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Back—Propagation Network and its Configuration
for Blood Vessel Detection in Angiograms

Reza Nekovei, Student Member, IEEE, and Ying Sun

Abstract— A neural-network classifier for detecting vascular
structures in angiograms was developed. The classifier consisted
of a multilayer feed-forward network window in which the
center pixel was classified using gray-scale information within the
window. The network was trained by using the back-propagation
algorithm with the momentum term. Based on this image segmen-
tation problem, the effect of changing network configuration on
the classification performance was also characterized. Factors in-
cluding topology, rate parameters, training sample set, and initial
weights were systematically analyzed. The training set consisted
of 75 selected points from a 256 x 256 digitized cineangiogram.
While different network topologies showed no significant effect
on performance, both the learning process and the classification
performance were sensitive to the rate parameters. The best result
was obtained with a small learning rate (0.05) and a medium
momentum rate (0.5). The three-layer (121-17-2) network was
adequate for the problemm and showed good generalization to
the entire cineangiogram and other images including direct video
angiograms and digital subtraction angiograms. In a comparative
study, the network demonstrated its superiority in classification
performance; its classification accuracy was 92%, as compared
to 68% from a maximum likelihood estimation method and
83% from a method based on iterative ternary classification.
It was also shown that the trained neural-network classifier
was equivalent to a generalized matched filter with a nonlinear
decision tree.

1. INTRODUCTION

HE computational structure using neural networks has
similarities to that of the human vision system [1]. How-

ever, past research has shown very few applications of using
neural networks to classify objects in images directly based
on the image gray-scale data. Preprocessing is usually done
on the image raw data or a set of features is extracted before
applying a neural-network classifier [2]-[4]. The preprocessing
stage reduces the amount of data from the image pixels and,
therefore, makes the computation for neural-network classifiers
more tractable. In this paper, it is our interest to evaluate the
performance of neural-network classifiers that take the image
gray-scale data as direct input. The specific problem under
investigation is the identification of vascular structures from
angiograms. Using this example, we also study how different
network configurations affect the classification performance.

Angiography is used during various catheterization pro-
cedures for diagnosis and treatment of patients with blood
vessel abnormalitics, especially in the area of coronary artery
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disease [5], [6]. The time sequence of angiograms contains
much information about vessel lumen geometry, dimensions,
and blood flow. However, due to the noise induced by the
complex imaging chain and the dynamic nature of the process
(heart motions and infusion of the x-ray contrast agent),
extraction of such information is not a trivial task. Digital
angiography and computer algorithms have contributed to
the reduction of inter-observer and intra-observer variability
in performing measurement such as the percent diameter
stenosis [7]. The need for automated vessel detection remains
critical in computer based systems which perform complex
and computation-intensive tasks such as assessing coronary
blood flow [8] and reconstructing 3-D vascular structures [9].
Past research on automated detection of vascular structures has
been based on statistical and heuristic methods [10]-[13].

Although tracking algorithms have significantly improved
vessel identification [14], [15], they often require the oper-
ator’s interventions for selecting parameters such as starting
and ending search points. Some algorithms [16], [17] lack the
capability of detecting the entire vascular network. None of the
aforementioned algorithms has taken advantage of distributed
parallel processing.

This study has two purposes: (1) to develop a practical
approach based on neural network computing for the segmen-
tation of coronary arteriograms, and (2) to study the effect of
network configuration on classification performance as applied
to the previously mentioned image segmentation problem.
The paper is organized as follows. Following a statement of
the problem, the design of the neural network classifier is
described. Next, a systematic analysis of different network
configurations is presented. Then, the results of angiogram
segmentation are shown, including a performance comparison
with two existing algorithms. Finally, the paper concludes with
a discussion of the results and findings.

II. STATEMENT OF THE PROBLEM

An angiogram is a sequence of x-ray images obtained
during the injection of an x-ray contrast agent into the cir-
culatory system to be imaged. This is usually done during a
catheterization procedure and the contrast agent is introduced
via a catheter. Conventionally, angiograms are recorded on
film. The film-based angiogram is termed cineangiogram. To
input a cineangiogram to the computer, the film is projected
and digitized off-line. In this paper, this type of digital
images is referred to as the digitized cineangiogram (DCA).
A modern angiographic system is often equipped with a video
camera which focuses directly on the x-ray image intensifier,
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acquires the images, and sends them to a computer for on-line
digitization. This is referred to as the direct video angiogram
(DVA). A common practice fo remove background for a
better visualization of blood vessels is subtracting digitally
two images, which are obtained before and after the injection
of the contrast agent [181 The resulting image is called the
digital subtraction angiogram (DSA).

