Mathematics of Musical Temperament and Harmony

Musical Temperament

Temperament is the adjustment of intervals in tuning a piano or other musical instrument so as to fit the
scale for use in different keys. Historically, the use of just intonation, Pythagorean tuning, and meantone
temperament meant that such instruments could sound "in tune" in one key, or some keys, but would then have
more dissonance in other keys. For example, some of these previous tuning systems were utilized that created
perfect fifths, meaning that music in the keys of C, G, D, A, E, or B sounds reasonably well, but music in the
keys of F#, C#, G#, or D# may sound out of tune.

An equal temperament is a musical temperament, or a system of tuning, in which the frequency interval
between every pair of adjacent notes has the same ratio. In other words, the ratios of the frequencies of any
adjacent pair of notes are all the same. As pitch is perceived roughly as the logarithm of frequency, equal
perceived "distance" is maintained from every note to its nearest neighbor. An octave is the interval between one
musical pitch and another with double its frequency. With equal temperament, an octave consists of twelve
equally spaced semitones (half steps) on a logarithmic frequency scale. The equal temperament is now universal,
which enables music in all key signatures to be played without any noticeable harmonic "distortion."

Even before the system was widespread, equal temperament was approximated in various degrees as a
practical matter, in the small adjustments made by organ tuners and harpsichordists. The development of well
temperament allowed fixed-pitch instruments to play reasonably well in all of the keys. The famous Well-
Tempered Clavier by Johann Sebastian Bach takes full advantage of this breakthrough, with pieces written in all
24 major and minor keys. However, while unpleasant intervals (such as the wolf interval) were avoided, the sizes
of intervals were still not consistent between keys, and so each key still had its own character. This variation led
in the 18th century to an increase in the use of equal temperament, in which the frequency ratio between each
pair of adjacent notes on the keyboard was made equal, allowing music to be transposed between keys without
changing the relationship between notes. Equal temperament tuning was widely adopted in France and Germany
by the late 18th century and in England by the 19th.

Chromatic Scale

In Western music, the chromatic scale has twelve semitones in an octave with the equal temperament.
The standard piano today has 88 keys, having 7 registers and covering 7 1/3 octaves as shown below. The ideal
frequency for each key is also shown with A4 = 440 Hz, the so-called concert pitch. There is only one way to
construct the chromatic scale because all notes are used in a sequential manner.
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Diatonic Scales

There are different diatonic scales, which are = - | @
constructed from a mix of whole steps (W) and half steps o 2| R § s
(H). The major scale consists of 7 notes over an octave with £l % elEl2]|2
the interval sequence of W—W—-H-W-W-W-H. The minor = ‘%' = § &= E
scale (natural) has the interval sequence of W-H-W-W-H-— 2 il
W-W. The C major scale and its relative minor scale (Am) e Mo o M W W W
on the keyboard are shown below. (A pair of major and % 2 sl DlE|FPISLALD
minor scales sharing the same key signature are said to be in 21 E S falalalolDlE LB

. . . . 9, < | D|ID|E|FR|G]|]A|B/|Cx
a relative relationship.) Some examples of the major and i I
minor scales are shown on the right. Other scales not listed < |8 Alatb telD | = lieloe

. E|E |Fe|Gr| A| B |Ca|D#

here include the modal scales.
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A geometric series is a series with a constant ratio Sg| £ |Bm[B |Ce|D[E |Fs|Gn|As
between successive terms. With the equal temperament, the =& E Fem| F# |Ge | A | B | Ce | D# | Ex
frequencies of the chromatic scale form a geometric series. C#m|Cu# |D# | E | Fe | G | Ax | Be
The series is completely characterized by only one * The descending of the melodic minor scale follows the interval

: . . f the natural mi le.
parameter, the frequency ratio between adjacent semitones. FHPRE e IR MNRE S

