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Abstract— We have simulated a four-layer concentric spheri-
cal head model. We calculated the spline and tripolar Laplacian
estimates and compared them to the analytical Laplacian on
the spherical surface. In the simulations we used five different
dipole groups and two electrode configurations. The comparison
shows that the tripolar Laplacian has higher correlation coeffi-
cient to the analytical Laplacian in the electrode configurations
tested (19, standard 10/20 locations and 64 electrodes).

I. INTRODUCTION

In the last 20 years, the Brain Computer Interface (BCI)
has been explored as a valuable communication channel for
people who are suffering from severe motor disabilities. As a
communication system that ”does not depend on the brain’s
normal output pathways of peripheral nerves and muscles”
[1], a BCI provides persons who cannot use their muscles but
are cognitively intact with an alternative for communication
and control.

There are primarily three types of electroencephalogra-
phy (EEG) based BCIs: 1) intracortical EEG based, with
electrodes placed in the brain, and 2) electrocorticogram
(ECoG) based, with electrodes placed on the brain, and
3) conventional EEG based, with electrodes on the scalp
(noninvasive). Among these tpyes of BCIs, noninvasive EEG
based BCIs have obvious clinical benefits, but they suffer
from poor spatial resolution and low signal-to-noise ratio
(SNR) due to the blurring effects [2].

Cortical sources, which are at the surface of the brain,
are where the imagined signals originate from for BCI.
Therefore, we need to apply a high-pass spatial filter to
attenuate deeper sources. Laplacian filtering has been proven
to be a high-pass filter for cortical imaging [3], [4], [5]. And
the surface Laplacian has been proven to produce an image
proportional to the cortical potentials and enhances the high
spatial frequency components of the brain activity close to
the electrode [6].

To obtain the Laplacian, the most common way is to record
conventional EEG and then perform digital signal processing
to calculate the Laplacian from the surface potentials. Some
form of interpolation is employed to create a dense sampling
of the potentials and then calculate the Laplacian on the
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interpolated potentials. Such techniques include: a) spline
Laplacian algorithm [7], b) the ellipsoidal spline Laplacian
algorithm [8], c) realistic Laplacian estimation techniques
[6], [9], and d) realistic geometry Laplacian algorithms
[10]. Babiloni et al. demonstrated that surface Laplacian
transformation of EEG signals can improve the recognition
scores of imagined motor activity [11]. The surface Laplacian
was also shown to give good results for focused brain activity
[12], which is the case with the mental tasks that are typically
used for BCIs. All the above methods for calculating the
Laplacian depend on potentials recorded with disc electrodes
which are prone to external and local artifacts.

Instead of employing digital signal processing methods,
we are taking a new path-transforming the electrode con-
figuration. The unique electrode configuration measures the
Laplacian potential directly. This is done with the tripolar
concentric ring electrode (TCRE) Fig. 1 [13]. We have shown
that TCRE provided approximately four times improvement
in the signal-to-noise ratio, three times improvement in
spatial resolution, and twelve times improvement in mutual
information compared to disc electrode signals [14]. We
also found a sixteen percent improvement on single event
imagined movements detection over disc signals [15]. We
would now like to determine what the best spatial sampling
rate and size of electrodes would be appropriate for a TCRE-
based BCI. Towards this end we conducted the current work.
In this paper we present the results of a comparison of the
analytical, spline, and tripolar Laplacians on the surface of
a 4-layer spherical model for two different spatial sampling
rates.

Fig. 1. Tripolar concentric ring electrode

II. METHODS

A. Four Layer Concentric Inhomogeneous Spherical Head
Model

This model is introduced by B. Cuffin and D. Cohen in
1979 [16]. The four layers represent brain, cerebrospinal fluid
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and skull. The radii of the layers are: R = 8.8cm, dR =
8.5cm, cR = 8.1cm and bR = 7.9cm; the conductivities
of the layers are: σ1 = 3.3 × 10−3, σ2 = 10.0 × 10−3,
σ3 = 4.2 × 10−5 and σ4 = 3.3 × 10−3 S/cm, from inside
to outside respectively.

Fig. 2. Four-layer concentric spherical head model, D1 to D5 indicate the
locations of dipoles employed later in the paper for testing purpose

B. Analytical Potential and Surface Laplacian
The analytical potential due to a dipole source for the 4-

layer concentric inhomogeneous sphere model is given by
Cuffin and Cohen[16]. Then the analytical surface Laplacian
is represented by:
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C. Spline Potential and Surface Laplacian

The potential distribution on the spherical surface is esti-
mated by the spline interpolation [9]:
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where m is the spline order, N is the number of samples,
(xi, yi, zi) are the location of the ith sample. And
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Parameter λ in Eq.(9) is adjustable to achieve the best
estimation of the potential on the sphere surface [18], [19],
[6].