DCA’s usually contain the highest level of noise due
to the involvement of the complex imaging chain. DSA’s
usuzlly have the highest signal-to-neise ratio but may contain
subtraction artifacts caused by missed registration of the two
images during subtraction. In this study. a DCA is used for
network fraining because of its low image quality and the
fact that segmentation of DCA’s is generally more difficult.
However, to cover a broad spectrum of image quality in the
generalization test, the neural-network classifier designed for
DCA’s is also applied o DVA’s and DSA’s.

In this study, we demonstrate the suitability of using a
back-propagation meodel for coronary artery detection in an-
giograms. We also investigate various multilayer networks
to determine the optimal configuration for such application,
The network is designed to identify blood vessels in cinean-
giograms, while avoiding false-positive detection of noise
structures arising from background intensity variations, irrel-
evant anatornical details, quantum mottles, and other types of
interference.

IlI. ARCHITECTURE OF THE CLASSHIER

Because of digital angiogram’s typical high resolution, it
is physically umpossible to develop {(or simulate) a muitilayer
neural network that classifies the entire angiogram at once.
Therefore, we designed a network window classifier which
classifies the center pixel of a relatively small area in the
image. To extract the vascular structures, the window must
slide, pixel by pixel, over the entire image. A multilayer feed-
forward network is used as the window classifier. Its input
units receive the gray-scale values from a square region of the
angiogram. The input to the neural network is the raw digital
data from cineangiogram without preprocessing. We aveided
the use of feature exiraction because {1} preprocessing merely
alters the feature spuace and does not enhance the information
content and {2) determining a set of meaningful features itself
1s a cumbersome task. '

- The generalized delfa rule with a momentum [19] is selécted

as the learning paradigm for network training, because it shows
several desirable properties as a classifier including its land-
mark success at generalization, complex decision boundary,
and the fact that it makes no statistical assumption about the
input. The network weights are trained over a set of points
from a target lst using the back-propagation-algorithm. When
the training converges and the system error decreases below
an acceptable threshold, the window classifier is considered
trained and then applied over the entire angiogram. The state
of outpuf units identifies the vessel from the background and
creates the segmented image. Fig. 1 illustrates the archifecture
of the window classifier and how it is applied to the image.
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Fig. 1. . Archilecture of Ihe neural-network -window classifier.

IV. ANALYSIS OF NETWORK CONFIGURATION

In contrast to the elegant mathematical basis for network
training based on back-propagation, there is no general guide-
line for choosing the appropriate network configuration for
a given problem. Therefore, we designed an experiment to
address this issue. The configuration is systematicaily adjusted
when the neural-network classifier is applied to the segmen-
tation problem described above. The suitability of a particular
configuration is judged on the basis of learning rate and-
classification performance. These results not only lead to the
selection of the optimal network configuration but also give us
an insight to the sensitivity of adjusting network configuration.
The study of the network configurations is broken down. into
four categories: network topology, rate parameters, training
sample set, and initial weights.

A. Network Topology

To investigate the role of network topology in this classifi-
cation problem, we evaluate the performance of the window
clagsifier using different network fopologies. Let N be the total
aumber of weights for 4 given network topology. The degree
of freedom for the classifier increases as NV increases and so
does the computational complexity. To eliminate this variable
in the comparison, we attempt to keep IV constant for different
topologies. All neural networks that we use belong to the feed-
forward type. By definition, any neuron in a hidden layer must
receive inputs from all neurons in the previous layer and feed
all newrons in the next layer. Let 12 be the number of layers in
the network and L; be the number of neurons in the 2th layer
of the network. The total number of weights is given by

(1)

The following facts should be noted. First, there are (n 4+ 1)
parameters available to configure the network topology, i.¢.,
and L;é = 1,2, n. Second, because IV is determined by
(1), it is impossible to keep the total number of weights exactly
the same for different topologies. We can only configure a
topology with IV as close to a desirable number as possible,
Third, the learning capacity (C) is related (0 N but a constant
N does not guarantee a fixed learning capacity. The learning
capacity 1s an indicator of how much a system can learn and
its ability to generalize outside the training set {20}, {21].

