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ABSTRACT
This paper analyzes the performance of distributed Medium Ac-

cess Control (MAC) protocols in ultra-dense multichannel wireless

networks, where N frequency bands (or channels) are shared by

M = mN devices, and devices make decisions to probe and then

transmit over available frequency bands. While such a system can

be formulated as an M-player Bayesian game, it is often infeasible

to compute the Nash equilibria of a large-scale system due to the
curse of dimensionality. In this paper, we exploit the Mean Field

Game (MFG) approach and analyze the system in the large pop-

ulation regime (N tends to ∞ andm is a constant). We consider

a distributed and low complexity MAC protocol where each de-

vice probes d/k channels by following an exponential clock which

ticks with rate k when it has a message to transmit, and optimizes

the probing strategy to balance throughput and probing cost. We

present a comprehensive analysis from the MFG perspective, in-

cluding the existence and uniqueness of the Mean Field Nash Equi-

librium (MFNE), convergence to the MFNE, and the price of anarchy

with respect to the global optimal solution. Our analysis shows that

the price of anarchy is at most one half, but is close to zero when

the traffic load or the probing cost is low. Our numerical results

confirm our analysis and show that the MFNE is a good approxima-

tion of theM-player system. Besides showing the efficiency of the

considered MAC for emerging applications in ultra-dense multi-

channel wireless networks, this paper demonstrates the novelty of

MFG analysis, which can be used to study other distributed MAC

protocols in ultra-dense wireless networks.
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1 INTRODUCTION
The proliferation of smart wireless devices has brought revolution-

ary changes in many domains, such as smart homes, smart cities,

autonomous cars, virtual-reality/argumented reality, the Internet of

the Things (IoT). To accommodate the increasing demand of emerg-

ing wireless applications on spectrum, large amounts of spectrum

bands that were previously unused or unavailable have recently

been released for public use as unlicensed bands for large-scale

access, which calls for spectrum access algorithms that are both

distributed and efficient.

We consider a scenario in which a large number of smart wire-

less devices need to constantly communicate their recent status

to a fusion center or to nearby peers. This setting includes appli-

cations such as sensing and monitoring in smart cities, factories

or power stations, and safety messages in autonomous driving. In

such applications, an old message can usually be discarded when a

newmessage arrives, because the outdated information is no longer

useful when new information is available. Managing wireless chan-

nel access for such an ultra-dense deployment of devices with a

non-traditional traffic load is a challenge.

In this paper, our focus is on performance analysis of distributed

Medium Access Control (MAC) protocols in such ultra-dense multi-

channel wireless networks. Given the sheer number and the hetero-

geneous nature of the ownership and applications of the devices,

as well the large unlicensed bands that they operate over, it is diffi-

cult (if not impossible) to have a centralized scheduler to allocate

channels (frequency bands) to devices. Therefore, distributed MAC

protocols of simple plug-and-play type are essential. However, per-

formance analysis of even simple distributed MAC in large-scale

systems is challenging.

Under our model, each device generates update packets at some

rate, and the device drops any previously created packet when

a new one is generated, i.e., only the most recent packet at each

device is a candidate for transmission. The devices employ a simple

MAC protocol under which each device has a clock, and when the

clock ticks randomly probes several spectrum bands, and randomly

picks one that is free. However, since such probing incurs an energy

cost and the number of bands is large, the device can neither probe

at a high frequency, nor probe all bands at each clock tick. Thus, it

must optimally determine both the frequency of its clock, as well

as how many bands to probe when its clock ticks.

We seek to understand the performance of such a MAC protocol

when the number of devices,M and available spectrum bands, N
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are related asM =mN , wherem is a constant. The devices need to

share access to the available spectrum bands, and desire tomaximize

their individual steady state throughputs while accounting for the

energy that they expend in probing. Each device has an exponential

clock, and can select any desired clock rate, k . When the clock

ticks, the device probes d/k bands, where d is a parameter that

it chooses
1
. Now, the optimal choice of parameters (ki ,di ) for a

device i depends on the probability that a randomly probed band is

currently utilized, which in turn depends on the parameters selected

by the other devices. Hence, the devices engage in a strategic game

of observing channel utilization, and choosing the tuple (ki ,di )
while trading off steady state throughput and probing cost.

While this system can be modeled as anM-player Bayesian game

where each device makes myopic probing/transmission decisions

based on local observations, it is infeasible to compute the Nash

equilibria for large M due to the curse of dimensionality. In this

paper, we use a mean field game (MFG) approach to overcome this

difficulty by studying the asymptotic performance of the system

as the numbers of devices and spectrum bands both go to infinity.

In this large-population regime, the distribution of channel states

converges weakly to a point mass, which can be computed explicitly.

Therefore, instead of interacting with M − 1 other players, each

device optimizes its strategy with respect to a fixed channel state

distribution, which dramatically simplifies the problem.

Main Results
Our main results are detailed as follows.

MFG Formulation: We first introduce the model and the M-

player Bayesian game in Section 2. The problem is hard to analyze

because it involves anM-dimensional Markov chain. To overcome

this difficulty, we adopt the MFG approach, developed in [12]. We

first show that for fixed k and d for each device, in the mean-field

limit, the fraction of busy channels, denoted byγ , converges weakly
to a constant (the result is presented in Theorem 1). Therefore, in
the mean-field limit, each device maximizes its utility (throughput

minus the probing cost) with respect to a constant γ instead of

the probability distribution of N channel states, which makes the

analysis tractable. In Section 3, we also prove that probing one

channel with rate d dominates probing d/k channels with rate k,
which reduces the policy space of each device to a single parameter

d . In the mean-field limit, the M-player Bayesian game becomes

an MFG. Specifically, given γ , the fraction of busy channels, each

device chooses a myopic d to maximize its utility, which defines

the mapping T2 : γ → d . Given d, we can calculate the fraction of

busy channels in the mean-field limit, which defines the mapping:

T1 : d → γ . The Mean Field Nash Equilibrium (MFNE) is a pair

(d∗,γ ∗) such that

d∗ = T2(T1(d
∗)).

