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Abstract—It is well-known that numerous Queue-Length-
Based (QLB) schedulers, both deterministic and randomized,
can achieve the maximum possible throughput region of wireless
networks. While randomization is useful in allowing flexibilities
in the design and implementation of the schedulers, it may
lead to throughput loss if it is not within limits. In this wor k,
we focus on the N × N input-queued switch topology to
identify the boundaries of randomization in QLB scheduling
for achieving throughput-optimality. To that end, we intro duce
a class of randomized QLB schedulers that are characterized
by a wide range of functions. Then, we identify necessary and
sufficient conditions on the number of switch ports N and
the class of functions that can guarantee throughput-optimality
of our class of randomized schedulers. Our results show
that while our randomized QLB schedulers are throughput-
optimal when N = 2, they cannot be throughput-optimal when
N ≥ 3 for a large set of functional forms. For N ≥ 3, we
further characterize an achievable rate region described via
l2 and l∞ norms in an N2 dimensional space that extends
the existing achievable rate region descriptions. ForN = 2,

we also study the delay performance of various randomized
QLB schedulers through simulations. This preliminary work
reveals the sensitivity of throughput-optimal schedulingto the
topological characteristics of the network and the functional
characteristics of the randomization.

I. I NTRODUCTION

Efficient utilization of the network resources calls for
careful scheduling of transmissions over time, subject to
interference constraints. A first-order measure of efficiency
of a scheduler is the achievable throughput it can provide.
Those schedulers that can provide the largest set of possible
throughput levels are commonly calledthroughput-optimal,
and are of particular interest. The seminal works of Tassiulas
and Ephremides [19], [20] and related works (e.g. [5],
[12], [17]; see [16] for an overview) have established the
throughput-optimality of a variety ofQueue-Length-Based
(QLB) Schedulingstrategies, which prioritize activation of
links with the greatest backlog awaiting service, also called
Maximum Weight Scheduling (MWS).

Subsequently, numerous QLB schedulers have been pro-
posed with a range of complexity, distributiveness, and
throughput characteristics (e.g. [18], [4], [15], [10], [8], [2],
[11], [7], [14], [13]). In particular,randomizationhas been
widely utilized to create flexibilities in the operation of many
of these schedulers. Yet, to the best of our knowledge, there
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is no framework in which a variety of QLB randomized
schedulers can be studied in terms of their throughput-
optimality characteristics in interference-limited networks.

In this work, we aim to fill this gap by developing a
common framework for the modeling and analysis of ran-
domized schedulers, and then by establishing necessary and
sufficient conditions on the throughput-optimality of a large
functional class of QLB schedulers for switch topologies.
Our framework is based on the modeling of randomized
schedulers as a probabilistic mapping of queue-length vector
space to the set of feasible schedules. Specifically, given the
existing queue-lengths of the links, each scheduling strategy
can be viewed as a particular probability distribution over
the set of feasible schedules. While the means with which
this random assignment may vary in its distributiveness or
complexity, this perspective allows us to model a large set
of existing and an even wider set of potential randomized
schedulers within a common framework. Hence, these results
are expected to assist the development of new randomized
schedulers with favorable implementability and/or higher-
order performance gains for switch networks.

The following list highlights our contributions and pro-
vides an outline of the remainder of the paper:

• In Section II, we introduce a functional class of ran-
domized queue-length-based scheduling strategies (see
Definitions 1), where the steepness of the functionf

determines the weight given to the heavily loadedlink.
• We find sufficient (in Section III) and necessary (in

Section IV) conditions on the number of ports in a
switch for the throughput-optimality of these random-
ized schedulers as a function of the class of functions
used in their operation.

• Then, for an N × N (N ≥ 3) switch where the
randomized scheduler cannot be throughput-optimal, we
characterize an achievable rate region (in Section V)
described byl2 and l∞ norms in anN2 dimensional
space. This result extends the results in [3] both in
terms of the achievable rate region and the considered
functional forms.

• For 2 × 2 switches where the randomized scheduler
is throughput-optimal, we also study the delay perfor-
mance of the proposed scheduler through simulations
(in Section VI). These results highlight the sensitivity of
different functional forms to traffic load asymmetries.



II. SYSTEM MODEL

Consider anN × N input-queued switch. Each input has
infinite buffer for holding packets prior to switching them
to their corresponding outputs. We assume a time-slotted
system, where all packets are transmitted at the beginning
of each time slot. During each time slot, at most one packet
can be transferred from each input and at most one packet
can be transferred to each output. For ease of exposition, we
assume that a successful transmission over any link achieves
a unit rate measured in packets per slot.