- For single-layer networks, the learning capacity is twice the
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TABLE 1
NETWORK TOPOLOGIES AND PERFORMANCE
Network Performance on Peﬁ:ormance on Number of

Topology N Training Sets Testing Sets  Training Iterations

—121-17—2 2091 » 80.7"%_ 92.27/6- T64

121-16-10-2 2116 86.7% 92.2% 963

121-14-24-2 2078 86.7% 92.2% 881

121-16-4-16-2 2096 84.0% 92.2% 1236

121-14-14-14-2 2114 86.7% 92.1% 1276

121-13-13-13-13-2 2106 85.3% 91.9% 3047

system’s degree of freedom [22], i.e., C' = 2N. For three-layer
networks with h hidden nodes and n input nodes, the learning
capacity is bounded by [23]

nh

W <C< nhlog(h)

(2
While an exact expression of C' for networks with more than
three layers has not yet been discovered, a crude estimate of
the upper bound is on the order of 2N.

It is computationally prohibitive to explore all possible
topologies. To reduce the computational effort, some of the
network parameters must be determined a priori and held
constant. The degree of freedom (V) is set around 2100. The
output layer contains two nodes (i.e., L, = 2): one for vessel
and one for background. The two output values are compared
to determine the final classification. A preliminary experiment
was performed with three-layer networks whose input window
size varied from 55 to 15X 15. As expected, the performance
showed a direct relation to the average vessel size under
investigation. For the angiograms under investigation, the
average vessel width is about 9 pixels. Any window larger
than 9 x 9 showed a reasonable performance. An 11 X 11
input window (i.e. Ly = 121) was selected for the remaining
experiments.

It has been shown [24] that the deep, shallow, and bottleneck
network topologies present different characteristics in their
classification performance. Thus, we alter the number of
hidden layers and the numbers of nodes in the hidden layers
in such a way that the three aforementioned topologies are
represented. As shown in the left most column of Table I, six
topologies with n ranging from 3 to 6 are investigated. Each
of these networks are trained and their outputs are compared
with the “correct” vascular structures delineated by a human
operator.

B. Rate Parameters

The feed-forward network with back propagation learning
has been commonly used in neural network computing. The
network is trained by the delta rule with a momentum term
which was introduced by Rumelhart [19]. At (k+1)th iteration
during training, the update of network weight A;; is based on
two components. The first component is proportional to the
effect of error signal é; on output O; for the neuron sending
the activation signal. The second component is proportional
to the amount of weight change in the previous iteration (the

momentum term).

Aij(k+ 1) = B(6;0;) + adi;(k). 3)

The learning rate (3) controls the rate of convergence for the
training process. The momentum term («) helps prevent the
oscillation problem near the solution point. These two parame-
ters are the major factors that affect learning; they also control
the tradeoff between the system’s stability and classification
quality. Although some heuristic-based algorithms exist for
adapting these rate parameters [25], [26], an optimal adaptation
scheme for the general case has not yet been found. In this
study, the value for 6, which controls the nonlinearity of the
neuron’s sigmoidal transformation is set to unity. Each of the
node thresholds (6;) is trained as if it was the weight for a
neuron which always outputs a constant value of one. When,
the neuron’s sigmoid function is given by

f(z:) = C)]

C. Training Sample Set

There is no theoretical guideline regarding the number
of samples required for adequate learning which cover all
possible patterns of vessel, background, and noise. In this
study, we address the following questions based on empirical
findings: (1) How many samples are sufficient for a satisfactory
classification? (2) How should the samples be selected? In
particular, the effects of random selection versus manual
selection on the training and classification performance are
studied.

D. Network Initial Weights

Although, learning by back-propagation has been successful
for many applications, the possibility of being trapped in a
local minimum of the error function during training does exist
[27]. Thus, theoretically, an inappropriate choice of the initial
weights could result in a failure in network training and/or poor
classification performance. To examine the effect of initial
weights on network training, each experiment is repeated five
times with initial weights obtained from five different sets of
random numbers.