Existence, Uniqueness and Convergence to MFNE: In Sec-

tion 5, we present a comprehensive analysis of the existence and

uniqueness of the MFNE. Theorem 2 states that there exists a

unique MFNE when the traffic load is high, that the MFNE results

in d∗ = ∞ (i.e. each device probes channels continuously without

any waiting) when the traffic load is low, and that the system jumps

1
The form d/k is for notational convenience, and the optimal choice will turn out to

be an integer.

between a finite probing rate and infinite probing rate when the

load is in between. The precise meanings of “high” and “low” are

defined in Theorem 2.

In Section 5, we examine convergence to the MFNE. We focus

on the most interesting regime, namely, the high load regime, un-

der which d∗ is finite in the unique MFNE. Proposition 3 shows

that the composition of T2 and T1 is a contraction mapping, which

implies the convergence to the unique MFNE from any initial con-

dition following the Banach fixed point theorem.

Price of Anarchy: In Section 6, we compare the performance

of the distributed MAC protocol with a solution that solves a cen-

tralized optimization problem and forces the resulting probing rate

upon all the devices. The key difference between the two is that the

central solution knows exactly how changing the probing rate of a

device level will affect the fraction of busy channels in the network,

i.e. it knows the function γ = T1(d); whereas in the distributed

algorithm, each device optimizes its probing rate d assuming that γ
is a constant. We show that the price of anarchy is upper bounded

by 0.5, i.e., the loss of efficiency is at most half. Numerical studies

show that the price of anarchy is close to zero when the load is light

and approaches the upper bound 0.5 when the traffic load increases.

Numerical Evaluation: Finally, we evaluate the algorithmwith

extensive simulations. In particular, we compare the performance of

the distributedMAC in finite population systemswith theMFG solu-

tion. We observe that the performance predicted using MFG is close

to the performance of finite population systems even with moderate

N , which confirms the effectiveness of the MFG approach. We also

observe that the proposed algorithm significantly outperforms a

CSMA protocol with exponential back-off. Additionally,numerical

evaluations show that the protocol performs similarly both under

homogeneous and heterogeneous conditions i.e, both when the

devices are symmetric and when they have different arrival rates

and energy constraints.

Related Work
The mean field approach is a method of identifying the steady-

state behavior of anM−dimensional Markov chain, whereM is the

number of particles (devices in our case), whose states are modeled

via the Markov chain. The goal is to characterize the steady-state

distribution (time becomes asymptotically large) for a finiteM, and
then determine the limiting steady-state distribution asM becomes

asymptotically large.

In order to do so, the mean field method proceeds to take the two

limits (particles and time) in the reverse order. The main idea is to

use the fact that undermild conditions, as the number of particles,M
becomes asymptotically large, the state distribution of the limiting

Markov chain can be accurately represented using an ordinary

differential equation (ODE). Then the steady-state distribution of

the limiting Markov chain is the same as the infinite time limiting

state of the ODE (if it exists). Finally, if it can be shown that the

order of taking the particle and time limits can be interchanged

(yield the same limit) for the Markov chain, then the limiting state

of the ODE provides the desired solution referred to as the Mean

Field Equilibrium (MFE) (see [2] and references within). A recent

approach based on Stein’s method [7, 8, 18, 19] can directly establish

the convergence of steady-state distributions to the MFE without
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the interchange of the limits argument and provide the rate of

convergence.

When we do have convergence of the steady-state distribution

to a deterministic limit of the ODE, we have a further property

referred to as Propagation of Chaos ([9, 16]), under which the states

of any finite set of particles are independent of each other given

the state distribution as a whole. Such an independence property is

particularly useful in identifying the behavior of a given particle

in the large M limit, and to determine the corresponding ODE

of the system. In the context of wireless MAC protocols, such an

independence assumption regarding the backoff processes of the

devices using 802.11 MAC enabled the derivation of steady-state

performance in the limiting case of a large number of devices that

always have packets to transmit (called “saturated”) [3].

This assumption was questioned in [2], in which it was shown

that simply having a unique fixed point of the corresponding ODE

is insufficient, and that all trajectories have to converge to that

fixed point in order for the independence claim to hold. Later, it

was shown that there exist natural parameter selections for 802.11

under which the sufficiency conditions of [2] are satisfied for the

cases of infinite and finite backoff stages [4, 6]. More recently, the

performance of 802.11 MAC in the unsaturated case was charac-

terized using the mean field approach [5]. However, existing work

considers the case of a single interference channel or an interfer-

ence graph, unlike our setup of channel selection under a high

bandwidth regime.

The mean field regime has also been studied under a game the-

oretic setting. Initial work in this space and many that followed

consider a one shot game under which the mean field independence

property is used to simplify decision making [12]. More recent work

has considered repeated games under a variety of different appli-

cation settings [1, 10, 13, 17]. Here, the MFG is considered as the

extension of a Bayesian repeated game to infinite players, with the

independence property being used to enable the identification of ex-

istence and structural properties of a Mean Field Nash Equilibrium

(MFNE). More papers on the topic can be found in [15]. However, no

claim is typically made about the convergence of the steady-state

distribution of the finite player system to the mean field in the limit

as the number of players increases. This paper not only establishes

the existence and convergence of MFNE in the limit but also shows

the convergence of the steady-state distribution to the MFE under

a given policy.