We usecomplete bipartite graphsto capture the switch
constraint in anN ×N switch. In acomplete bipartite graph
BG = (N , E), the nodes can be divided into two sets: one set
including all input ports and the other containing all output
ports, where there is no edge between nodes in the same
set and each node in one set connects with any node in
another set. For convenience, we use(i, j) (i, j = 1, ..., N )
to denote the link inE . In each time slot, we can successfully
transmit over links in a subset ofE that form amatching(i.e.,
no two edges share the same input or output port. We call
each such matching as afeasible schedule, and denote it as
S = (Sij)(i,j)∈E ∈ {0, 1}|E|, whereSij = 1 if link (i, j) is
active andSij = 0 if link (i, j) is inactive in the schedule.
We further call a feasible schedule asmaximal if no more
links in BG can be added without violating the interference
constraint. As maximal schedules represent extreme points
in the space of feasible schedules, we collect them in the set
S. Then, we can define thecapacity regionΛ as the convex
hull of S, which will give the upper bound on the achievable
link rates in packets per slot that can be supported by the
network under stability for the given interference model.

In its simplest form, aschedulerdetermines a maximal fea-
sible scheduleS[t] ∈ S at each time slott. This selection may
be influenced by the earlier experiences of each transmitter,
and may be performed through a variety of strategies. Here,
we are not interested in the means of selecting schedules, but
in the eventual selection modeled as a probabilistic function
of the state of the network. Before we define the randomized
scheduler we consider more explicitly, we need to establish
the traffic model.

We assume each link(i, j) ∈ E maintains a queue for each
input and output (i.e. the buffer at an input is partitioned into
N Virtual Output Queues (VOQs), each of infinite capacity.
The virtual output queueV OQij (i, j = 1, ..., N ) holds
packets arriving at inputi destined for outputj). Aij [t]
arrivals occur to link(i, j) in slot t that are independently
distributed over links and identically distributed over time
with meanλl, and Al[t] ≤ K for someK < ∞ 1. We
let Qij [t] denote the queue length of queue(i, j) at time t.
Recall from above thatSij [t] denotes the number of potential
departures at timet. Further, we letUij [t] denote the unused
service for Queue(i, j) in slot t. If the queue(i, j) is empty

1We note that the boundedness assumption on the arrival process sim-
plifies the technical arguments, but can be relaxed (see [5])to the more
common assumption ofE[A2

l
(t)] <∞.

and is scheduled, thenUij [t] is equal to1; otherwise, it is
equal to0. Then, the evolution of the Queue(i, j) is described
as follows:

Qij [t + 1] = Qij [t] + Aij [t] − Sij [t] + Uij [t], ∀l ∈ E . (1)

We say that Queue(i, j) is f -stable if there exists a
non-negative valued, non-decreasing and divergent function
f satisfying lim supT→∞

1
T

∑T−1
t=0 E[f(Qij [t])] < ∞. We

note that this is an extended form of the more tradi-
tional strong stability condition (see [6]) that coincide when
f(x) = x. Moreover, it is easy to show thatf -stability
implies strong stability whenf is also a convex function.
We say that thenetwork isf -stable if all its queues aref -
stable. Accordingly, we say that a scheduler isf -throughput-
optimal if it achieves f -stability of the network for any
arrival rate vectorλ = (λij)(i,j)∈E that lies strictly in-
side the capacity regionΛ. Again, in the special case of
f(x) = x, the notion off -throughput-optimality reduces to
traditional throughput-optimality, and whenf is also convex,
f -throughput-optimality implies throughput-optimality.The
capacity region for anN × N switch is

Λ =






λ ≥ 0 :

N∑

i=1

λij < 1 and
N∑

j=1

λij < 1






(2)

Starting with the seminal work [19], there is a vast
literature on the design of throughput-optimal schedulers
that utilize queue-length information in the selection of
the schedules (see e.g. [6], [16]). Of special interest in
this class of throughput-optimal schedulers are those that
employ probabilistic assignments (e.g. [18], [10], [11], [7],
[14], [4]). This is not only because they model possible
errors in the scheduling process, but also because they allow
significant flexibilities in the development of low-complexity
and distributed implementations. Yet, randomization causes
inaccurate operation and may be hurtful if not performed
within limitations.