V. SIMULATION RESULTS

The network window classifier shown in Fig. 1 was imple-
mented on a VAX/VMS computer (Digital Equipment Cor-
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Fig. 2. Test image with overlaid training samples (left) and target image
defined by human operator.

poration, Maynard, MA). In the preliminary study on the
selection of training set, failures of vessel detection were
observed for certain training sets. When a small set (25
samples) of randomly selected samples was used, the network
was trained to ignore instead of detect the vascular structures.
This was because the area occupied by the vessels was small
in comparison to the background area in the angiogram. As
a result, a randomly selected sample set usually contained
very few samples (about 1 or 2) representing vessel and most
of the training occurred over the background. Therefore, as
the training proceeded, the network became biased towards
background and tended to ignore vessels. To resolve this prob-
lem, the number of randomly selected training samples was
progressively increased. As expected, performance increased
with the number of samples. It soon became obvious that
in order to achieve an adequate performance, a substantial
number of training samples was required. This was especially
true when the probability for selecting a vessel pixel over a
background pixel was low (i.e., vessels were relatively thin).
Thus, a manually selected training sample set with a roughly
equal distribution of vessel and background pixels was used.
The classification performance was significantly improved.
Even with a training set as small as 25 samples, a satisfactory
performance was observed. The training set that we finally
decided to use for the remaining experiments contained 75
manually selected samples. In Fig. 2 (left) the angiogram
(a DCA of human left anterior descending coronary artery)
under investigation is shown with the 75 samples marked by
asterisks. Fig. 2 (right) shows the target image in which the
entire vascular structure, including the 75 sample pixels, was
delineated by a human operator.

Based on the previously described training set, each network
under investigation was either allowed up to 3500 repre-
sentations of the training set or considered converged when
normalized system error was less than 0.15. The system error
(E) is defined by z

7% 2
=1 0.2
E - 2% 75 ;;(Tps OPS) (5)

where T,, and O,, are, respectively, the target and the
network output patterns for sample s. Once the network has
been trained, its classification performance () over the entire
image is measured by a pixel-to-pixel comparison between the

network classification and the target image

1 | Mo1N-1
¢=E+Mzzxﬁyﬁ (6)
i=0 j=0

where X;; and Y;; are the target and network classification
with values of 1 for the vessel and —1 for the background at
(i7) location of the M x N image. Notice that this performance
index is between O and 1, with 1 representing the best
achievable performance.

A. Performance and Complexity

The learning rate (3) and momentum rate («) were sys-
tematically adjusted for every topology in Table I. For each
setting of topology and rate parameters, the network was
trained and its performance was recorded. The results are
summarized in Fig. 3 with each row representing a different
topology. In the first column of Fig. 3, the complexity contours
indicate how long it took for the network to converge for
different (e, ) values. In the second column, the performance
contours indicate the detection quality for different («, f3)
values. In the third column, the rate parameters were fixed
at (8 = 0.05,a = 0.5) and the system error was plotted
versus the number of iterations. The results indicate that as the
number of hidden layers increases, the convergence becomes
slower and training difficulty appears. In the last column, the
classification of the entire image by the trained network is
shown. Notice that the six-layer network failed completely to
classify the image with the given rate parameters (0.05). In
this case, the learning momentum was too slow to converge
in 3500 iterations. In fact, this network only converged at one
test point, i.e., 8 = 0.05 and a = 0.9. A larger learning rate
becomes necessary as the number of hidden layers increases,
however, a learning rate which is too large often results in
oscillations. The best performance given by each topology
was very close to one another. The only major difference
was in the number of iterations (training time) required to
achieve such performance. The 121-17-2 network, with the
highest ratio of performance over learning time, is considered
the best topology for this problem. The results also suggest
that, to obtain fast learning and high performance, one should
use a small learning rate and a medium momentum rate (e.g.,
B = 0.05 and o = 0.5).

The initial weights had a negligible effect on the network
training process. Fig. 4 illustrates an example of learning
rate plots for five different sets of initial values applied to
the 12-17-2 network. The classification performance (y) was
relatively insensitive to the setting of initial weights. In the
worse case, the decrease in performance was observed on the
order of 0.005.

B. Generalization

The generalization test determines how the trained network
performs on data outside the training set. This test was
conducted at two levels. First, the test image itself was used.
Excluding the training samples, the test image contained new
data of 60441 pixels, i.e., 246 x 246 — 75. Only the central
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Fig. 5. A different frame from the same sequence of the DCA in Fig. 2 and
the result of neural-network classification.