2 SYSTEM MODEL AND ANM-PLAYER GAME
We consider a multi-channel ultra-dense wireless network with

N channels and M = mN devices. At each time instance, one

and only one device can transmit over a given channel due to

interference. As in many IoT applications, each device wants to

continuously communicate their latest status to corresponding

receivers, which could be an access point or another IoT device.

The messages are called status messages in this paper. We note

after a new status message is generated, the device does not need to

transmit old, unsent status messages currently in the buffer, so the

old status messages will be discarded. This communication model

is an example where the system wants the most fresh information

and wants to minimize the “age of information” [11].

We assume for each device, status messages are generated ac-

cording to a Poisson process with rate λ. When the device is probing

an idle channel to transmit, it only stores the latest status message.

If the device is transmitting a status message when a new status

message arrives, the device keeps the newest status message in the

buffer and transmits it immediately after finishing sending the one

in transmission. A channel being used to transmit a status message

is in busy state, otherwise the channel is in idle state. We further

assume that the time it takes to transmit a message is exponentially

distributed with mean one.

When a device has a status message to transmit, it searches for

an idle channel to transmit the message. A device cannot afford to

continuously monitor all N frequency bands at all times, because

channel probing costs energy and battery powered smart wireless

devices are energy constrained. We assume each device maintains

an internal exponential clock with rate k .When the exponential

clock ticks, the device probes
d
k channels. If one of the

d
k channels

is idle, the device occupies the channel and transmits the message

in the buffer. A device has three possible states: idle (0), probing
(1) and transmitting (2). Let Qi (t) denote the number of devices in

state i at time t . Each device is associated with a continuous-time
Markov chain with three states as shown in Figure 1 in principle.

The Markov-chain includes three states and the transitions occur

as follows:

• The state moves from idle to probing when amessage arrives,

which occurs with rate λ.
• Let dl and kl denote the probing parameters used by device

l , and d and k denoteM-dimensional vectors that represent

the probing parameters of all M devices. Given Q2(t), the

number of devices in the transmitting state, by probing
dl
kl

channels, the probability of finding an idle channel is

1 −

(
Q2(t )
N

) dl
kl . Therefore, the state of the Markov chain

transits from probing to transmitting with rate

kl
©«1 −

(
Q2(t)

N

) dl
kl ª®¬ .

• The state transits from transmitting to idle when (1) the sta-

tus message is transmitted, which occurs with rate one, and

(2) no new status message arrives during the transmission,

which occurs with probability
1

1+λ . To see this let T denote

the transmission time of a message, which is an exponential

random variable with mean one. Under the Poisson arrival,

the probability of no arrival during a period of duration t is

e−λt . Therefore, the probability that there is no newmessage

arrival during the transmission is

Pr (no arrival during transmission)

=E [Pr (no arrival during duration T |T )]

=

∫ ∞

t=0
e−λte−t dt

=
1

1 + λ
.

Therefore, the transition rate is
1

1+λ .
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Figure 1: The Continuous-Time Markov Chain

Suppose Q2(t) is a constant, then the stationary distribution of

this three-state Markov chain, denoted by π , can be calculated using
the global balance equations:

λπ0 = kl
©«1 −

(
Q2

N

) dl
kl ª®¬π1 = 1

1 + λ
π2,

from which, we have

π0 =
1

λ(1 + λ)
π2

π1 =
1

(1 + λ)kl

(
1 −

(
Q2

N

) dl
kl

) π2
π2 =

1

1 + 1

λ(1+λ) +
1

(1+λ)kl
©«1−

(
Q
2

N

) dl
kl ª®¬
.

(1)

However,Q2(t) is a random process whose stationary distribution is

determined by d and k so is difficult to calculate. Now let π (l )(d, k)
denote the stationary distribution of the Markov chain associated

with device l . As mentioned earlier, calculation of π (l )
is difficult

even for fixed k and d.
Making the problem even more difficult, each device needs to

balance the energy consumed for probing and the amount of infor-

mation transmitted. We consider the following cost function for

each device:

Ĵ (dl ,kl ) = −π
(l )
2
(d, k) + c

(
π
(l )
1
(d, k)dl

)
2

. (2)

In the equation above, the first term π
(l )
2
(d, k) is the fraction of

time the device is in the transmitting state, so can be viewed as the

average throughput. In the second term, π
(l )
1
(d, k) is the fraction

of time the device is in the probing state and dl is the number of

channels it probes per unit time when it is in the probing state, so

π
(l )
1
(d, k)dl is the average number of channels probed per unit time.

c is a constant. The quadratic form is in keeping with the idea that

energy usage for a given task is convex for most communication

applications. Given other devices’ probing parameters d−l and k−l ,
device l aims at finding the optimal d∗l and k∗l such that

(d∗l ,k
∗
l ) ∈ arg min

dl ,kl
Ĵ (dl ,kl )

= arg min

dl ,kl
−π

(l )
2
(d, k) + c

(
π
(l )
1
(d, k)dl

)
2

. (3)

We note that this is an M-player game and the difficulty in solv-

ing the Nash equilibrium of this M-player game is in calculating

π (l )(d, k) as discussed earlier.