The aim of this work is to identify the limitations of
randomization for a wide class of randomized dynamic
schedulers that utilize functions of queue-lengths to schedule
transmissions. To that end, we study a functional class of
randomized schedulers that tends to select schedules with
higher buffer occupancy levels. Before we describe them, let
us define a basic set of functions we consider:
F := the set of nondecreasing and differentiable functions

f(·) : R
+ → R

+ with limx→∞ f(x) = ∞.
Definition 1 (RSOF Scheduler):: For a given f ∈ F

and queue-length vectorQ, the Ratio-of-Sum-of-Functions
(RSOF) Scheduler picks a scheduleS ∈ S in that slot such
that

PS(Q) :=

∑

i∈S

f(Qi)

∑

S′:S′∈S

∑

j∈S′

f(Qj)
(3)

Note that the RSOF Scheduler is more likely to pick a



schedule with the larger queue length, but with different
distributions based on the form off ∈ F . In particular, the
steepness of the functionf determines the weight given to
the heavily loadedlink in the RSOF Scheduler.

It is important to understand the variety of functional forms
that may achieve throughput-optimality since they are likely
to possess differences in their implementation complexityand
distributiveness characteristics. In particular, we identify the
following class of functions.

Definition 2: We consider a subset of the space of func-
tionsF :

A := {f ∈ F : lim
x→∞

f(x + a)

f(x)
= 1, for anya ∈ R}.

Example of functionsf ∈ A is the functionsf(x) = (log(x+
1))α, f(x) = xα (α > 0) and f(x) = 1

xβ exα

(0 < α < 1,
β ≥ 0).

Remarks 1:In A, if limx→∞
f(x+a)

f(x) exists for anya ∈
R, then this limit should be equal to1. Indeed, let
limx→∞

f(x+a)
f(x) = b for any a ∈ R, where b > 0. Then

b = limx→∞
f(x+2)

f(x) = limx→∞
f(x+2)
f(x+1) ·

f(x+1)
f(x) = b2. Thus,

b = 1.

III. f -THROUGHPUT-OPTIMALITY IN A 2 × 2 SWITCH

In this section, we establish thef -throughput-optimality
of RSOF Scheduler in a2 × 2 switch for any f ∈ A.

Thus, this result yields a sufficient condition for thef -
throughput-optimality of RSOF Scheduler in switches. We
will complement this result by a necessary result that shows
its tightness in Section IV.

Lemma 1: In an N × N switch, if for anyλ ∈ Ω ⊆ Λ,
there exist aδ > 0 andaij > 0 such that, for allQ,

N∑

i=1

N∑

j=1

aijf(Qij)(λij − Pij) ≤ −δ

N∑

i=1

N∑

j=1

f(Qij), (4)

wherePij is the probability serving the link (i, j) under the
RSOF Scheduler withf ∈ A, then RSOF isf -stable in the
regionΩ.

Proof: See Appendix A for the proof.
Theorem 1:The RSOF Scheduler withf ∈ A is f -

throughput-optimal in a2 × 2 switch.
Proof: By Lemma1, if for any λ ∈ Λ, there exists a

δ > 0 such that
2∑

i=1

2∑

j=1

1

λij

f(Qij)(λij − Pij) < −δ

2∑

i=1

2∑

j=1

f(Qij) (5)

then, the RSOF Scheduler withf ∈ A is f -stable for anyλ ∈
Λ and thus is throughput-optimal. Indeed, in a2× 2 switch,
P11 = P22 = PS1 = f(Q11)+f(Q22)

∆ andP12 = P21 = PS2 =
f(Q12)+f(Q21)

∆ , where∆ =
∑2

i=1

∑2
j=1 f(Qij). Since

2∑

i=1

2∑

j=1

1

λij

f(Qij)(λij − Pij)

=
1

∆

[

∆2 − (
f(Q11)

λ11
+

f(Q22)

λ22
)(f(Q11) + f(Q22))

− (
f(Q12)

λ12
+

f(Q21)

λ21
)(f(Q12) + f(Q21))

]

(6)

and
(

f(Q11)

λ11
+

f(Q22)

λ22

)

(f(Q11) + f(Q22))

+

(
f(Q12)

λ12
+

f(Q21)

λ21

)

(f(Q12) + f(Q21))

≥
1

λ1
(f(Q11) + f(Q22))

2
+

1

λ2
(f(Q12) + f(Q21))

2

=
1

λ1 + λ2

[

λ1 + λ2

λ1
(f(Q11) + f(Q22))

2

+
λ1 + λ2

λ2
(f(Q12) + f(Q21))

2

]

=
1

λ1 + λ2

[

(f(Q11) + f(Q22))
2 + (f(Q12) + f(Q21))

2

+
λ2

λ1
(f(Q11) + f(Q22))

2
+

λ1

λ2
(f(Q12) + f(Q21))

2

]

≥
1

λ1 + λ2

[

(f(Q11) + f(Q22))
2

+ (f(Q12) + f(Q21))
2

+ 2

√

λ2

λ1

λ1

λ2
(f(Q11) + f(Q22))

2
(f(Q12) + f(Q21))

2

]

=
1

λ1 + λ2
(f(Q11) + f(Q22) + f(Q12) + f(Q21))

2

> (f(Q11) + f(Q22) + f(Q12) + f(Q21))
2
(1 + δ) (7)

Where λ1 := max{λ11, λ22}, λ2 := max{λ12, λ21} and
there exists aδ > 0 such that 1

λ1+λ2
> 1 + δ. Hence,

by combining the inequalities (6) and (7), we can see that
inequality (5) is true for anyλ ∈ Λ.