So, let's determine this ratio ». We start with an arbitrary note of frequency f,. The next 12 semitones in the

octave form the series {fO,fl,f2,f3,f4,f5,f6,f7,f8,f9,f10’fll’fIZ} , where f,=2Xf,. The

geometric series is

2, 3, 4 5 6 7 8 9 10 11 12
{fo,fo’”: Sor™ for™ for', for's for', for's for s for s for s for ’for}

The octave relationship results in: [, = 2Xf, = f,r'> = 2 =7r"

1
Take the 12" root on both sides, we have: » = W2 =22 = 1.059463094 .

The interval of two adjacent notes is further divided into 100 cents. The ratio between two frequencies separated

L
by lcentis r, = 2" = 1.00057779 .

cent

Now, we determine the difference between two frequencies in terms of cents. Let
Fi= f£2°"" and £, = f,2%"" . The ratio of the two frequencies is:
¢,11200
S fo2” (¢2/1200—¢,/1200) __ m(cy—c,)/1200 _ '
T T oo 2 = Cy,—C = 1200 logz—
fl f02 : fl



Exponential and Logarithm

Here is a side note on the mathematics of exponential and logarithmic functions. An exponential
function is given by the general form:

y = b", where b is the base and x is the exponent.

The base is usually a number > 1. Commonly encountered bases include 2, 10, and e, where e is the so-called
Euler's number e =2.71828182845904523... .

The logarithm is the inverse function (or anti-function) of the exponential.
x = log,y
Here are some examples:

1 =10 0 = log,1 = log,,10° 1=2" |0=log,1 = log,2°

10 = 10’ 1 = log,,10 = log,,10' 2=2" |1=log,2 = log,2'

100 = 10> | 2 = log,,100 = log,, 10’ 4 =2 |2 =log,4 = log,2’

1000 = 10° | 3 = log,,1000 = log,,10’ 8§ =2° |3 =1log,8 = log,2’

10000 = 10* | 4 = log,,10000 = log,, 10" 16 = 2* | 4 = log,16 = log,2*
Some properties of exponentials and logarithms are summarized below.

Operation Laws of exponentials Laws of logarithms

multiplication b x pb = pleth log(a X B) = loga + logP

division pe | pP = pleP) log(a / B) = logo. — logP

exponentiation (b“)f’ = p*P log a’ = B loga

zero property =1 logl =0

inverse ' =1/b loga™" = log(l/a) = —loga

nth root va = o' loga” = logo / n

In summary, the cent is a logarithmic unit of measure used for musical intervals. Twelve-tone equal
temperament divides the octave into 12 semitones of 100 cents each. In other words, an octave spans over 1,200
cents. Typically, cents are used to express small intervals, or to compare the sizes of comparable intervals in
different tuning systems. It is difficult to establish how many cents are perceptible to humans; this accuracy
varies greatly from person to person and depends on the frequency, the amplitude, and the timbre (tone quality).
Normal adults are able to recognize pitch differences of as small as 25 cents very reliably. An online test to
determine your pitch perception at 500 Hz is available at <http://jakemandell.com/adaptivepitch/>.

Example 1. Concert pitch is a standard for tuning of musical instruments, internationally agreed upon in 1960,
in which the note A above middle C (A4) has a frequency of 440 Hz. Based on equal temperament, determine
the frequency for middle C (C4).

From the keyboard shown on the previous page, C4 is 9 semitones below A4. Thus we have

S _ far 440
fes 1.6818  1.6818

9/12
2

= 2°" = 1.6818

= 261.6 Hz.

= fo =



Example 2. With C4 =261.6 Hz, determine the frequency of perfect fifth (G4) based on equal temperament and
harmonic fraction, respectively. Based on harmonic fraction, the frequency of G4 should be 3/2 of that of C4.

Based on Harmonic fraction, f,, = %f@; = 1.5X261.6 = 392.4 Hz.

Based on equal temperament, & =277 = 14983 = fes = 261.6X1.4983 = 392.0 Hz.
c4

The frequency difference is 392.4 — 392.0 =0.4 Hz

Example 3. For the above problem, what's the frequency difference in cents?

c,—c; = 1200 logzé = 1200 log 392.4

—— = 1.77 = 2 cents
7 2392.0

Example 4. Repeat the above problems for major third (E4). Based on harmonic fraction, the frequency of E4
should be 5/4 of that of C4.