3 MEAN-FIELD GAME FOR ULTRA-DENSE
WIRELESS NETWORKS

Since solving the M-player game (3) is difficult, we use the MFG

approach with N ,M → ∞. In the next section, we will show that

assuming all devices use the same probing policy (d,k), then as

N ,M → ∞, Qi (∞)/M converges weakly to q∗i , which is the equi-

librium point of the following mean-field model:

dq0
dt
= −λq0 +

1

1 + λ
q2

dq1
dt
= λq0 − k(1 − (mq2)

d/k )q1

dq2
dt
= k

(
1 − (mq2)

d/k
)
q1 −

1

1 + λ
q2

. (4)

We defer the derivation of this mean-field model and the proof of

convergence to the Technical report [[14]]. Intuitively, qi (t) is an
approximation ofQi (t)/M and q∗i is an approximation ofQi (∞)/M
at the mean-field limit.

Given q∗
2
, the fraction of devices are in transmitting state, the

fraction of busy channels is γ ∗ =mq∗
2
. Now to introduce the MFG,

we assume time-scale separation such that devices adapt their prob-

ing strategies in a slower time scale than the convergence of the

mean-field model. Under this assumption, when it is the time for

devices to adapt their probing policies, all devices can measure

γ , which can be done accurately under the time-scale separation

assumption. Then after measuring the fraction of busy channels is

γ , each device can compute the stationary distribution of its three-

state Markov chain according to (1) by substituting γ = Q2/N ,
and also the corresponding cost J (d,k). Each device optimizes its

probing strategy (d∗,k∗) such that

(d∗,k∗) ∈ argmin

d,k
J (d,k), (5)

where

J (d,k) = −
1

1 + 1

λ(1+λ) +
1

(1+λ)k
(
1−γ

d
k

)

+ c

©«
d

(1 + λ)k
(
1 − γ

d
k

)
+

k
(
1−γ

d
k

)
λ + 1

ª®®®®®¬

2

. (6)

In other words, choosing a probing strategy to minimize its cost for

given γ . Note that the cost function J (d,k) is different from Ĵ (d,k)
defined in (2) because γ is a constant in J (d,k) but it is a function
of (d,k) in Ĵ (d,k).We can view Ĵ (d,k) as the true cost function and

J (d,k) is an estimate of the true cost obtained by assuming γ does

not change even when the device changes its probing strategy. We

use different notations to emphasize the difference.

In summary, given (d,k), the mean-field model (4) maps (d,k)
to the fraction of busy channels γ . Let T1 denote this mapping, i.e.

T1 : (d,k) → γ .
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Given the fraction of busy channels γ , each device minimizes the

cost function J in (d,k), which mapsγ to policy (d,k). LetT2 denote
this mapping, i.e.

T2 : γ → (d,k).

With the notation defined above, we formally define the MFG

and Mean Field Nash Equilibrium (MFNE).

MFG for Distributed MAC:
• Initialization: All devices are initialized with a common

probing policy (d,k).
• System Adaptation: The mean-field model (4) converges

under policy (d,k) and the fraction of busy channels con-

verges to a constant γ .
• Policy Optimization: All devices learn γ in the system

adaptation step, and optimize their probing strategies by

minimizing J (d,k). Go to the system adaptation step.

A policy (d∗,k∗) is called the MFNE if

(d∗,k∗) = T2(T1(d
∗,k∗)).

At the MFNE where all devices use the policy (d∗,k∗), no device has
incentive to unilaterally change the strategy in the mean-field limit.

We also remark that the assumption that all devices use the same

policy (d,k) at the beginning is not critical. Under the assumption all

devices have the same cost function, the optimal probing strategy

is determined only by γ . Therefore, even devices have different

probing strategies at the beginning, after they measure γ in the

policy optimization step, they will start to use the same probing

policy.

In the next section, we prove the weak convergence ofQi (∞)/M
to q∗i , which is the key assumption we have used to derive the MFG.

4 MEAN-FIELD LIMIT WITH FIXED (d,k)
Assume all devices have the same cost function. Then given the frac-

tion of busy channels γ , the solution of the optimal policy (d∗,k∗)
is the same for all devices. Therefore, without loss of generality, we

assume all devices use the same policy (d,k) and consider the con-

vergence of the fraction of busy channels to its mean-field limit in

this homogeneous case. Before proving this result, we first present

the following lemma.

Lemma 1. The cost function J (k,d) satisfies for any k < d,

J (d,d) < J (d,k).

Proof. Given γ , k and d, the stationary distribution of the three-

stateMarkov chain is given by (1) withQ2/N = γ . The cost function
J (k,d), therefore, can be written in terms of γ , k, and d as

J (k,d) = −
(1 + λ)k(1 − γd/k )

(1 + k(1 − γd/k )(1 + λ + 1

λ ))

+ c

(
d

(1 + k(1 − γd/k )(1 + λ + 1

λ ))

)
2

.

The transition rate from the probing state to the transmitting

state is k(1 − γd/k ). Note that k(1 − γd/k ) is increasing in k when

d
k ≥ 1 because

∂

∂k

(
k

(
1 − γ

d
k

))
= 1 − γ

d
k + γ

d
k
d

k
logγ .

Now define

f (y,γ ) = 1 − γy + γyy logγ .

We next prove that f (y) > 0 for y ≥ 1 and 0 < γ ≤ 1. Note that

∂

∂y
f (y,γ ) = −γy logγ + γy logγ + γyy(logγ )2 = γyy(logγ )2 ≥ 0.