Note that RSOF Scheduler withf ∈ F −A is not
necessarily non-f -throughput-optimal in2 × 2 switches. In
fact, we conjecture that RSOF Scheduler with the functionf

steeper than any function inA is f -throughput-optimal. We
validate this conjecture through simulations in section VI.

IV. A N ECESSARYCONDITION FOR

THROUGHPUT-OPTIMALITY IN AN N × N SWITCH

We have shown that RSOF Scheduler with the function
f ∈ A is f -throughput-optimal in the2×2 switch. However,
the next result establishes that the RSOF Scheduler with any
function f ∈ F cannot be throughput-optimal in anN × N

switch whenN ≥ 3, which provides the necessary condition
for throughput optimality of RSOF Scheduler in anN × N

switch.
Theorem 2:In anN×N switch, whereN ≥ 3, the RSOF

Scheduler is not throughput-optimal for anyf ∈ F .
Proof: We prove this claim by considering an arrival

process that is inside the capacity region, but that is not
supportable by the RSOF Scheduler. To that end, let’s con-
sider a maximal scheduleS1 = {(1, 1), (2, 2), ..., (N, N)}.



We assume that arrivals only happen to thoseN links at
ratesλ11, ..., λNN with the constraint thatλii ∈ [0, 1) for
all i = 1, ..., N , which clearly can be supported by a simple
policy that always serves the scheduleS1. Thus, settingλii

arbitrarily close to one for eachi, this simple policy can
achieve a sum rate of

∑N

i=1 λii < N .

Given this construction, we next prove the following claim:

Claim 1: If
∑N

i=1 λii ≥ 2, the RSOF Scheduler with any
function f ∈ F is unstable for anN × N switch, where
N ≥ 3.

Proof of Claim: Based on the above model, the RSOF
Scheduler becomes

PS =

N∑

i=1

∑

(i,i)∈S

f(Qii) + (N −
N∑

i=1

∑

(i,i)∈S

1)f(0)

∑

S′





N∑

j=1

∑

(j,j)∈S′

f(Qjj) + (N −
N∑

j=1

∑

(j,j)∈S′

1)f(0)





Then,

N∑

i=1

Pii =

N∑

i=1

∑

{S:(i,i)∈S}
PS

=

=:Y
︷ ︸︸ ︷

N∑

i=1

∑

{S:(i,i)∈S}





N∑

j=1

∑

(j,j)∈S

f(Qjj) + (N −
N∑

j=1

∑

(j,j)∈S

1)f(0)





∑

S′





N∑

j=1

∑

(j,j)∈S′

f(Qjj) + (N −
N∑

j=1

∑

(j,j)∈S′

1)f(0)





︸ ︷︷ ︸

=:X

We can expandX andY as follows

X =
∑

S

N∑

j=1

∑

(j,j)∈S

(f(Qjj) − f(0)) + Nf(0)
∑

S

1

=

N∑

j=1

(f(Qjj) − f(0))
∑

{S:(j,j)∈S}
1 + N · N !f(0)

= (N − 1)!

N∑

j=1

f(Qjj) + (N − 1)N !f(0) (8)

Y =

N∑

i=1

∑

{S:(i,i)∈S}

N∑

j=1

∑

(j,j)∈S

(f(Qjj) − f(0))

+ Nf(0)

N∑

i=1

∑

{S:(i,i)∈S}
1

=
∑

S

(

N∑

i=1

∑

(i,i)∈S

1)(

N∑

j=1

∑

(j,j)∈S

(f(Qjj) − f(0)))

+ N · N !f(0)

=

N∑

j=1

(f(Qjj) − f(0))
∑

S:(j,j)∈S

(

N∑

i=1

∑

(i,i)∈S

1) + N · N !f(0)

Since fixingj,
∑

S:(j,j)∈S
(
∑N

i=1

∑

(i,i)∈S
1) means the num-

ber of links (i, i) (i = 1, ..., N ) appearing in the sched-
ulers having the link (j, j). We know that link (j, j)
appears in the(N − 1)! schedules and all other links
(k, k) (k 6= j) appears in the(N − 2)! schedules. Thus,
∑

S:(j,j)∈S
(
∑N

i=1

∑

(i,i)∈S
1) = (N − 1)! + (N − 1) · (N −

2)! = 2(N − 1)!. Hence,Y = 2(N − 1)!
∑N

j=1 f(Qjj) +
(N − 2)N !f(0) and thus

N∑

i=1

Pii =
2(N − 1)!

