
Classic Filters 
 

There are 4 classic analogue filter types: Butterworth, Chebyshev, Elliptic and Bessel. There is no ideal 
filter; each filter is good in some areas but poor in others. 

• Butterworth: Flattest pass-band but a poor roll-off rate. 
• Chebyshev: Some pass-band ripple but a better (steeper) roll-off rate. 

• Elliptic: Some pass- and stop-band ripple but with the steepest roll-off rate. 
• Bessel: Worst roll-off rate of all four filters but the best phase response. Filters with a poor phase response 
will react poorly to a change in signal level. 
Butterworth  

The first, and probably best-known filter approximation is the Butterworth or maximally-flat response. It 
exhibits a nearly flat passband with no ripple. The rolloff is smooth and monotonic, with a low-pass or high-
pass rolloff rate of 20 dB/decade (6 dB/octave) for every pole. Thus, a 5th-order Butterworth low-pass filter 
would have an attenuation rate of 100 dB for every factor of ten increase in frequency beyond the cutoff 
frequency. It has a reasonably good phase response. 
 

 
   Figure 1 Butterworth Filter 
Chebyshev 

The Chebyshev response is a mathematical strategy for achieving a faster roll-off by allowing ripple in the 
frequency response. As the ripple increases (bad), the roll-off becomes sharper (good). The Chebyshev 
response is an optimal trade-off between these two parameters.  Chebyshev filters where  the ripple is only 
allowed in the passband are called type 1 filters. Chebyshev filters that have ripple only in the stopband are 
called type 2 filters , but are are seldom used. Chebyshev filters have a poor phase response. 
It can be shown that for a passband flatness within 0.1dB and a stopband attenuation of 20dB an 8th order 
Chebyshev filter will be required against a 19th order Butterworth filter. This may be important if you are 
using a lower specification processor. 

The following figure shows the frequency response of a lowpass Chebyshev filter. 

http://electronics-2.weebly.com/uploads/1/3/0/5/13056901/classicfifilters.pdf



 
Figure 2 

Compared to a Butterworth filter, a Chebyshev filter can achieve a sharper transition between the passband 
and the stopband with a lower order filter. The sharp transition between the passband and the stopband of a 
Chebyshev filter produces smaller absolute errors and faster execution speeds than a Butterworth filter. 
The following figure shows the frequency response of a lowpass Chebyshev II filter.  

 

Figure 3 
Chebyshev II filters have the same advantage over Butterworth filters that Chebyshev filters have—a 
sharper transition between the passband and the stopband with a lower order filter, resulting in a smaller 
absolute error and faster execution speed. 

 
 

 
 

 
 

 
 

 
 

 
 



Elliptic 
The cut-off slope of an elliptic filter is steeper than that of a Butterworth, Chebyshev, or Bessel, but the 
amplitude response has ripple in both the passband and the stopband, and the phase response is very non-
linear. However, if the primary concern is to pass frequencies falling within a certain frequency band and 
reject frequencies outside that band, regardless of phase shifts or ringing, the elliptic response will perform 
that function with the lowest-order filter.  

 

  Figure 4 
Compared with the same order Butterworth or Chebyshev filters, the elliptic filters provide the sharpest 
transition between the passband and the stopband, which accounts for their widespread use. 
Bessell 

• Maximally flat response in both magnitude and phase 
• Nearly linear-phase response in the passband 

You can use Bessel filters to reduce nonlinear-phase distortion inherent in all IIR filters. High-order IIR 
filters and IIR filters with a steep roll-off have a pronounced nonlinear-phase distortion, especially in the 
transition regions of the filters. You also can obtain linear-phase response with FIR filters. 

 

  Figure 5 



 

  Figure 6 
You can use Bessel filters to reduce nonlinear-phase distortion inherent in all IIR filters. High-order IIR 
filters and IIR filters with a steep roll-off have a pronounced nonlinear-phase distortion, especially in the 
transition regions of the filters. You also can obtain linear-phase response with FIR filters. 

 
All the filters described above may be analogue or digital. However there is a lot of recorded data about the 
analogue varieties, so it is often the case that designers use the analogue equations and parameters used  and 
convert them to their digital equivalents. There are two main methods for this, namely the Impulse 
Invariant method and the Bilinear Transform method. 
Bilinear Transform 

Analogue filters are designed using the Laplace transform (s domain) which is the analogue equivalent of 
the Z transform for digital filters.  