Now consider

f (1,γ ) = 1 − γ + γ logγ .

We have

∂

∂γ
f (1,γ ) = logγ ≤ 0.

Therefore, we conclude that for y ≥ 1 and 0 < γ ≤ 1, we have

f (y,γ ) > f (1,γ ) ≥ f (1, 1) = 0,

i.e.

∂

∂k

(
k

(
1 − γ

d
k

))
= 1 − γ

d
k + γ

d
k
d

k
logγ ≥ 0

Define x = k(1 − γd/k ).We obtain

J (x) = −
(1 + λ)

1

x + 1 + λ +
1

λ

+ c

(
d

1 + x(1 + λ + 1

λ )

)
2

,

which is clearly a decreasing function of x . Therefore, for fixed d,
J (d,k) is a decreasing function of k . Therefore, we have J (d,d) <
J (d,k) when d > k . □

According to the lemma above, given γ , the optimal policy

(d∗,k∗) satisfies k∗ = d∗. In other words, given d, it is optimal

to probe one channel at a time with rate d . Therefore, in the follow-

ing discussion, we focus on probing policies such that d = k . Since
d = k, we will now proceed assuming that each device wishes to

optimize a cost function written in terms of d . This function can be

written as:

J (d) = −
(1 + λ)d(1 − γ )

1 + d(1 − γ )(1 + λ + 1

λ )
+ c

(
d

1 + d(1 − γ )(1 + λ + 1

λ )

)
2

.

(7)

and the dynamical system can be written as:

dq0
dt
= −λq0 +

1

1 + λ
q2

dq1
dt
= λq0 − d(1 −mq2)q1

dq2
dt
= d(1 −mq2)q1 −

1

1 + λ
q2

(8)

Theorem 1. Assume that all devices use the same policy (d,d).

Let γ (N )(∞) denote the fraction of busy channels at the steady state in
a system with N channels andmN devices. Then γ (N )(∞) converges
weakly to γ , which is the unique equilibrium of mean-field model (4)
with d = k, and is the unique solution of the following equation:

γ =
m(1 + λ)k(1 − γ )

1 + d(1 − γ )(1 + λ + 1

λ )
. (9)

5
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Due to space constraints the proof can be found in the Technical

report [[14]], where we also briefly discuss the derivation of the

mean-field model (4). Figure 2 shows the simulation results with

m = 5, and c = 10, λ = 0.7, and d = 0.065. We varied N from

10, to 100 and then to 1,000. We can clearly see that γ converges

to the mean-field limit as N increases, and when N = 1, 000, γ
concentrates to the mean-field limit.

200 220 240 260 280 300 320 340 360 380 400
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Figure 2: Convergence to the Mean Field Limit with Fixed d

5 UNIQUENESS AND CONVERGENCE OF
MFNE

In the previous section, we have shown that given policy (d,d),
the stationary distribution of themN -device system converges to a

unique mean-field limit, which defines mapping

T1 : d → γ . (10)

The mapping

T2 : γ → d (11)

is obtained by solving the optimization problemmink J (d) for given
γ .

The following lemma provides the closed-form expression of

mapping T2.

Lemma 2. Given 0 < γ < 1 and d ≥ 0, J (d) has a unique mini-
mizer

d =
a

max {2c − ab, 0}
,

where a = (1 − γ )(1 + λ) and b = (1 − γ )
(
1 + λ + 1

λ

)
.

Proof. Define a = (1 + λ)(1 − γ ) and b = (1 − γ )(1 + λ + 1

λ ).

Then J (d) can be written as

J (d) = −
ad

1 + bd
+ c

(
d

1 + bd

)
2

,

and

∂J (d)

∂d
=

1

(1 + bd)2

(
−a +

2cd

1 + bd

)
.

We now consider

h(d) = −a +
2cd

1 + bd
.

Note that h(d) is an increasing function for d ≥ 0. Furthermore

h(0) = −a and

h(d) ≤ lim

d→∞
h(d) = −a +

2c

b
.

Therefore, if
2c
b ≤ a, (i.e. h(d) ≤ 0), then J (d) is a strictly decreasing

function and the minimum is achieved at d = ∞. Otherwise, the

minimum is achieved when

d =
a

2c − ab
.

In summary, J (d) is minimized at

d =
a

max {2c − ab, 0}
.

□

Now given mappingT1 characterized in Theorem 1 and mapping

T2 characterized in Lemma 2, the following theorem establishes the

existence and uniqueness of the MFNE.

Theorem 2. The existence of MFG equilibria depends on the traffic
load λ and constant c . The results can be divided into three cases.
For fixed c, the following three cases correspond to“low”, “high” and
“medium” traffic regimes.

• Case I (Low Traffic Regime): If

2c ≤

(
max

{
0, 1 −

m(1 + λ)

1 + λ + 1

λ

})
2

(1 + λ)

(
1 + λ +

1

λ

)
, (12)

then d∗ = ∞ is the unique MGF equilibrium. In other words,
in this case, a device should continuously probe idle channels
when there is a message to transmit.

• Case II (High Traffic Regime): If

2c >
(
1 − γ ∗

)
2

(1 + λ)

(
1 + λ +

1

λ

)
, (13)

where

γ ∗ =1 +
c

m(1 + λ)2
−

√
c2

m2(1 + λ)4
+

2c

m(1 + λ)2
,

then there exists a unique MGF equilibrium

d∗ =
(1 − γ ∗)(1 + λ)

2c − (1 − γ ∗)2(1 + λ)
(
1 + λ + 1

λ

) . (14)

• Case III (Medium Traffic Regime): Otherwise, MFNE does
not exist and devices switch probing strategy between d = ∞

and

d =
(1 − γ̃ )(1 + λ)

2c − (1 − γ̃ )2(1 + λ)
(
1 + λ + 1

λ

) ,
where

γ̃ = min

{
1,

m(1 + λ)

1 + λ + 1

λ

}
.