Based on Harmonic fraction, f,, = %f&, = 1.25X261.6 = 327.0 Hz.

Based on equal temperament, % =27 =12599 = fr = 261.6X1.2599 = 329.6 Hz.

4
The frequency difference is 329.6 — 327.0 =2.6 Hz

c,—c; = 1200 10g2% = 1200 logz%
1 .

Note: This computation can be done on the OpenOffice spreadsheet: =log(329.6/327.0; 2)

= 14 cents.

Example 5. The 1* violin is tuned to A4 = 440 Hz, the 2" violin A4 = 435 Hz, and the 3nd violin A4 = 442 Hz.
What are the pitch differences among them in terms of cents?

The 2™ violin is lower than the 1* violin by ¢,—c, = 1200 log2% = 20 cents.

The 3™ violin is higher than the 1* violinby ¢;—c, = 1200 logZ% = 8 cents.

The 3" violin is higher than the 2™ violin by ¢;—c, = 1200 log, % = 28 cents.

Notice that, once converted to cents, the frequency differences are additive. This follows the
multiplication law of logarithms shown on the previous page.
f3)(ﬁ) S (442) 440, _ 442

. fo: (13 — =
requency ratio: | 1 7, 440" 435 435

Frequency difference: (c;—c,) + (¢,—¢c,) = c¢;—c, = 8 cents + 20 cents = 28 cents




Vibrations

As shown in panel A of the figure below, a string is fixed at two end points (called nodes) and is
plucked. The simplest vibration can be characterized by a sine wave. Plotting the displacement at the middle
point of the string (marked by the green X), we have y(¢) = A sin2m ¢, where f, is the frequency of the
vibration and 4 is the amplitude. The amplitude will decay and the vibration will eventually cease. But let's
ignore the decay for now and assume 4 is a constant. The fundamental frequency f,, also called the 1%
harmonic, depends on the length, tension, and weight of the string. The system also supports vibrations at
frequencies that are integer multiples of o
fo. As shown in panel B, the 2™ E si=sie
harmonic vibrates at the frequency 2 £, .
An additional node occurs at the middle
point of the string, which remains
stationary. Similarly, the 3™ harmonic
with the frequency of 3 f, and the 4"
harmonic with the frequency of 4 f,
respectively, are shown in panel C and
D. These harmonics (vibration modes)
co-exist and jointly determine the
waveform of the vibration. Because the
nodes at the two ends are fixed,
frequencies other than the harmonic
frequencies can not exist.

F ylth = sm 2x110: Iisjuln-zlﬂl

. 1 . [
G ylit)=anlzl10¢ + = sin2n- 220+ + i sin2n- 3304
3

To demonstrate how the harmon-
ics affect the waveform, we perform a
mathematical simulation as follows. Let's
assume the 5™ string of a guitar is
plucked, which is tuned at A2 = 110 Hz.
The 1% harmonic with the amplitude A
set to 1 is given by:

y(t) = sin2m-110-¢
The waveform is generated with an

online graphing calculator <www.desmos.com/calculator>, as shown in panel E. Next, we add the 2™ harmonic
with an amplitude of 1/2. The resulting waveform is shown in panel F.

H ylo) = sin 21004 + I—‘sial:t-ﬁﬂr + 4!—sm!a-}]ﬂ-r + ,l': sin 24404

4th Harmonic
TR

y(t) = sin 271107 + % §in27-220-¢
Panel G shows the waveform with the inclusion of 1/4 of the 3™ harmonic.
p(t) = sin2m-110-¢ + % §in27-220-1 + % $in2 713307
Finally, panel H shows waveform with the inclusion of 1/8 of the 4™ harmonic.
y(t) = sin2m-110-¢ + % sin2m-220-¢ + % sin27-330-¢ + é sin 27t-440-¢

The resulting waveform is now more triangular in shape than sinusoidal.