∑N

j=1 f(Qjj) + (N − 2)N !f(0)

(N − 1)!
∑N

j=1 f(Qjj) + (N − 1)N !f(0)

≤
2(N − 1)!

∑N

j=1 f(Qjj) + 2(N − 1)N !f(0)

(N − 1)!
∑N

j=1 f(Qjj) + (N − 1)N !f(0)

= 2 (9)

Consider the Lyapunov functionL(Q) :=
∑N

i=1 Qii, then

∆L :=E [L(Q[t + 1]) − L(Q[t])|Q[t] = Q]

≥
N∑

i=1

E [Aii[t] − Sii[t]|Q[t] = Q]

=

N∑

i=1

λii −
N∑

i=1

Pii ≥
N∑

i=1

λii − 2 (10)

If
∑N

i=1 λii ≥ 2, then∆L ≥ 0. Hence, by the Theorem 20
of [9], the RSOF Scheduler is unstable if

∑N

i=1 λii ≥ 2.

V. THE THROUGHPUTPERFORMANCE OFRSOF
SCHEDULER FOR ANN × N SWITCH

Even though the RSOF Scheduler with any functionf ∈ F
cannot be throughput-optimal in anN×N switch (N ≥ 3), it
can still achieve stability within some region. In this section,
we specify the region of supportable arrival rates under the
RSOF Scheduler withf ∈ A for anN ×N switch and prove
its stabilizing properties. Theorem3 implies that the stable
region that RSOF Scheduler withf ∈ A can achieve is:

Γ = Γ1

⋃

Γ2 (11)

Where Γ1 :=
{

λ ≥ 0 :
∑N

i=1

∑N

j=1 λ2
ij < 1

N

}

and Γ2 :=
{
λ ≥ 0 : λij < 1

N
∀i, j = 1, ..., N

}
. Note that Γ1 doesn’t

coincide withΓ2. Consider a2×2 switch. Assumingλ22 = 0,
Figure 1 illustrates the relationship amongΓ1, Γ2 andΛ in
a three dimensional space. We observe thatΓ1 and Γ2 are
captured by ball and cube forms, respectively. Also, we can
observe thatΓ1 andΓ2 partially overlap.

Lemma 2: In an N × N switch, for any non-negative
valued vectorQ, we have

(1)
1

N

N∑

i=1

N∑

j=1

f2(Qij) ≤





N∑

i=1

N∑

j=1

f(Qij)Pij





2

(2)
1

N

N∑

i=1

N∑

j=1

f(Qij) ≤
N∑

i=1

N∑

j=1

f(Qij)Pij
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Fig. 1. The relationship amongΓ1,Γ2 andΛ

wherePij =
∑

{S:(i,j)∈S} PS(Q), wherePS(Q) is given by
(3).

Proof: See Appendix B for the proof.
Theorem 3:The RSOF Scheduler withf ∈ A stabilizes

the N × N switch for any arrival rateλ ∈ Γ.
Proof: By Lemma1, if inequality (4) holds for anyλ ∈

Γ, then the RSOF Scheduler withf ∈ A is f -stable for any
λ ∈ Γ.
(1) If λ ∈ Γ1, that is,

∑N

i=1

∑N

j=1 λ2
ij < 1

N
, then there exists

a δ > 0, likely a function ofN, such that

N∑

i=1

N∑

j=1

λ2
ij ≤

1

N
− 2N4δ (12)

Thus, by Cauchy-Schwarz inequality, we have

(
N∑

i=1

N∑

j=1

λijf(Qij))
2 ≤ (

N∑

i=1

N∑

j=1

λ2
ij)

N∑

i=1

N∑

j=1

f2(Qij)

≤ (
1

N
− 2N4δ)

N∑

i=1

N∑

j=1

f2(Qij)

By Lemma 2, we have

(

N∑

i=1

N∑

j=1

λijf(Qij))
2

≤− 2N4δ

N∑

i=1

N∑

j=1

f2(Qij) + (

N∑

i=1

N∑

j=1

Pijf(Qij))
2

Thus,

(

N∑

i=1

N∑

j=1

λijf(Qij) +

N∑

i=1

N∑

j=1

Pijf(Qij))

· (
N∑

i=1

N∑

j=1

λijf(Qij) −
N∑

i=1

N∑

j=1

Pijf(Qij))