By applying the surface Laplacian operator to Eq. (6),
and employing the spherical coordinates system for the
calculation, the Laplacian is given by:
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where θ is the polar angle, φ is the azimuthal angle of the
spherical coordinate system.

D. Tripolar Laplacian
The tripolar Laplacian was introduced previously [13].

Besio et al. showed that the tripolar Laplacian is given by
the combination of the potentials from the three elements of
the TCRE:

Laplacian =
16(Vm − Vd)− (Vo − Vd)

3R2
m

, (19)

where Vd is the potential of the central disc, Vm is the
potential of the middle ring, Vo is the potential of the outer
ring and Rm is the radius of the middle ring.

TABLE I
POSITIONS AND MOMENTS OF THE 5 DIPOLES

Dipole Position(cm) Moment

x y z mx my mz

1 +4.0 −3.0 +3.5 +4.0 −2.0 +3.0
2 +3.5 +3.0 +4.0 +3.0 +5.0 +1.0
3 −2.5 +4.5 +3.0 +2.0 −4.0 +6.0
4 −3.0 +5.0 +2.0 +3.0 +2.0 +0.0
5 +1.0 +3.0 +5.0 −5.0 +1.0 −3.0

E. Simulation Protocol

In order to simulate the potentials on the rings of the
TCRE electrode, we calculated the potentials at ”sampling
points” uniformly distributed on the rings and the central
disc of the TCRE. The potential for a corresponding ring
was the average of potentials at these ”sampling points”. To
determine the number of ”sampling points” necessary for
stable calculations we examined the effect of the ”sampling
points” density on the averaged potential. The basic concept
was that the higher the density of uniformly distributed
”sampling points”, the closer the averaged potential is to
the real potential. In our initial analysis we incrementally
increased the density of ”sampling points” on the TCRE
and compared the averaged potential. When the difference
in potential due to adding more points was less than 0.1
percent then we considered that the density of ”sampling
points” was accurate enough for our simulation.

To simulate the cortical activities of the brain, five groups
of dipoles in the brain sphere were employed in the simu-
lation. Each group contained one or two dipoles randomly
selected from five dipoles (Table I). Two electrode montages,
19 electrodes, from the 10-20 system, or 64 electrodes
selected from the 10-5 system [20], were employed to study
the effect of the number of recording electrodes to the
Laplacian. The potentials were interpolated using the spline
routine of Eq. (6) with the Laplacian calculated with Eq. (12).
The tripolar Laplacian was also calculated at the electrodes
locations, and both were evaluated in terms of correlation
coefficient (CC) with respect to the analytical Laplacian.

III. RESULTS

Potentials were calculated for different dipole configu-
rations. From the two electrode configurations, CC values
between the spline Laplacian and analytical Laplacian, as
well as between tripolar Laplacian and analytical Laplacian
are shown in Table II.

Table II shows that the performance of the spline Laplacian
has a direct proportion with the number of recording elec-
trodes. This is reasonable since the spline parameters should
be better estimated with more recording electrodes, higher
spatial sampling. Table II also indicates that the tripolar
Laplacian has superior performance compared to the spline
Laplacian, especially in low spatial sampling situations (with
less recording electrodes). This is due to the directly obtained
local Laplacian of the TCRE, which means it doesn’t rely
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TABLE II
CORRELATION COEFFICIENT (CC) BETWEEN THE SPLINE AND TRIPOLAR

LAPLACIAN WITH RESPECT TO THE ANALYTICAL LAPLACIAN. CONFIG

I: 19 ELECTRODES FROM 10-20 SYSTEM, CONFIG II: 64 ELECTRODES

SELECTED FROM 10-5 SYSTEM, SL: SPLINE LAPLACIAN, TL: TRIPOLAR

LAPLACIAN.

Dipoles Config I Config II

SL TL SL TL

1 0.81 0.99 0.98 0.99
2 0.89 0.99 0.97 0.99
3&4 0.91 0.99 0.97 0.99
2&5 0.95 0.99 0.98 0.99
1&3 0.79 0.99 0.97 0.99

on the number of recording electrodes. We also saw that
different dipole configurations did not effect the tripolar
Laplacian accuracy.

IV. DISCUSSION

The tripolar Laplacian recorded from the TCRE is a local-
based Laplacian[21], [22], [23], [24], which calculates the
Laplacian from a limited area on the surface. While the spline
Laplacian is considered a global Laplacian, where the spline
Laplacian at any location depends on the potentials from
all the recording electrodes. Although the spline Laplacian
has been shown to have better performance than the local
Laplacian [6], our simulation indicates that in low spatial
sampling situations our TCRE produces better Laplacian
estimates than the spline Laplacian.

V. CONCLUSION

The tripolar Laplacian produced by our TCRE has higher
CC with respect to the analytical Laplacian than the spline
Laplacian in low sampling situations.
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