Note: Only solve 4 of the 5 problems given!

Name:

1) Diode Application

- a) Find a value for the current I_S flowing through the 1 $k\Omega$ resistor if V_S is a dc voltage of 5 V.
- b) Determine the maximum value of V_{out} if V_S is a sinusoidal voltage of 5V amplitude.
- c) What is the **minimum value** of V_{out} for the operating conditions given in b)?
- d) Based on the given diode model, we can replace the 2 diode branches by a single branch comprising one diode in series with a resistor R_x . What is the value of this equivalent resistor R_x ?

2) Cascade of two CC Gain Stages

- a) Find a value for the dc collector current I_{C2} of Q2 if V_s is an ideal ac source (To simplify matters, you can assume that both transistors feature the same base-emitter voltage of 0.7 V).
- b) What is the actual difference ΔV_{BE} of the two base-emitters voltages if we know that Q2 carries 100 times more current than Q1 but also features a 4 times higher saturation current Is due to an elevated junction temperature? (Hint: You can neglect the change in V_T for this calculation since it has little impact).
- c) Find a value for the **maximum ac output swing** (amplitude in V) of this circuit? (Assume that the cap C_o acts as an ac short)
- d) Find the numerical value of the **input resistance** R_{in} (C_o acts as an ac short).

3) MOSFET Current Mirror

Transistors are identical
$$\mu C_{ox}W/L = 400 \ \mu A/V^2$$
 $V_t = 0.8 \ V$ $\lambda = 0.02 \ V^{-1}$

- a) Find RB such that M1 features a dc drain current I_B of 100 μA .
- b) Find the minimum value of V_0 that keeps both transistors in saturation.
- c) Derive a numerical value for the output resistance Rout-
- d) By how much would R_{out} increase if you were to switch a resistance Rs of $3k\Omega$ between the source and ground of each transistor? (I_B remains at $100 \mu A$)

4) BJT Amplifier

Transistor Parameters:
$$V_{BEQ} = 0.7 \text{ V}$$

$$\beta = 100$$

$$V_A = \infty$$

$$nV_T = 30 \text{ mV}$$

- a) What is the value of the equivalent base resistor RB?
- b) Find the Q-point values I_{CQ} and V_{CEQ} of the depicted NPN transistor.
- c) Sketch the ac equivalent circuit under the assumption that all three **capacitors** represent **shorts for ac** frequencies and find a numerical value for the voltage gain $A_V=V_{out}/V_{in}$.

2

d) Find a value for the input resistance R_{in} at dc (C_i is not included in R_{in}).

5) MOSFET Amplifier

- a) Find the dc value of the drain voltage V_D of the depicted MOS transistor (Note: the depicted current source is an ideal dc source).
- b) Sketch the small signal or ac equivalent circuit under the assumption that both capacitors represent ac shorts.
- c) Derive a **symbolic expression** and a numerical value for the voltage gain $A_V=V_{out}/V_{in}$.
- d) Find a numerical value for the input resistance (Recall that Co acts as a short for ac frequencies).