Filters designed in the s domain have a transfer function like: 

€ 

T(s) =
1

1+
s
10

 

If we have a filter where 10 rads/sec = wc. Then multiply top and bottom by 10 

€ 

T(s) =
10
s+10

	
  

To apply the Bilinear transform we just need to replace the s by: 

€ 

s =
2 z −1( )
T z +1( )

	
  

Where T is the sampling period. So for a sampling frequency of 16Hz (T= 0.065 s) 

€ 

t z( ) =
10

2 z −1( )
0.0625(z +1

+10
 

And then just work it out! 
Near zero frequency, the relation between the analogue and digital frequency response is essentially linear. 
However as we near the Nyqist frequency it tends to become non-linear . This nonlinear compression is 
called frequency warping.  

In the design of a digital filter, the effects of the frequency warping must be taken into account. The 
prototype filter frequency scale must be prewarped so that after the bilinear transform, the critical 
frequencies are in the correct places.  



Impulse Invariant method 
The approach here is to produce a digital filter that has the same impulse response as the analogue filter. It 
requires the following steps: 

1. Compute the Inverse Laplace transform to get impulse response of the analogue filter 

2. Sample the impulse response  
3. Compute z-transform of resulting sequence 

Sampling the impulse response has the advantage of preserving resonant frequencies but its big disadvantage 
is aliasing of the frequency response. Before a continuous impulse response is sampled, a lowpass filter 
should be used to eliminate all frequency components at half the sampling rate and above. 
Using the low pass filter transfer function from the previous example: 

€ 

T(s) =
10
s+10

 

Now find the inverse Laplace transform from the Laplace transform tables, gives is: 

€ 

y(t) =10e−10t  

The final step is to find the z transform, Y(z) of this time variation. Once again from the Laplace/z transform 
tables, eat has a z transformation of z/(z – z-aT). With a sampling frequency of 16Hz: 

€ 

Y (z) =
10z

z − e−0.625
=

10z
z − 0.535

 

As Y(z) = T(z) x 1 for an impulse then: 

€ 

T(z) =
10z

z − 0.535
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Nomenclature

Filter Types wrt Frequency Range Selectivity

 jH jH

Lowpass Highpass Bandpass Band-reject

(Notch)

  

Provide frequency selectivity

 jH jH

 

All-pass

 jH

Phase shaping 

or equalization

https://inst.eecs.berkeley.edu/~ee247/fa10/fifiles07/lectures/L2_2_f10n.pdf
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Filter Specifications

• Magnitude response versus frequency characteristics:

– Passband ripple (Rpass)

– Cutoff frequency or -3dB frequency 

– Stopband rejection

– Passband gain

• Phase characteristics:

– Group delay

• SNR (Dynamic range)

• SNDR (Signal to Noise+Distortion ratio)

• Linearity measures: IM3 (intermodulation distortion), HD3 
(harmonic distortion), IIP3 or OIP3 (Input-referred or output-
referred third order intercept point)

• Area/pole & Power/pole
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Quality Factor (Q)

• The term quality factor (Q) has different 

definitions in different contexts:

–Component quality factor (inductor & 

capacitor Q)

–Pole quality factor

–Bandpass filter quality factor

• Next 3 slides clarifies each
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Component Quality Factor (Q)

• For any component with a transfer function:

• Quality factor is defined as:

 
   
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Component Quality Factor (Q) 

Inductor & Capacitor Quality Factor

• Inductor Q :

Rs series parasitic resistance

• Capacitor Q :

Rp parallel parasitic resistance

Rs
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Pole Quality Factor

x

x

j



P

p
Pol e

x

Q   
2






s-Plane• Typically filter 

singularities include 

pairs of complex 

conjugate poles.

• Quality factor of 

complex conjugate 

poles are defined as:
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Bandpass Filter Quality Factor (Q) 
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• Consider a continuous-time filter with s-domain transfer function G(s):

• Let us apply a signal to the filter input composed of sum of two sine 

waves at slightly different frequencies (D):

• The filter output is:

What is Group Delay?

vIN(t) = A1sin(t) + A2sin[(+D) t]

G(j)   G(j)e
j()

vOUT(t) = A1 G(j) sin[t+()] + 

A2 G[ j(+D)] sin[(+D)t+ (+D)]
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What is Group Delay?

{ ]}[vOUT(t) = A1 G(j) sin  t + 
()

 +

{ ]}[+ A2 G[ j(+D)] sin (+D) t +
(+D)

+D

(+D)

+D
 ()+

d()

d
D[ ][

1

 )( ]1 -
D



d()

d

()

 +
()

-( ) D




D

 <<1Since                  then D

 0[ ]
2
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What is Group Delay?