=(

N∑

i=1

N∑

j=1

λijf(Qij))
2 − (

N∑

i=1

N∑

j=1

Pijf(Qij))
2

≤− 2N4δ

N∑

i=1

N∑

j=1

f2(Qij) (13)

Hence, we have
N∑

i=1

N∑

j=1

λijf(Qij) −
N∑

i=1

N∑

j=1

Pijf(Qij)

≤
−2N4δ

∑N

i=1

∑N

j=1 f2(Qij)
∑N

i=1

∑N

j=1 λijf(Qij) +
∑N

i=1

∑N

j=1 Pijf(Qij)

≤− N4δ

∑N

i=1

∑N

j=1 f2(Qij)
∑N

i=1

∑N

j=1 f(Qij)
(14)

In addition,

(

N∑

i=1

N∑

j=1

f(Qij))
2 ≤ (N2 max

ij
{f(Qij)})

2

= N4 max
ij

{f2(Qij)} ≤ N4
N∑

i=1

N∑

j=1

f2(Qij) (15)

Hence, by combining inequalities (14) and (15), we can see
that inequality (4) is true for anyλ ∈ Γ1.
(2) If λ ∈ Γ2, that is,λij < 1

N
for ∀i, j = 1, ..., N , then

there exist aδ > 0 such thatλi,j ≤ 1
N

− δ. Thus,

N∑

i=1

N∑

j=1

f(Qij)(λij − Pij)

≤
N∑

i=1

N∑

j=1

f(Qij)(
1

N
− δ − Pij)

= − δ

N∑

i=1

N∑

j=1

f(Qij) +
1

N

N∑

i=1

N∑

j=1

f(Qij)

−
N∑

i=1

N∑

j=1

f(Qij)Pij

By Lemma2, we can see that inequality (4) holds for any
λ ∈ Γ2.

VI. SIMULATION RESULTS

In this section, we perform numerical studies to evaluate
the delay performance of RSOF Schedulers with different
functions in a2 × 2 switch and throughput performance of
RSOF Scheduler in a3 × 3 switch.

A. The impact of steepness of function on delay performance

In a 2 × 2 switch, there are2 maximal schedules, each
containing2 links. We consider arrival rateλ = ρH, where
H = [Hij ] is a doubly-stochastic matrix withHij denoting
the fraction of the total rate from input porti that is destined
to output portj. Here, ρ ∈ (0, 1) represents the average
arrival intensity, where the larger theρ, the more heavily
loaded the switch is. Due to limited space, we present two
cases: symmetric arrival process (H1 = [0.5 0.5; 0.5 0.5]) and
asymmetric arrival process (H2 = [0.1 0.9; 0.9 0.1]) under
the high arrival intensityρ = 0.99. We run the simulation 100
times and get the average queue length per link for RSOF



Schedulers with different functions, which are shown in Table
I.

TABLE I
AVERAGE QUEUE LENGTH PER LINK

RSOF

Functions H1 =

[
0.5 0.5
0.5 0.5

]

H2 =

[
0.1 0.9
0.9 0.1

]

ex2

21.36 7.85
ex 21.40 8.07
e
√

x 20.75 11.06
(x + 1)2 20.02 10.06
x + 1 20.71 17.62
log(x + e) 19.48 1126

From Table I, we can observe that under symmetric
arrival traffic, the delay performance is highly insensitive to
the choice of the functional form being used in the RSOF
Scheduler. So, there is a wide class of choices under which
the RSOF Scheduler can yield good performance. On the
other hand, under asymmetric arrival traffic, it appears that
the steepness off needs to be high enough for RSOF
Scheduler to yield good delay performance. In addition, we
can see that RSOF Schedulers with eitherex or ex2

are
alsof -stable in symmetric and asymmetric arrival processes.
Thus, we conjecture that RSOF Scheduler with the function
steeper than the function in ClassA is f -throughput-optimal.

B. The throughput performance in anN × N switch

In an N × N switch (N ≥ 3), the RSOF Scheduler
with any function f ∈ F is non-throughput-optimal. In
section V, we show that the RSOF Scheduler with the
function f ∈ A is f -stable in the regionΓ. However,
the RSOF Scheduler can achieve a larger rate region than
Γ. To see this, for example, consider a RSOF Sched-
uler with the linear function under the arrival rateλ =
[0.0368 0.2201 0.0686; 0.4308 0.2656 0.0498; 0.1266 0.0464
0.6309] in a 3 × 3 switch. Whileλ ∈ Λ − Γ, the simulation
result shown in Figure 2 indicates that the given rate is
actually supportable. Thus, the largest possible achievable
rate region of RSOF schedulers for generalN ×N switches
is an open problem. From Figure 2, we can observe that
RSOF Scheduler is stillf -stable outside the regionΓ.