Fig. 6. A DVA of human right iliac artery and the result of neural-network
classification.

246 x 246 pixels in the 256 x 256 image were examined because
the border pixels were also excluded. The test results for each
topology operating at its best performance are summarized
in Table I. The performance on the original training set was
also included for comparison. It is interesting to observe that
performance on the test set was superior than that on the
training set. This was because the training set was intentionally
selected to include more cases which were difficult to classify.
These cases corresponded to pixels near the edge of a vessel.
On the other hand, the test set contained many background
pixels which were easy to classify. It was also observed that
sometimes a better performance was achieved on the test set
by stopping the training process earlier to prevent the network
becoming overspecific and “memorizing” the training samples.
The networks trained to system errors below 0.05 adjusted
their behavior more closely to what was depicted by the
training set. Although they performed better on the training
samples, they could perform rather poorly on the test set.

For the second level of generalization test, different types of
angiograms were used. The 121-17-2 network trained with the
75 target points of the DCA image was applied to another DCA
image. Next, this network was trained and applied to a DVA
image and a DSA image. These results are shown, respectively,
in Figs. 5-7. In these figures, the original angiogram is shown
on the left with the neural-network classification result shown
on the right.

C. Computational Time

The combined computational time for the entire study was
on the order of 5000 VAX 11/780 CPU hours using several
systems. The training time for each network using the 75 target
points took between 2 and 10 CPU hours, depending on the

Fig. 7. A DSA of human right coronary artery and the result of neu-
ral-network classification.

number of iterations required to reach the specified system
error. Once the window classifier was trained, the average
time to slide it over a 256 x 256 image was 9 minutes.

VI. COMPARISON WITH OTHER METHODS

It is important to assess the performance of the neural-
network classifier relative to some other existing methods on
this vessel-detection problem. In this section, we present a
comparative study of classification performance. Two other
algorithms are evaluated: One is based on the traditional
Bayesian approach in which a maximum likelihood estimator
is employed. The other is based on the iterative ternary
classification developed by Kottke and Sun [10].

The maximum likelihood classifier (MLE) is derived by
assuming that patterns in each of the M classes have a
multivariate Gaussian distribution. The probability density
function for pattern x in class w; is given by

1 - deem)TC mm)
27T |C,‘|%
i=1,2,- M @

P(x|w;) =

where n is the dimension of the pattern vector. The covariance
matrix (C;) and the mean vector (m;) of class w; are estimated
from selected samples of the target image. A distance measure
(D;) is derived on the basis of the Bayesian maximum
likelihood decision rule [28]:

Di = P(x | wi)P(wi). (8)

The pixel is assigned to class w; for which distance D; is the

'smallest. After simplification, we have

Di = In P(w;) - 5 1[Gyl = 3[(x = mo)" €7 (x ~ my)],
i=12,---,M. )]

The above equation, with M = 2, was used to classify the
vessel class and the background class in the test angiogram
described earlier. In real-life situations, the a priori probabil-
ities of vessel and background, P(w;), are unknown. Without
this a priori knowledge, the classification result was quite
poor. As shown in Fig. 8 (left), when we overestimated the
a priori probability for vessel, a large background area was
segmented as vessel. On the other hand, an underestimation
of the a priori probability for vessel resulted in the missed
detection of some vessel segments, as shown in Fig. 8 (right).
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Fig. 8. Over and under classification by MLE.

TABLE 11
COMPARISON OF CLASSIFICATION ACCURACY FOR THREE METHODS

Algorithm Performance
68%
83%

92%

Bayesian Maximum Likclihuod—

Iterative Ternary Classification

Back Propagation Network

For the final comparison, we actually measured the a priori
probabilities by counting the pixels in the two classes in the
target image. This, of course, was unfair but insured the best
performance from the MLE.

The iterative ternary classification (ITC) is an adaptive
segmentation algorithm designed for classification of coronary
arteries in angiograms. The algorithm iteratively adapts two
gray-scale thresholds, T, and T}, to classify each pixel in the
angiogram to one of three classes (artery, background, and
undecided). It employs a learning algorithm in conjunction
with line structure and a consistency measure from undecided
pixels to update the two thresholds. This process iterates until
the number of undecided pixels falls below a predetermined
threshold.