Signal Magnitude and Phase Impairment

{ ]}[vOUT(t) = A1 G(j) sin  t + 
()

 +

{ ]}[+ A2 G[ j(+D)]sin (+D) t +
d()

d

()

 +
()

-( )D



• PD  -()/ is called the “phase delay” and has units of time

• If the delay term d is zero the filter’s output at frequency +D and the 
output at frequency  are each delayed in time by -()/

• If the term d is non-zerothe filter’s output at frequency +D is time-
shifted differently than the filter’s output at frequency 

 “Phase distortion”

d
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• Phase distortion is avoided only if:

• Clearly, if ()=k, k a constant,  no phase distortion

• This type of filter phase response is called “linear phase”

Phase shift varies linearly with frequency

• GR  -d()/d is called the “group delay” and also has units of 

time. For a linear phase filter GR  PD =-k 

 GR= PD implies linear phase

• Note: Filters with ()=k+c are also called linear phase filters, but 

they’re not free of phase distortion

What is Group Delay?

Signal Magnitude and Phase Impairment

d()

d

()

- = 0
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What is Group Delay?

Signal Magnitude and Phase Impairment

• If GR= PD  No phase distortion

[ )](vOUT(t) = A1 G(j) sin  t - GR +

[+ A2 G[ j(+D)] sin (+D) )]( t - GR

• If  alsoG( j)=G[ j(+D)] for all input frequencies within 

the signal-band, vOUT is a scaled, time-shifted replica of the 

input, with no “signal magnitude distortion” 

• In most cases neither of these conditions are exactly realizable
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• Phase delay is defined as:

PD  -()/ [ time]

• Group delay is defined as :

GR  -d()/d [time]

• If ()=k, k a constant,  no phase distortion

• For a linear phase filter GR  PD =-k

Summary

Group Delay
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Filters

• Filters: 
– Nomenclature

– Specifications 
• Magnitude/phase response versus frequency characteristics

• Quality factor

• Group delay

– Filter types (examples considered all lowpass, the 
highpass and bandpass versions similar characteristics)

• Butterworth

• Chebyshev I & II

• Elliptic

• Bessel

– Group delay comparison example

– Biquads
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Filter Types wrt Frequency Response

Lowpass Butterworth Filter

• Maximally flat amplitude within 

the filter passband

• Moderate phase distortion
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Lowpass Butterworth Filter

• All poles

• Number of poles equal to filter 

order

• Poles located on the unit 

circle with equal angles

s-plane

j



Example: 5th Order Butterworth Filter

pole
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Filter Types 

Chebyshev I Lowpass Filter

• Chebyshev I filter

– Ripple in the passband

– Sharper transition band 

compared to Butterworth (for 

the same number of poles)

– Poorer group delay 

compared to Butterworth

– More ripple in passband 

poorer phase response
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Chebyshev I Lowpass Filter Characteristics

• All poles

• Poles located on an ellipse inside 

the unit circle

• Allowing more ripple in the 

passband:

_Narrower transition band

_Sharper cut-off

_Higher pole Q

_Poorer phase response

Example: 5th Order Chebyshev I Filter

s-plane
j



Chebyshev I LPF  3dB passband ripple

Chebyshev I LPF 0.1dB passband ripple
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Normalized Frequency 
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Filter Types 

Chebyshev II Lowpass

• Chebyshev II filter

– No ripple in passband

– Nulls or notches in 

stopband

– Sharper transition band 

compared to 

Butterworth

– Passband phase more 

linear compared to 

Chebyshev I

Example: 5th Order Chebyshev II filter
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Filter Types 

Chebyshev II Lowpass

Example: 

5th Order 

Chebyshev II Filter

s-plane

j



• Poles & finite zeros

– No. of poles n             

(n  filter order)

– No. of finite zeros: n-1

• Poles located both inside 

& outside of the unit circle

• Complex conjugate zeros 

located on j axis

• Zeros create nulls in 

stopband pole

zero
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Filter Types 

Elliptic Lowpass Filter

• Elliptic filter

– Ripple in passband

– Nulls in the stopband

– Sharper transition band 

compared to Butterworth & 

both Chebyshevs

– Poorest phase response
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Example: 5th Order Elliptic filter
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Filter Types 

Elliptic Lowpass Filter

Example: 5th Order Elliptic Filter

s-plane

j



• Poles & finite zeros

– No. of poles: n

– No. of finite zeros: n-1

• Zeros located on j axis

• Sharp cut-off

_Narrower transition 

band

_Pole Q higher 

compared to the 

previous filter types Pole

Zero
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Filter Types

Bessel Lowpass Filter

s-planej



• Bessel

–All poles

–Poles outside unit circle

–Relatively low Q poles 

–Maximally flat group delay

–Poor out-of-band attenuation

Example: 5th Order Bessel filter

Pole
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Magnitude Response Behavior

as a Function of Filter Order

Example: Bessel Filter
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Filter Types 