VII. C ONCLUSIONS

We proposed and explored the limitations of a functional
class of queue-length-based randomized schedulers inN×N

switch networks. Our study revealed the sensitivity of the
randomized schedulers to the number of ports of the switch
by establishing thatN = 2 is necessary and sufficient for
the throughput-optimality a large class of functional forms
considered. We also characterized an achievable rate region
for N ≥ 3 and studied the delay performance under the
throughput-optimal scenario. These results not only revealed
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the strengths and weaknesses of randomization in dynamic
scheduling but also helped us establish important insights
for the study of a wider class of schedulers in more general
network topologies, which has formed the basis of our
ongoing work.

VIII. A PPENDIX A
PROOF OFLEMMA 1

Consider the Lyapunov function

V (Q) :=
N∑

i=1

N∑

j=1

aijh(Qij) (16)

whereh′(x) = f(x). Then

∆V := E [V (Q[t + 1]) − V (Q[t])|Q[t] = Q]

=

N∑

i=1

N∑

j=1

aijE [h(Qij [t + 1]) − h(Qij [t])|Q[t] = Q]

By the mean-value theorem, we haveh(Qij [t +
1]) − h(Qij [t]) = f(Rij [t])(Qij [t + 1] − Qij [t]) =
f(Rij [t])(Aij [t]−Sij [t]+Uij [t]), whereRij [t] lies between
Qij [t] and Qij [t + 1]. Due to the space limitation, we will
drop the time index[t] from the quantitiesAij [t],Sij [t],Uij [t]
andRij [t] in the following proof. Hence, we get

∆V =

N∑

i=1

N∑

j=1

aijE [f(Rij)(Aij − Sij + Uij)|Q[t] = Q]

=
N∑

i=1

N∑

j=1

aijE [f(Rij)Uij |Q[t] = Q]

︸ ︷︷ ︸

=:∆V1

+

N∑

i=1

N∑

j=1

aijE [f(Rij)(Aij − Sij)|Q[t] = Q]

︸ ︷︷ ︸

=:∆V2

For ∆V1, if Qij [t] = Qij > 0, thenUij [t] = 0. If Qij [t] =
Qij = 0, then Uij [t] may be equal to1. But in this case,



Qij [t + 1] ≤ K (since Aij [t] ≤ K). Hence,f(Rij [t]) ≤
f(K) < ∞. Thus,

∆V1 =

N∑

i=1

N∑

j=1

aijE [f(Rij)Uij |Q[t] = Q]1{Qij>0}+

N∑

i=1

N∑

j=1

aijE [f(Rij)Uij |Q[t] = Q]1{Qij=0}

=
N∑

i=1

N∑

j=1

aijE [f(Rij)Uij |Q[t] = Q]1{Qij=0}

≤D

N∑

i=1

N∑

j=1

f(K) (17)

Where D := max{aij} and 1{·} denotes the indicator
function.

Next, let’s focus on∆V2. We know thatf(Rij [t]) =
f(Qij [t] + bij) (|bij | ≤ K). According to the definition of
function f ∈ A, given ǫ > 0, there existsM > 0, such that
for any Qij [t] = Qij > M , we have

∣
∣
∣

f(Rij)
f(Qij)

− 1
∣
∣
∣ < ǫ, that

is, (1− ǫ)f(Qij) < f(Rij) < (1 + ǫ)f(Qij). Thus, we have

f(Rij)(Aij − Sij)

=f(Rij) [(Aij − Sij)+ − (Aij − Sij)−]

<(1 + ǫ)f(Qij)(Aij − Sij)+ − (1 − ǫ)f(Qij)(Aij − Sij)−

=f(Qij) [(Aij − Sij)+ − (Aij − Sij)−]

+ ǫf(Qij) [(Aij − Sij)+ + (Aij − Sij)−]

=f(Qij)(Aij − Sij) + ǫf(Qij) |Aij − Sij |

≤f(Qij)(Aij − Sij) + Kǫf(Qij) (18)

Where(x)+ = max{x, 0}, (x)− = −min{x, 0} and |Aij −
Sij | ≤ |Aij | ≤ K. Thus, we divide∆V2 into two parts:

∆V2 =
N∑

i=1

N∑

j=1

aijE [f(Rij)(Aij − Sij)|Q[t] = Q]1{Qij>M}

︸ ︷︷ ︸

=:∆V3

+

N∑

i=1

N∑

j=1

aijE [f(Rij)(Aij − Sij)|Q[t] = Q]1{Qij≤M}

︸ ︷︷ ︸

=:∆V4

For ∆V3, by using (18), we have

∆V3 ≤
N∑

i=1

N∑

j=1

aijE [f(Qij)(Aij − Sij)|Q[t] = Q]1{Qij>M}

+

N∑

i=1

N∑

j=1

aijKǫf(Qij)1{Qij>M}

≤
N∑

i=1

N∑

j=1

aijf(Qij)(λij − Pij)1{Qij>M}

+ DKǫ

N∑

i=1

N∑

j=1

f(Qij)1{Qij>M} (19)