In summary, the system of a vibrating string supports an ensemble of harmonics with integer multiples
of the fundamental frequencies, but no other frequencies. The harmonics change the shape of the vibration
waveform, which affect the tone quality (timbre) of the resulting sound.



Harmonics and Timbre

Figure below shows recorded waveforms from three instruments (flute, oboe, and violin) playing the A4
note (440 Hz) and their harmonic components. The flute is an aerophone or reedless wind instrument. The oboe
is a double reed woodwind instrument. The violin is a string instrument. Although all three instruments play the
same note, the harmonic contents are quite different to give each instrument a unique timbre (tone quality).
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The time period of one cycle shown in the figure is the reciprocal of the fundamental frequency:

1 1
T = = 0.00227
. 440 Hz >

We now use the graphing calculator technique from the previous section to simulate the waveform of the
flute. The resulting waveform is shown below.

y(t)zsin2r[-440-t+%sin2n-880-t+%sin2n-1320-t+%sin2H-1760-t+%sin2n-2200-t

=

While the simulated waveform bears the general shape of the actual waveform, there is some degree of
discrepancy. This may be due to unrepresented phase components, which are time delays among the different
harmonics. The effect of the phase will be further discussed later.

Just intonation

Just intonation or pure intonation is the tuning musical intervals as small integer ratios of frequencies.
Any interval tuned in this way is called a just interval. In just intonation the diatonic scale may be easily
constructed using the three simplest intervals within the octave, the perfect fifth (3/2), perfect fourth (4/3), and
the major third (5/4). As forms of the fifth and third are naturally present ; ; -
in the overtone series of harmonic resonators, this is a very simple C/DEF G A BC
process. The table shows the harmonic fractions between the frequencies 1 9/8 '5/4 4/3 3/2 5/3/15/8 2
of the just intonation for the C major scale. - - !




An example is generated by using an online

) W y=08sin(6.28 261.61) +2
graphing calculator <https://www.desmos.com/
calculator>. The note C4 is represented by' a pure sine N o (J.Ssin( _ % TR ;)
wave at 261.6 Hz. Based on the harmonic fractions,
the note E4 is 5/4 times higher and the note G4 is 3/2
- - (\/ .-=nesqin((s28- 3 261 ()':)—2
times higher than C4. Together the three waves form a RS
stable, periodic oscillation. The equations entries are
shown on the right with the waveforms shown below. Y (sin(ti.28 S 2616 f}+sm(h‘.28- 52616 f]-l-sin(b‘.%- 32616 f])
y=- - 4
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Fourier Analysis

To probe further, the representation of a periodic signal by its harmonics
was first studied by the French mathematician and physicist Jean-Baptiste Joseph
Fourier (1768-1830). The Fourier series analysis was initially concerned with
periodic signals. It was later expanded to non-periodic signals by using the Fourier
transform. The Fourier transform has many theoretical and practical applications,
which provide the foundation for areas such as linear systems and signal
processing.

A Fourier series is a way to represent a periodic function as the weighted
sum of simple oscillating functions, namely sines and cosines. Why sines and
cosines? The answer is related to the phase component (time delay) mentioned
previously. As shown by the figure on the right, the sine and the cosine form a so-
called orthogonal basis; They are separated by a phase angle of 90 degrees (7t /2).
Any angle can be represented by a linear combination of them. By definition a
linear combination of sine and cosine is asin2mw¢t+bcos2 ¢, where a and b
are constants.

In the following, we will present the formulas for the Fourier series, which
utilize the notions of calculus and complex variables. If you don't have these
mathematical background,s it's quite alright and please just try to follow the
notations.

It is somewhat cumbersome to carry the coefficients for both sine and
cosine. Thus, we introduce the complex exponential from another important
mathematician Leonhard Euler. The famous Euler's number e is an irrational
number: e = 2.71828182845904523 (and more). The Euler's formula represents
sine and cosine with a complex exponential:

T 7~ N S(t)=sin2nt 7
\./ /

Jean-Baptiste Josepr; F;un'e:r )
(1768-1830, France)

f(t) = cos2nt



e’ = cosx+ jsinx,where j = V—1.
A special case of the above formula is known as Euler's identity:
e +1=0.
These relationships are illustrated with the unit circle as shown in the figure at the

lower-right.