Comparison of Various Type LPF Magnitude Response
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Filter Types 

Comparison of Various LPF Singularities

s-plane

j



Poles Bessel

Poles Butterworth

Poles Elliptic

Zeros Elliptic

Poles Chebyshev I 0.1dB
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Comparison of Various LPF Groupdelay

Bessel

Butterworth

Chebyshev I 

0.5dB Passband Ripple

Ref: A. Zverev, Handbook of filter synthesis, Wiley, 1967.
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Filters

• Filters: 

– Nomenclature

– Specifications
• Magnitude/phase response versus frequency characteristics

• Quality factor

• Group delay

– Filter types
• Butterworth

• Chebyshev I & II

• Elliptic

• Bessel

– Group delay comparison example

– Biquads
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Group Delay Comparison 

Example

• Lowpass filter with 100kHz corner frequency

• Chebyshev I versus Bessel

– Both filters 4th order- same -3dB point

– Passband ripple of 1dB allowed for Chebyshev I
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Magnitude Response
4th Order Chebyshev I versus Bessel
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Phase Response

4th Order Chebyshev I versus Bessel
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Group Delay

4th Order Chebyshev I versus Bessel
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Step Response

4th Order Chebyshev I versus Bessel
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Intersymbol Interference (ISI)

ISI Broadening of pulses resulting in interference between successive transmitted 

pulses

Example: Simple RC filter
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Pulse Impairment

Bessel versus Chebyshev
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Note that in the case of the Chebyshev filter not only the pulse has broadened but it 

also has a long tail

More ISI for Chebyshev compared to Bessel
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Response to Pseudo-Random Data

Chebyshev versus Bessel

4th order Bessel 4th order Chebyshev I

Input Signal: 

Symbol rate 1/130kHz 
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Summary

Filter Types

– Filter types with high signal attenuation per pole   _ poor phase 

response

– For a given signal attenuation, requirement of preserving constant 

groupdelay Higher order filter

• In the case of passive filters  _ higher component count

• For integrated active filters    _ higher chip area & 

power dissipation

– In cases where filter is followed by ADC and DSP

• In some cases possible to digitally correct for phase impairments 

incurred by the analog circuitry by using digital phase equalizers & 

thus possible to reduce the required analog filter order
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Filters

• Filters: 

– Nomenclature

– Specifications
• Magnitude/phase response versus frequency characteristics

• Quality factor

• Group delay

– Filter types
• Butterworth

• Chebyshev I & II

• Elliptic

• Bessel

– Group delay comparison example

– Biquads
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RLC Filters

• Bandpass filter (2nd order):

Singularities: Pair of complex conjugate poles 

Zeros @  f=0 &  f=inf.

o

s
o RC

2 2in oQ
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o
o
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V s s
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RQ RC
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 

oVR

CLinV

j



s-Plane
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RLC Filters

Example

• Design a bandpass filter with:

 Center frequency of 1kHz

 Filter quality factor of 20 

• First assume the inductor is ideal

• Next consider the case where the inductor has series R 

resulting in a finite inductor Q of 40

• What is the effect of finite inductor Q on the overall filter 

Q?

oVR

CLinV
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RLC Filters

Effect of Finite Component  Q

idealfi l t ind.
f i l t

1 1 1
Q QQ

 
Qfilt.=20 (ideal L)

Qfilt. =13.3 (QL.=40)

Need to have component Q much higher 

compared to desired filter Q
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RLC Filters

Question:

Can RLC filters be integrated on-chip?

oVR

CLinV
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Monolithic Spiral Inductors

Top View
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Monolithic Inductors

Feasible Quality Factor & Value

Ref: “Radio Frequency Filters”, Lawrence Larson; Mead workshop presentation 1999

c Feasible monolithic inductor in CMOS tech. <10nH  with Q <7

Typically, on-chip 

inductors built as 

spiral structures out 

of metal/s layers

QL  L/R)

QL measured at 

frequencies of 

operation ( >1GHz)
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Integrated Filters

• Implementation of RLC filters in CMOS technologies requires on-
chip inductors

– Integrated L<10nH  with Q<10 

– Combined with max. cap. 20pF

 LC filters in the monolithic form feasible: freq>350MHz 

 (Learn more in EE242 & RF circuit courses)

• Analog/Digital interface circuitry require fully integrated filters with 
critical frequencies << 350MHz

• Hence:

c Need to build active filters without using inductors

EECS 247                                                 Lecture 2:  Filters © 2010  Page 50

Filters
2nd Order Transfer Functions (Biquads)

• Biquadratic (2nd order) transfer function:
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Biquad Complex Poles

Distance from origin in s-plane:
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s-Plane
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