Proof. We first consider Case I such that

2c ≤

(
max

{
0, 1 −

m(1 + λ)

1 + λ + 1

λ

})
2

(1 + λ)

(
1 + λ +

1

λ

)
. (15)

6
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Under this condition, we have

1 −
m(1 + λ)

1 + λ + 1

λ

> 0. (16)

Recall (q∗
0
,q∗

1
,q∗

2
) denote the unique equilibrium point of mean

field model (8) for a given d . For any d ≥ 0, we have

q∗
2
≤

1 + λ

1 + λ + 1

λ

.

This upper bound holds because the following equations holds for

all d > 0 :

λq∗
0
=

1

1 + λ
q∗
2

(17)∑
i
q∗i = 1, (18)

which implies

1

λ
1 + λ

q∗
2
+ q∗

1
+ q∗

2
= 1

and (
1 +

1

λ
1 + λ

)
q∗
2
≤ 1.

Recall that γ ∗ =mq∗
2
, so

γ ∗ ≤
m(1 + λ)

1 + λ + 1

λ

.

Substituting this inequality into (15), we have that the following

inequality holds for any d ≥ 0 :

2c ≤
(
1 − γ ∗

)
2

(1 + λ)

(
1 + λ +

1

λ

)
= ab, (19)

where a and b are defined in Lemma 2. Therefore, 2c ≤ ab, and
d∗ = ∞ according to Lemma 2. Furthermore, given d∗ = ∞, we

have

γ ∗ =
m(1 + λ)

1 + λ + 1

λ

> 0

according to Theorem 1 by taking d → ∞. Therefore, d∗ = ∞ is

the unique MFG equilibrium.

Now if d∗ < ∞ is a MFG equilibrium, it satisfies the following

two equations

d∗ =
(1 − γ ∗)(1 + λ)

2c − (1 − γ ∗)2(1 + λ)
(
1 + λ + 1

λ

) (20)

γ ∗ =
md∗(1 − γ ∗)(1 + λ)

1 + d∗(1 − γ ∗)(1 + λ + 1

λ )
.

Substituting the first equation into the second one, we obtain

γ ∗ =

m(1 − γ ∗)(1 + λ)
(1−γ ∗)(1+λ)

2c−(1−γ ∗)2(1+λ)
(
1+λ+ 1

λ
)

1 + (1 − γ ∗)(1 + λ + 1

λ )
(1−γ ∗)(1+λ)

2c−(1−γ ∗)2(1+λ)
(
1+λ+ 1

λ
)

=
m(1 + λ)2

2c
(1 − γ ∗)2.

Note that γ ∗ = m(1+λ)2
2c (1 − γ ∗)2 has a unique solution γ ∗ ∈

(0, 1) since γ ∗ is an increasing function (increasing from 0 to 1)

and (1 − γ ∗)2 is a decreasing function (decreasing from 1 to 0). In

particular, the unique solution is

γ ∗ = 1 +
c

m(1 + λ)2
−

√
c2

m2(1 + λ)4
+

2c

m(1 + λ)2
. (21)

Now to guarantee d∗ < ∞, it requires

2c > (1 − γ ∗)2(1 + λ)

(
1 + λ +

1

λ

)
according to (20), which concludes Case II.

Finally we consider Case III. When condition

2c > (1 − γ ∗)2(1 + λ)

(
1 + λ +

1

λ

)
does not hold, after learning γ ∗ defined in (21), all devices choose

strategy d = ∞. However, when

2c >

(
max

{
0, 1 −

m(1 + λ)

1 + λ + 1

λ

})
2

(1 + λ)

(
1 + λ +

1

λ

)
, (22)

d = ∞ is not an MFG equilibrium because

γ̃ = T1(∞) = min

{
1,

m(1 + λ)

1 + λ + 1

λ

}
but

˜d = T2 (γ̃ ) < ∞

when

2c > ab = (1 − γ̃ )2(1 + λ)

(
1 + λ +

1

λ

)
.

Therefore, after all devices choosing d = ∞, the fraction of busy

channels is γ̃ in the mean-field limit. After learning the fraction

of busy channels is γ̃ , all devices change their policy to d = ˜d .

It can be verified that T1( ˜d) ≤ γ ∗, so under policy
˜d, the fraction

of busy channels in the mean-field limit is at most γ ∗. Then after

learning the fraction of busy channels, all devices switch to policy

d = ∞. Therefore no MFG equilibrium exists in this case. The

system switches between d = ∞ and d = ˜d . □

We remark that “d=∞” in Case I is a limit after letting N → ∞

first, in other words, the following limit: limd→∞ limN→∞ . Practi-

cally, it means that each device probes with its maximum probing

rate. The theorem above presents the conditions under which an

MFNE exits. Next, we study the convergence (i.e, stability) of the

MFNE. For Case I, the convergence is immediate as indicated in

the proof of Theorem 2, where we can see that all devices choose

strategy d∗ = ∞ after learning the fraction of busy channels and

reach the MFNE. We now focus on Case II under which d∗ is a finite
value and have the following global convergence result. Since no

MFNE exits in Case III, the question of convergence is irrelevant.

