used to diagnose and remedy the match-
ing difficulties. (4) The system does not rely on the a priori
assumption of the vascular anatomy and specific view di-
rections.

The segment correspondence is our main concern because
an incorrect matching of segments would cause a completely
erroneous reconstruction. The results in Figs. 6 and 10 show
that the system successfully resolves the segment corre-
spondence problem. A minor degree of discrepancy between
the reconstructed structure and the actual structure exists.
As shown in Fig. 7, the reconstructed positions of the ter-
minals of a segment are usually accurate because several
rules have been implemented to ensure the matching of
terminals and to adjust the terminal’s positions if necessary.
However, the portion of centerline between terminals some-
times shows a higher degree of deviation. This deviation is
caused by mismatch of points along the centerline. A mis-
match of centerline points can arise from the following
sources of error. First, because no precision mechanical
device was used to rotate the tree model during image ac-
quisition and no spatial calibration for the imaging chain
was done, a certain degree of shift, tilt, and/or spatial dis-
tortion in the original input images probably existed. Sec-
ond, when the direction of a segment was almost perpen-
dicular to the view-rotation axis, very little epipolar
information was available to guide the point-by-point match-

Fig. 9 Two orthogonal angiograms used as input to the reconstruc-
tion system: (top) the cranial 45-deg view and (right) the left |ateral
90-deg view. Each image is digitized to 512 x 512 x 8 bits.

ing. Third, although the assumption of parallel-beam ge-
ometry was accurate for video images. the x-ray angiog-
raphy system used in this study had a cone-beam geometry
with a 10-deg angle. The incorrect assumption of parallel
beams did not cause any problem in segment matching.
However, we estimated that the position deviation arising
from a depth difference of 10 mm is zero at the center and
0.9 mm (10X tan 5 deg mm) at the margin of the image
because of this incorrect assumption of parallel beams. Fu-
ture directions for improving the estimation of centerline
position include consideration of the small-angle cone-beam
geometry and development of an appropriate interpolation
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The inclusion of anatomical knowledge would require in-
formation about the specific portion of the human body to
be imaged and the specific view angles. As a consequence,
the application of such systems is likely to be quite limited.
Moreover, patients often do not show normal anatomy. For
example, with the presence of coronary artery stenosis, the
development of collaterals is usually extensive and the tor-
tuousity of the coronary arteries can also be significantly
affected. In such a case, anatomical knowledge may even
become misleading. Second, we emphasize both the Al
techniques and the signal processing algorithms. For certain
“low-level’ tasks, such as delincating the 2-D vascular
structure, it is probably more suitable and definitely more
efficient to use signal processing techniques instead of Al
techniques. Angiograms are, in general, noisy; itis certainly
more appropriate to filter out the noise than to reason out
the noise. On the other hand, the ambiguities in the two-
view reconstruction problem can only be resolved with some
‘‘high-level’’ reasoning process. In this study, a major effort
has been made to ensure balance and a tight interface be-
tween signal-processing algorithms and Al techniques.

This study has demonstrated that the two-view recon-
struction problem can be solved in an automated way using
computational algorithms under the control of a knowledge
base. The knowledge base comprises a relatively small set
of production rules, and the execution of the system software
is relatively fast. Using x-ray angiograms of a human chest
phantom the feasibility of applying this system to a clinical
environment is demonstrated. The next phase of this project
should involve clinical implementation and the evaluation
of efficacy of the 3-D vascular analysis. For this purpose,
the ideal platform for implementing the proposed approach
is a fully digital biplane angiographic system.
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