ELE 549
Computer System Modeling

Bin Li
Dept. of Electrical, Computer & Biomedical Engineering
University of Rhode Island
Self-introduction

• Name

• M.S. or Ph.D. student

• Research topic and methodology
Transportation
Airport Security Lines
Amusement Parks
Common Features

• Customers experience a long wait 😞

• Reason???
 • Limited resources

• Solutions
 • Add more resources
 • Smart controls (algorithms)...

Cost vs. Performance
Contact Centers

Staff are all busy having a cup of coffee and a bit of a sit down ... please hold on, your call is important to us!
Computer Systems: Job Scheduling

Limit resources:
- CPU
- memory
- storage space
- I/O ports
- ...
Computer Systems: Web Servers

client 1

client 2

client 1000

"Get Page"

"Get Video"

"Get Audio"

Internet

Web Server
Queues Are Indeed Everywhere!
Common Features

• Systems with limited resources

• Smart scheduling algorithms

Cost vs. Performance
Limited resources: time, bandwidth, power
Cyber-Physical Systems

• Current intra-vehicular networks
 • 75 sensors and 75 switches
 • Requires 1,000 cables (45kg, 1km)
 • Low fuel efficiency
 • High cost and complexity of maintenance
 • $\sim 3 \times$ increases in sensors over 5 years

• Wireless solution
 • Limited resources: time, bandwidth, power
Mobile Edge Computing
Networking for Virtual/Augmented Reality
Big Data Processing

Climate Modeling

Deep Learning
How to Evaluate a System Design?

• Implementation and testbed/field deployment
 • Pros: high accuracy
 • Cons: Costly, difficult to repair/experiment in-field

• Simulations
 • Pros: can be accurate, given realistic models; broad applicability
 • Cons: can be slow, don’t always provide intuition behind results

• Analysis
 • Pros: Quick answers, provide insights
 • Cons: can be inaccurate or inapplicable
Course Goal

• Introduction to analytical tools which are needed to construct/analyze models of resource contention systems.
 • Computers
 • Networks

• It is a course on methodologies PLUS applications
Example 1: First-Come-First-Served (FCFS) server

Avg. arrival rate
\[\lambda \text{ jobs/sec} \]
FCFS
Avg. service rate
\[\mu \text{ jobs/sec} \]
Condition: \(\lambda < \mu \)

\(S \): job size (sec) = service requirement
\[E[S] = \frac{1}{\mu} \]

Example:
- On average, job needs \(3 \times 10^6 \) cycles
- Machine executes \(9 \times 10^6 \) cycles/sec

Avg service rate
\[\mu = 3 \text{ jobs/sec} \]
Avg size of job on this server
\[E[S] = \frac{1}{3} \text{ sec} \]
Example 1: FCFS server (Cont’)

• **QUESTION**: If the arrival rate double, what service rate do you need to maintain the same delays for jobs?

(a) 2μ
(b) Less than 2μ
(c) More than 2μ
Example 2: Many slow or 1 fast?

\[\lambda \text{ jobs sec} \rightarrow \begin{array}{c} \mu \\ \vdots \\ \mu \end{array} \]

\[\rho = \frac{\lambda}{\mu} \]

\[\lambda \text{ jobs sec} \rightarrow \begin{array}{c} \mu \\ \vdots \\ \mu \end{array} \]

\[\rho = \frac{\lambda}{k \mu} \]

QUESTION: Which is better for minimizing E[T]?
Example 3: Job Scheduling

- FCFS (First-Come-First-Served, non-preemptive)
- PS (Processor-Sharing, preemptive)
- SJF (Shortest-Job-First, non-preemptive)
- SRPT (Shortest-Remaining-Processing-Time, preemptive)
- LAS (Least-Attained-Service-First, preemptive)

QUESTION: Which scheduling policy is best for minimizing $E[T]$?
Example 4: Dynamic Load Balancing

• Examples:
 • F5 Big-IP
 • Microsoft SharePoint
 • Cisco Local Director
 • Coyote Point Equalizer
 • IBM Network Dispatcher

QUESTION: What is a good dispatching policy for minimizing $E[T]$?
Example 4: Dynamic Load Balancing (Cont’)

• Round-Robin

• Join-Shortest-Queue

• Least-Work-Left

•
Time-Varying Arrivals

Call center

Web servers
Course Outline

• The formulation & analysis of these models relies on
 • Stochastic processes
 • Queueing theory
 • Statistics
 • Scheduling
 • Optimization
 • Game theory
 • Control theory
 • Machine learning
 •
Textbook

Other References

Grading

- Homework: 10%
- Midterm: 30%
- Final: 30%
- Project: 30%