Finally, we present the Fourier series. A time-domain periodic signal
f (t ) with the fundamental frequency of f, can be represented by a linear
combination of complex exponentials,:

N in2m f ot
fl)=> ¢,
n=—oo "
The Fourier coefficients ¢, specify the weight on each harmonic in the
frequency-domain. The Fourier coefficients are computed according to:

1 T2 )
c,=— f x(t)e ™ ar

T -T2

where T'=1/ f, is the period of the signal. X - Re
-1'\n 0 ol]
\"-. _,"rl.
Harmony ¥ ;
In music, harmony considers the process by which the composition of i ;,“ il

individual sounds, or superpositions of sounds, is analyzed by hearing. Usually,
this means simultaneously occurring frequencies, pitches, or chords. The study of harmony involves chords and
their construction and chord progressions and the principles of connection that govern them. Harmony is often
said to refer to the "vertical" aspect of music, as distinguished from melodic line, or the "horizontal" aspect
[Wikipedia].

A chord is a group of three or more notes sounded together, as a basis of harmony. A triad is a a three-
note chord consisting of:

* the root — this note specifying the name of the chord;

* the third — its interval above the root being a minor third (3 semitones) or a major third (4
semitones);

+ the fifth — its interval above the third being a minor third or a major third.

With the choice of minor third and major third for two intervals, there are a total of 4 possible combinations.
Using C as the root note, the four chords are shown below.

Major Chord Minor Chord Augmented Chord Diminished Chord
f)
c :
&ﬁ_—mt 95::E§:MS: PS5 _—:%MB:AS_—:@M:DS
. M3 m3 M3 m3
C Cm By g

P5 = perfect fifth
A5 = augmented fifth
DS = diminished fifth

M3 = major third
m3 = minor third



The diagrams below show all the common triads belong to each major keys (left chart) and minor keys
(right chart). Roman numerals indicate each chord position relative to the scale.

Chords In All Major Keys Chords In All Minor Keys

o |y L i IV | V| vi [viie| |wew | 0 |0 | I | iv |V | VI| VI

Keys

C|C Dm Em| F | G |[Am B’ Cm |Cm | D° | Eb [Fm |G |A}b|B)
C# | C# |D#m|E#m| F# | G# |Asm|Bzc| |C#mCéim D#" E Fém|G#| A | B
Db D} |Ebm| Fm | Gb| A} |Bim| c Dm |Dm | E° | F |Gm A Bp C
D | D lEm!|/Ftml 6 | A |Bm | cCs° D#m D#m| E#° | F# (G¥m|A# | B | C#
Eb Eb Fm |Gm Ab Bb cm D° Emebm F° Gb Abm BL | Cbhb | Db
Em | F#°| G ([Am|B | C | D
E |E |FsmGém| A | B |Com| D3| |- |E™ m
= = Fm Fm | G° | AL Bbm C | Db| Eb
£ Om | Am m Fim|Fim|(Gs#°| A |Bm|C#| D | E
F# | F¢ |Gém|Asm| B | C# |D#m| Es°

Gm | Gm| A° | Bb |Cm|D |[Eb| F
Gb |Gb |Abm/Bim|C}) D) [Ebm F G#m|G#m| A2°| B |Cim|D#| E | F#

G |G |[Am Bm| € |D |Em F#° | [a [Am/Bb°| Cb Dbm|Eb| Fb | Gb
Ab |Ab [Bobm/cm | Db | Eb | Fm | G° N Am 2 | c lpmlE | =l o
A |A Bm|[Cim D E |F#m G#° Aim|Asm| Bz° | C# [D#m|E#| F# | G2
Bb | Bh[Cm|Dm|EL | F |Gm| A° Bbm|Bbm| ¢c° | Db [Etm| F | Gb| Ab
' B | B [csm|D#m| E | F# |G#m|As°| [Bm|Bm|cs| D [Em|F:| G | A