In Table II, we present the classification accuracy (i) for
neural network, MLE, and ITC. The neural network showed
the best performance with a 92% accuracy. In Fig. 9, the
original test image and the classification results from neural
network, MLE, and ITC are shown together for comparison.

VII. DISCUSSION

In this paper, we investigate the use of neural networks
for segmentation of blood vessels in angiograms. It has been
demonstrated that a window classifier based on a multilayer
neural network outperforms the classic method based on
maximum likelihood estimation and a modern method based
on iterative ternary classification. The neural network classifier
takes image data directly as input and, thus, avoids the
cumbersome steps for feature selection and feature extraction.
However, the configuration of the network is crucial for
obtaining a satisfactory performance within an acceptable
training time.

Specific findings from this study include the following:
First, the network topologies under investigation, ranging from
three-layer to six-layer, are all suitable for segmenting the an-
giograms and show about the same classification performance.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 1, JANUARY 1995

Fig. 9. Test angiogram (upper-left), classification by neural network
(upper-right), classification by MLE (lower-left) and classification by ITC
(lower-right).

Second, the three-layer network (121-17-2) generalizes well
for all three types of angiograms (DCA, DVA, and DSA).
Increasing the number of hidden layers only results in training
difficulty and fails to gain in classification performance. Thus,
we conclude that the three-layer network is sufficient for
the segmentation problem. Third, classification performance is
sensitive to the choice of training samples. Manual selection of
those samples that best characterize the desirable performance
can significantly reduce the necessary number of samples as
compared to random selection. Fourth, the rate parameters for
the back-propagation learning affect not only the learning rate
but also the classification performance. The appropriate choice
for our problem is a small learning rate (3 = 0.05) combined
with a medium momentum rate (o = 0.5). Fifth, network
training is not sensitive to the selection of the random initial
weights. Sixth, the neural network shows superiority with a
92% classification accuracy, as compared to 83% given by the
ITC algorithm and 68% given by the MLE algorithm.

The fact that the neural-network classifier achieves the
highest performance over the other methods may contribute
to its ability to form highly nonlinear decision boundaries
for non-Gaussian distributed data. The excellent ability of
generalization has also motivated us to examine the anatomy
of the weight patterns further. In search of some insight
to the true nature of the network and the basis behind its
high performance, the weight patterns in the trained 121-
17-2 network and their relations to the network architecture
are shown in Fig. 10. The connection between the input and
the first layer is illustrated as images of spatial filters, in
which gray indicates a zero weight, dark gray indicates a
positive weight, and light gray indicates a negative weight. A
logarithmic scale has been used on these images for contrast
enhancement. After a careful examination of the classifier’s
architecture, one can find its resemblance to a nonlinear
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Fig. 10. Weight patterns and architecture for the 121-17-2 network.

matched filter. From this point of view, the neural-network
classifier is in essence an automated and efficient way to
implement a generalized matched filter. The matched filter
contains two parts, a convolution operator followed by a
nonlinear decision tree. The templates, which are the first-layer
weight matrices determined by training, are convolved with
the input image. The convolution results are processed by the
decision tree to reach the final classification. The parameters in
the decision tree are the second-layer weights and the threshold
values in the sigmoidal functions, which are also determined
by training.

A further examination of the weight images in Fig. 10,
however, fails to reveal a simple geometric interpretation
of how the vascular structure is extracted by the neural-
network classifier. Each weight image is roughly symmetric
with respect to the center, nevertheless, they do show a slight
pattern along the direction from upper-right to lower-left. This
may be explained by the fact that vessels in the training image
(Fig. 2) lie predominantly in that direction. The top six weight
images are roughly the complement of the bottom six. Thus,
there seems to be a spatial differential operation, but the exact
mechanism is difficult to trace due to the complex nonlinear
decision tree.

This has been a dual-purpose study. The first purpose, which
was to develop a neural-network classifier for the segmentation
of angiograms, has been successfully achieved. The second
purpose was to study the effect of network configuration on
training and classification performance based on this image-
segmentation problem. The results from this study has given
us a valuable insight to the roles of network topology, rate
parameters, training sample set, and initial weights. However,
the pursuit for a general guideline to configure neural networks
remains a challenge for on-going research.
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