Theorem 3. Consider Case II in Theorem 2. For any c > cm,λ
where cm,λ is a positive constant such that

m
(1 + λ)

(1 + λ + 1/λ)

2cm,λ

(1+λ)
(
1+λ+ 1

λ
) + 1(

2cm,λ

(1+λ)
(
1+λ+ 1

λ
) − 1

)
2
= 1,

the system converges to the MFNE starting from any initial condition.

7
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We remark that convergence to the mean-field limit (Theorem 1)

and convergence to the MFNE (Theorem 3) are two fundamentally

different concepts. Convergence to the mean-field limit shows that

the stationary distributions of finite size systems converge weakly

to the fixed point of the mean-field model for fixed (d,k), so no

“game” is involved but the result does justify the MFG approach.

On contrast, convergence to the MFNE does not involve finite-size

stochastic systems, but investigates the dynamics of the MFG. The

result shows that the iterative process, defined as the MFG for

distributed MAC in Section 3, converges to the unique MFNE.

Proof. Recall mappings T1 and T2. Given policy (d,d), the sta-
tionary distribution of themN -device system converges to a unique

mean-field limit, which defines the following mapping

T1 : d → γ . (23)

The mapping

T2 : γ → d (24)

is obtained by solving the optimization problemmind J (d) for given
γ .

We begin by showing that, for fixedm, T1 always has Lipschitz
constant which is upper bounded bym(1+λ). Based on (9), we first

obtain

∂γ

∂d
= −

m(1 + λ)d(
1 + d(1 − γ )(1 + λ + 1

λ )
)
2

∂γ

∂d
+

m(1 + λ)(1 − γ )(
1 + k(1 − γ )(1 + λ + 1

λ )
)
2

which implies that���� ∂γ∂d ���� = m(1 + λ)(1 − γ )

m(1 + λ)d +
(
1 + d(1 − γ )(1 + λ + 1/λ)

)
2

< m(1 + λ).

Recall that T2 is a map from γ to d which gives us the unique

minimizer for the cost function J (d), and that we consider Case II

such that

2c > (1 − γ )2(1 + λ)

(
1 + λ +

1

1 + λ

)
,

and

d =
(1 − γ )(1 + λ)

2c − (1 − γ )2(1 + λ)(1 + λ + 1/λ)
.

Define α = 2c
(1+λ)

(
1+λ+ 1

λ
) , we further obtain

k =
1

(1 + λ + 1/λ)

1 − γ

α − (1 − γ )2
,

from which, we have���� ∂d∂γ ���� = 1

1 + λ + 1/λ

α + (1 − γ )2

(α − (1 − γ )2)2

<
1

1 + λ + 1/λ

α + 1

(α − 1)2
.

Define T (d) = T2(T1(d)). From the discussion above, we have

∂T

∂d
=

���� ∂d∂γ ���� ���� ∂γ∂d ���� ≤ m
(1 + λ)

(1 + λ + 1/λ)

α + 1

(α − 1)2
.

Note

α + 1

(α − 1)2

is a decreasing function of α for α > 1 because

d

dα

(
α + 1

(α − 1)2

)
= −

α + 3

(α − 1)3
< 0,

so is a decreasing function of c according to the definition of α .
Furthermore,

lim

α→∞

α + 1

(α − 1)2
= 0.

Therefore, givenm and λ, there exists cm,λ > 0 such that

m
(1 + λ)

(1 + λ + 1/λ)

2cm,λ

(1+λ)
(
1+λ+ 1

λ
) + 1(

2cm,λ

(1+λ)
(
1+λ+ 1

λ
) − 1

)
2
= 1.

For any c > cm,λ , we have a contraction mapping and the system

converges to the MFG equilibrium. □

6 PRICE OF ANARCHY
In this section, we analyse the performance of the distributed MAC

with respect to a global optimal solution where a centralized con-

troller chooses the optimal k for minimizing

Ĵ (d) = −
(1 + λ)d(1 − γ )

1 + d(1 − γ )(1 + λ + 1

λ )
+ c

(
d

1 + d(1 − γ )(1 + λ + 1

λ )

)
2

,

(25)

where

γ =
m(1 + λ)d(1 − γ )

1 + d(1 − γ )(1 + λ + 1

λ )
. (26)

Denote by
ˆd the optimal solution. All devices are forced to use

probing rate
ˆd .We will call the cost corresponding to this probing

rate the global optimal cost and compare it with the cost at the

MFNE.

Recall that for the MFNE, each device minimizes it cost function

by assuming that γ is fixed. For the centralized case, the controller

solves (25) by considering γ to be a function of d as defined in (26).

This is the reason the global optimal solution differs from the cost

at the MFNE. Let γ̂ denote the fraction of busy channels that occurs

as a result of the central controller picking an optimal probing rate.

Define

1 −
|J (γ ∗)|

| Ĵ (γ̂ )|

to be the price of anarchy. The following theorem shows that the

price of anarchy is at most 0.5. Note that the cost at the MFNE and

the global optimal cost are both negative because the policy that

does not probe any channel and does not transmit any message has

cost zero. Therefore, lower the cost, the larger its absolute value.

Theorem 4. The price of anarchy, 1 − |J (γ ∗)|/| Ĵ (γ̂ )|, is at most
1/2. In Case I, the low traffic regime defined in Theorem 2, the price
of anarchy is zero.

We note that in the low traffic regime (Case I in Theorem 2),

both the distribution MAC and the centralized solution use probing

strategy with k∗ = ∞, so the price of anarchy is zero. We provide a

proof for Case II defined in Theorem 2.