The figure on the right
demonstrates how the triads are
played on a keyboard and how
the different types of chords are
formed. Using the C major key
as an example, a triad is played
with three fingers. usually the
thumb, the middle finger, and
the pinky. The first chord is C
major: a major third (4 semi-
tones) between C and E, and a
minor third (3 semitones) be- :
tween E and G. The next chord Em L
is D minor: a minor third be-
tween D and F, and a major G 3 ) 3
third between F and A. This
process continues until the B di- o
minished chord: a minor third B"
between B and D, and another
minor third between D and F.




The equal temperament tuning system

. Major
was developed after Bach's time. Bach com- 2 . -
posed the Well-Tempered Clavier as a depar- —_— C e
ture from the various meantone tunings that F ; £
were used in earlier music. Bach's motivation
was to demonstrate the varying key colors in L 1b a 1% %
well tempered tuning as one progresses B[y d Mot ¢ 13
around the circle of fifths. The circle of fifths 2 g aa b 24

as shown in the figure is the relationship
among the 12 tones of the chromatic scale,
their corresponding key signatures, and the as- % I
sociated major and minor keys. More specifi-

cally, it is a geometrical representation of rela- f #
tionships among the 12 pitch classes of the 4), c 48
chromatic scale in pitch class space. Ab bb Q# E
In Bach's time there were no record- % 5h/74 Cb/d# ij /5% ﬁ
ing devices nor frequency measurement in- 6b/64

struments. Therefore, we will never know ex-
actly how Bach tuned his harpsichord to play % GL’/ F # %
the Well -Tempered Clavier. In 1799, Thomas E%ém
C tenks E=ERE SR,

Young published his version of the well tem-
perament tuning.

Equal temperament tuning is ubiquitous nowadays. The twelve-tone serialism, initiated by the Austrian
composer Arnold Schoenberg (1874-1951), emphasizes that all 12 notes of the chromatic scale are sounded as
often as one another in a piece of music while preventing the emphasis of any one note through the use of tone
rows, orderings of the 12 pitch classes. All 12 notes are thus given more or less equal importance. Because the
music avoids being in a key, the twelve-tone serialism unquestionably favors the equal temperament tuning.

However, some people argue that equal temperament is not necessarily the best choice in order to bring
out the key colors, especially for early music. See notes of Prof. Michael Rubinstein of the University of
Waterloo <http://www.math.uwaterloo.ca/ ~mrubinst/tuning/ tuning.htmI>.

From the point of view of physics, the harmony is best formed when the frequencies of the notes are
related by exact integer fractions. For example, the frequency of the perfect fifth should be 3/2 of the root note
frequency. Thus, the nodes of vibrations will meet up every second cycle of the root node and every third cycle
of the fifth. The resulting waveform is periodical, stable, and sounding in harmony.

To provide a quantitative analysis for the aforementioned discussion, we now compute the frequencies
of the chromatic scale from C4 to C5 using the equal temperament tuning and the well temperament tuning. The
Harmonic Fraction is compared to because it should provide the best harmony. To demonstrate how the
computation is done, let's use E4 (major third) as an example. As A4 is tuned to 440 Hz, the frequency for C4 is
261.6 Hz.

Base on harmonic fraction (HF): f,, = (5/4) X f,, = 1.25 X 261.6 = 327 Hz.

Base on equal temperament (ET):  f,, = (2°") Xfe, = 126 X 261.6 = 329.6 Hz.

Base on well temperament (WT): [, = 1.2539 X f., = 1.2539 X 261.6 = 328 Hz.
Difference between ET and HF:  329.6 — 327 = 2.6 Hz, or 12001og,(329.6/327) = 13.7 ¢.
Difference between WT and HF: 328 — 327 = 1.0 Hz, or 12001log,(328/327) = 5.4 ¢.