Since inequality (4) holds, we have

N∑

i=1

N∑

j=1

aijf(Qij)(λij − Pij)1{Qij>M}

≤− δ

N∑

i=1

N∑

j=1

f(Qij)1{Qij>M} − δ

N∑

i=1

N∑

j=1

f(Qij)1{Qij≤M}

−
N∑

i=1

N∑

j=1

aijf(Qij)(λij − Pij)1{Qij≤M}

< − δ

N∑

i=1

N∑

j=1

f(Qij)1{Qij>M} +

N∑

i=1

N∑

j=1

aijf(Qij)Pij1{Qij≤M}

< − δ

N∑

i=1

N∑

j=1

f(Qij)1{Qij>M} + D

N∑

i=1

N∑

j=1

f(M) (20)

Thus, we have

∆V3 ≤− δ

N∑

i=1

N∑

j=1

f(Qij)1{Qij>M}

+ DKǫ

N∑

i=1

N∑

j=1

f(Qij)1{Qij>M} + D

N∑

i=1

N∑

j=1

f(M)

We can chooseǫ small enough such thatγ = δ − DKǫ > 0
and thus we have

∆V3 ≤ −γ

N∑

i=1

N∑

j=1

f(Qij)1{Qij>M} + D

N∑

i=1

N∑

j=1

f(M)

For ∆V4, we have

∆V4 ≤
N∑

i=1

N∑

j=1

aijE [f(Rij) |Aij − Sij | |Q[t] = Q]1{Qij≤M}

≤DK

N∑

i=1

N∑

j=1

f(M + K)

Thus, we get

∆V ≤− γ

N∑

i=1

N∑

j=1

f(Qij)1{Qij>M} + D

N∑

i=1

N∑

j=1

f(K)

+ DK

N∑

i=1

N∑

j=1

f(M + K) + D

N∑

i=1

N∑

j=1

f(M) (21)

By the Foster-Lyapunov theorem [1], we know that RSOF
scheduler withf ∈ A is f -stable under the condition (4).

IX. A PPENDIX B
PROOF OFLEMMA 2

N∑

i=1

N∑

j=1

f(Qij)Pij

=

∑N

i=1

∑N

j=1 f(Qij)
∑

{S:(i,j)∈S}
∑

(k,l)∈S
f(Qkl)

∑

S′

∑

(k,l)∈S′ f(Qkl)



=

∑

S

(
∑

(i,j)∈S
f(Qij)

)2

∑

S

∑

(i,j)∈S
f(Qij)

(22)

(1) We only need to show 1
N

∑N

i=1

∑N

j=1 f2(Qij) ≤
(∑

S(
∑

(i,j)∈S
f(Qij))2

∑

S

∑

(i,j)∈S
f(Qij)

)2

. By Cauchy-Schwarz inequal-

ity, we have



∑

S

∑

(i,j)∈S

f(Qij)





2

≤
∑

S

1
∑

S




∑

(i,j)∈S

f(Qij)





2

= N !
∑

S




∑

(i,j)∈S

f(Qij)





2

(23)

In addition, we have

∑

S




∑

(i,j)∈S

f(Qij)





2

≥
∑

S

∑

(i,j)∈S

f2(Qij)

=

N∑

i=1

N∑

j=1

f2(Qij)
∑

{S:(i,j)∈S}
1

= (N − 1)!
N∑

i=1

N∑

j=1

f2(Qij)

Then we have




N∑

i=1

N∑

j=1

f2(Qij)








∑

S

∑

(i,j)∈S

f(Qij)





2

≤N






∑

S




∑

(i,j)∈S

f(Qij)





2





2

(24)

Thus, we have

1

N

N∑

i=1

N∑

j=1

f2(Qij) ≤






∑

S

(
∑

(i,j)∈S
f(Qij)

)2

∑

S

∑

(i,j)∈S
f(Qij)






2

(2) Since

∑

S

∑

(i,j)∈S

f(Qij) =

N∑

i=1

N∑

j=1

f(Qij)
∑

S:(i,j)∈S

1

= (N − 1)!

N∑

i=1

N∑

j=1

f(Qij) (25)

thus we only need to show

1

N !




∑

S

∑

(i,j)∈S

f(Qij)





2

≤
∑

S




∑

(i,j)∈S

f(Qij)





2

This is true due to inequality (23).
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