8
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Proof. By substituting (26) into (25), we obtain

Ĵ (γ ) = −
γ

m
+ c

(
γ

m(1 + λ)(1 − γ )

)
2

The optimal solution to minimize Ĵ (γ ) can be obtained by setting

∂ Ĵ
∂γ to be zero, which yields that the minimizer γ̂ is the unique

solution to the following equation

γ̂ =
m(1 + λ)2(1 − γ̂ )3

2c
.

By simple substitution, we further obtain

Ĵ (γ̂ ) = −
(1 + λ)2

4c
(1 − γ̂ )3(1 + γ̂ ) (27)

It can be shown (and indeed we show this in the technical report)

that γ ∗ is the unique solution of the following equation

γ ∗ =
m(1 + λ)2(1 − γ ∗)2

2c
.

By substituting it into (25), we have

J (γ ∗) = −
(1 + λ)2

4c
(1 − γ ∗)2. (28)

The ratio of the cost function at MFNE to the optimal cost function

is given by:

|J (γ ∗)|

| Ĵ (γ̂ )|
=

1

(1 + γ̂ )

(1 − γ ∗)2

(1 − γ̂ )3
=

1

(1 + γ̂ )

γ ∗

γ̂
, (29)

where the last equality holds because

γ ∗

γ̂
=

m(1+λ)2(1−γ ∗)2

2c
m(1+λ)2(1−γ̂ )3

2c

=
(1 − γ ∗)2

(1 − γ̂ )3
.

Observe that γ̂ is strictly smaller than γ ∗ because otherwise

γ ∗

γ̂
<

(1 − γ ∗)2

(1 − γ̂ )3
.

Therefore, we conclude that

1 >
|J (γ ∗)|

| Ĵ (γ̂ )|
>

1

(1 + γ̂ )
>

1

2

.

Which implies that:

0 < Price of Anarchy <
1

2

In other words, the price of anarchy is upper bounded by 0.5. □

Focusing on Case II defined in Theorem 2, Figure 3 shows the

price of anarchy with c = 0.1 andm = 5 with λ varying from 0.5 to

2. We can see that the price of anarchy increases as λ increases and

approaches 0.5.
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Figure 3: Price of Anarchy versus λ

7 SIMULATIONS
In this section, we use simulations to compare the distributed MAC

policy, named DMAC-G for short with other similar light-weight

distributed protocols. We simulated N = 1, 000 devices withm = 5,

and c = 10, and the average λ varying from 0.5 to 1. These choices of

parameters guarantee the existence and convergence to the MFNE.

We used uniformization to simulate the CTMC described in our

system model in Section 2.

DMAC -G :We simulated two different scenarios for the DMAC

-G protocol:homogeneous case where all devices have the same

arrival rate and the same parameter, c and heterogeneous case

where devices have different arrival rates and different values of

parameter c . Since we ran the simulations on a laptop without

parallelization, to speed up the simulations, the fraction of busy

channels was measured as a common variable shared by all devices.

In this way, we were able to simulate anM-device system efficiently

using uniformization.

• The homogeneous case In the homogeneous case every

device has the same arrival rate λ and energy parameter

c . Hence, each device has the same utility function and so

will choose the same sampling rate when given the common

random variable for the fraction of busy channels.

• The heterogeneous case Each device follows the policy

(d,d), however, the devices have different arrival rates and
parameters c . The arrival rates were picked uniformly at ran-

dom from [0.75λ, 1.25λ]. Similarly the values of the parame-

ter c were chosen uniformly at random from [0.75c, 1.25c]
for some c .

Therefore, both cases have the same average arrival rates and cost

parameters. In the simulations, each device picks an initial probing

rate. After the system converges to its steady state, each device

then picks a new probing rate which minimizes its cost given the

measured fraction of busy channels. The process repeats until the

system reaches the equilibrium and devices “learn” the probing

rates in the simulations.

E-CSMA : Each device maintains an exponential clock with initial

rate k = 1. When the clock ticks, the device probes one of the N
channels, chosen uniformly at random. If the probed channel is idle,

the device starts to transmit the packet, if not the device halves

its probing rate and the clock restarts. We simulated this protocol

under both homogeneous and heterogeneous scenarios.

9
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We evaluated the performance of the protocols in terms of the

cost and per-packet delay(for those successfully transmitted pack-

ets). We can observe from Figure 4 that DMAC-G yield a lower cost

than E-CSMA and the gap increases as λ increases. Note, that the

cost function is a linear combination of the probing cost minus the

throughput. From Figure 6, we can also observe that our algorithm

has much lower per-packet delay. The average delay is less than 2

for all the λ under DMAC-G, which reduces the probing rate when

the traffic load increases, which reduces overall cost and per-packet

delay(increases the freshness of the information).

These simulations confirm: (i) the analytical results in this paper,

while derived for the homogeneous case, also match the perfor-

mances of the heterogeneous case reasonably well; and (ii) our

low-complexity, adaptive MAC protocol signficantly outperforms

the exponential back-off MAC protocol (a commonly used MAC

protocol).
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Figure 4: Average Costs under the Four Different Scenarios.
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8 CONCLUSION
This paper formulated a multichannel ultra-dense wireless net-

work with distributed MAC as a mean-field game, and provided a

comprehensive analysis of the system including the existence and

uniqueness of the MFNE, convergence to the MFNE and the price

of anarchy compared with a global optimal solution. Numerical

evaluations confirmed our theoretical results.
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