10



A comparison among harmonic fraction (HF), equal temperament (ET), and well temperament (WT) for the 4™
octave is shown below. The spreadsheet for generating the numbers can be downloaded from the course

webpage.

w { = w = —_— | ';;

© o) O | | e = Nl N | E
5 elE| 8|5 |aS|_¢g|3S|=| 8
b o | E ‘g n g b E Z 8] o -
—_ c [3) 2 =l 2% sl © )
© a1 2 c |e g8 c o
2l<| & s |eg|W S|l 8|

‘E =] E E S 5 £ S| ® o
= — S £ = E o @ |.|_J ol & Hq:)
=l T | £ £ £] 6 P

<

* —
= ~Nl 7| £
2E|TE|=| 8
38|z a =
>3 |83 8| g
=3 c 5]
BE|ICE|l 8| 5
E2 3 ]
S = Eﬂ'g 2
2| 8|55

Remark

perfect unison |C 0

minor second |[C# | 1 |15/14

major second |D 2198|112 ¥ ; 2 :

minor third D# | 3 | 6/5 | 1.200{ 314.0] 1.189 310.7] -3.2|-17.

majorthird  |E | 4 1.250] 327.0] 1.260] 329.6 1.00 5.4 Major third
perfectfourth |F | 5 /3| 1.333[ 348.8] 1.335/349.2 0.4 1.

tritone F# | 6 | 7/5 | 1.400] 366.3] 1.414] 370.0] 9.4

perfect fifth G 7 1.500] 392.4] 1.498]392.0 Perfect fifth
minor sixth G# | 8 5 | 1.600] 418.6] 1.587|415. 7 -17.

major sixth A 9 | 5/3 1.667] 436.0| 1.682]440.0 4 0] 15. 6|1 6757 9.4] A4 =440
minor seventh |A# | 10| 9/5 | 1.800] 470.9] 1.782/466.2) -4.8|-17. G_IJ .7815|466.1| -4.8]-17.

major seventh |B 11| 15/8 | 1.875] 490.5| 1.888|493.9] 3.3] 11.7|1.8788|491.6f 1.0] 3.5

perfect octave |C 12| 2/1 | 2.000] 523.3| 2.000 523.5' 0.0 0.0] 2.000{523.3] 0.0] 0.0

* Reference: Well vs. Equal Temperament http://www.math.uwaterloo.ca/~mrubinst/tuning/tuning.html
Hear the difference (Bach's Bb minor Prelude from the Well Tempered Clavier):

https://www.youtube.com/watch?v=60xXE3GLgJk

The above table shows how each individual note in the
chromatic scale is in harmony with C4. The C major chord consists
of C4, E4, and G4. With equal temperament, G4 is only off by 2
cents, whereas E4 is off by 14 cents. With well temperament, G4 is
off by 4 cents, and E4 is off by 5 cents. Thus, for the C major chord
well temperament tuning should sound more in harmony than the
equal temperament.

Using the graphing calculator, the waveforms of harmonic
fraction (HF), equal temperament (ET), and well temperament
(WT) are plotted: y(¢)=sin2m f,t+sin2x £, t+sin2n f,t
The waveforms of HF (red), ET (blue), and WT (green) are
compared on three different time scales. As expected, the HR shows
a completely stable pattern. The frequency difference at the major
third (E4) is 2.6 Hz for ET and 1 Hz for WT, which can be seen in
the vibration patterns below.

WAL |
il |||| || '” |||| I |||| ||'|||'|I' "| ||||:' I

il || ||J ‘I

| 0.05 s

iI“||l
1”

0.05s

il

I '||,||||n

i
"1| '\1 ||| il Ii' H'

You may wonder why we don't just use harmonic fractions as the tuning standard. Keep in mind that the
above analysis is for the C major chord only. If we tune C4, E4, and G4 in perfect harmony, some of other
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chords in the C major key will be significantly off. Moreover, there are a total of 24 major and minor keys. Thus,
tuning is a process of compromising. The equal temperament tuning does not favor any particular key, at the
sacrifice of a certain degree of deviation from perfect harmonies.

A seventh chord is a chord consisting of a triad plus a note forming an interval of a seventh above the
chord's root. Using the C chord as an example, the C7 chord consists of C, E, G, and Bb. The Cmaj7 chord
consists of C, E, G, and B. The addition of the 7" node mades the chord sounding more unstable. Using the
graphing calculator, the waveforms for C and C7 are shown below, based on equal temperament tuning.

c S o7

Beats

In acoustics, a beat is an interference pattern between two sounds of slightly different frequencies,
perceived as a periodic variation in volume whose rate is the difference of the two frequencies [Wikipedia]. An
interference can only be produced through a nonlinear system, not a linear system, as discussed below.

The output of a linear system is a linear combination of the inputs. The example in the previous section
represents a linear system. The output y(¢)=sin27 f ., t+sin27w f,,t+sin27 £, ¢ is a linear combination
of the three inputs: sin2mw -, ¢, sin2m f,t, and sin2m f,¢ . Thus, no new frequencies are generated. If
the frequencies are not of exact harmonic fractions, some amplitude-modulated patterns can be observed. The
amplitude does oscillates at the differential frequency of frequencies. However, the beat can only occur through
a nonlinear system such as multiplying the two signals together. Using one of the trigonometry identities:

sina. X sinf = %[cos(a—ﬁ)—cos(aﬂ:’i)]

Let a=2n441¢t and f=2m440¢ . The resulting wave-

form is shown on the right on two different time scales. Two H l| | l l l I ' I I ' |

new frequencies are generated: 1 Hz and 881 Hz. The lower | “ “ M ' " M”M M' M NIM ' MIM
frequency (1 Hz) is called the beat frequency. The beating ] Ll “ N 1 RS
can be used to tune a musical instrument, such as tuning two J i i if i
guitar strings to unison. When the pitches are close but not
identical, the beat can be heard and used to guide the tuning.
The 1 Hz difference between 441 Hz and 440 Hz is equiva-
lent to 4 cents ( 1200 10g2(441/ 440) ), which is not distin-
guishable by human ear in general. However, the beat fre-
quency of 1 Hz can create a modulation on the sound volume
perceived as a wobbling effect, which can be easily detected.
When the two pitches are farther away, the wobbling is
faster. When the two pitches are closer together, the wob-
bling is slower. The wobbling disappears when the two pitches are in perfect unison. A demonstration of this

phenomenon can be seen and heard on YouTube entitled “Beats Demo: Tuning Forks” at <https://www.y-
outube.com/watch?v=yia8spG8OmA>
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Conversion Between Frequencies and Cents

Geometric series
(frequencies)

Algebraic series
(semitones or cents)

{fO,fl,f2,f3,f4,f5,f6,f7,f8,f9,f10’ fll!fl2}

1
{CO,CI,CZ, C3,C4 C5C CqCg CgCry,C115Cop )

2, 3, 4 5 6
{fo,for’for for for:for;fof”,
7 8 9 10 11 12
fo’")fo’”:fo’”;fo”’fo”:for}
1

r= 2 =27 = 1.059463094

[co, €p+100, ¢,+200, ¢,+300, c,+400,
¢, +500, ¢,+600, c,+700, c,+800,c,+ 900,
c,+1000, ¢,+1100, c,+1200]}

/>
c,—c, = 1200 log,—
/i =
€, €
=1200*LOG(F2/F1;2)
(czfcl)
& _ o 1200
Z S z
1

=27((C2-C1)/1200)

Multiply, Divide

Add, Subtract
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Arranged for guitar. Listen at <www.youtube.com/watch?v=MKyMKzGzXjE> and follow the chord progression.

Prelude in C (BWV 846)

From the Well-Tempered Clavier
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Piano Score of Bach's BWV 846

Prelude and Fugue in C

Johann Sebastian Bach

From the Well Tempered Clavier
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Prelude and Fugue in C
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Well-tempered vs. equal-tempered tunings <https://www.youtube.com/watch?v=60xXE3GLgJk>

Prélude No. 22 in Bb Minor

from “Das Wohltemperierte Klavier” Book I

BWYV 867
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