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Abstract—It is well-known that numerous Queue-Length-
Based (QLB) schedulers, both deterministic and randomized
can achieve the maximum possible throughput region of wiredss
networks. While randomization is useful in allowing flexibilities
in the design and implementation of the schedulers, it may
lead to throughput loss if it is not within limits. In this wor K,
we focus on the N x N input-queued switch topology to
identify the boundaries of randomization in QLB scheduling
for achieving throughput-optimality. To that end, we introduce
a class of randomized QLB schedulers that are characterized
by a wide range of functions. Then, we identify necessary and
sufficient conditions on the number of switch ports N and
the class of functions that can guarantee throughput-optirality
of our class of randomized schedulers. Our results show
that while our randomized QLB schedulers are throughput-
optimal when N = 2, they cannot be throughput-optimal when
N > 3 for a large set of functional forms. For N > 3, we
further characterize an achievable rate region described i
I and I, norms in an N2 dimensional space that extends
the existing achievable rate region descriptions. ForN = 2,
we also study the delay performance of various randomized
QLB schedulers through simulations. This preliminary work
reveals the sensitivity of throughput-optimal schedulingto the
topological characteristics of the network and the functimal
characteristics of the randomization.

|. INTRODUCTION

Efficient utilization of the network resources calls for

careful scheduling of transmissions over time, subject

interference constraints. A first-order measure of efficyen
of a scheduler is the achievable throughput it can provide.
Those schedulers that can provide the largest set of pessibl,

throughput levels are commonly calléhroughput-optimal

and are of particular interest. The seminal works of Taasiul
and Ephremides [19], [20] and related works (e.g. [5],
[12], [17]; see [16] for an overview) have established the
throughput-optimality of a variety oQueue-Length-Based
(QLB) Schedulingstrategies, which prioritize activation of

links with the greatest backlog awaiting service, alsoechll
Maximum Weight Scheduling (MWS)

Subsequently, numerous QLB schedulers have been pro-
posed with a range of complexity, distributiveness, and

throughput characteristics (e.g. [18], [4], [15], [10]].[8].
[11], [7], [14], [13]). In particular,randomizationhas been
widely utilized to create flexibilities in the operation ofamy

of these schedulers. Yet, to the best of our knowledge, there
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is no framework in which a variety of QLB randomized
schedulers can be studied in terms of their throughput-
optimality characteristics in interference-limited netis.

In this work, we aim to fill this gap by developing a
common framework for the modeling and analysis of ran-
domized schedulers, and then by establishing necessary and
sufficient conditions on the throughput-optimality of agar
functional class of QLB schedulers for switch topologies.
Our framework is based on the modeling of randomized
schedulers as a probabilistic mapping of queue-lengttovect
space to the set of feasible schedules. Specifically, given t
existing queue-lengths of the links, each schedulingesisat
can be viewed as a particular probability distribution over
the set of feasible schedules. While the means with which
this random assignment may vary in its distributiveness or
complexity, this perspective allows us to model a large set
of existing and an even wider set of potential randomized
schedulers within a common framework. Hence, these results
are expected to assist the development of new randomized
schedulers with favorable implementability and/or higher
order performance gains for switch networks.

The following list highlights our contributions and pro-
vides an outline of the remainder of the paper:

« In Section Il, we introduce a functional class of ran-
domized queue-length-based scheduling strategies (see
Definitions 1), where the steepness of the functjon
determines the weight given to the heavily loadied.

We find sufficient (in Section IlI) and necessary (in
Section V) conditions on the number of ports in a
switch for the throughput-optimality of these random-
ized schedulers as a function of the class of functions
used in their operation.

e Then, for anN x N (N > 3) switch where the
randomized scheduler cannot be throughput-optimal, we
characterize an achievable rate region (in Section V)
described byl, andl,, norms in anN? dimensional
space. This result extends the results in [3] both in
terms of the achievable rate region and the considered
functional forms.

o For 2 x 2 switches where the randomized scheduler
is throughput-optimal, we also study the delay perfor-
mance of the proposed scheduler through simulations
(in Section VI). These results highlight the sensitivity of
different functional forms to traffic load asymmetries.

to



[l. SYSTEM MODEL and is scheduled, thetr;;[t] is equal tol; otherwise, it is
Consider anV' x N input-queued switch. Each input hasequal to0. Then, the evolution of the Queyg ;) is described
infinite buffer for holding packets prior to switching them?™ follows:

to their corresponding outputs. We assume a time-slotted),; [t + 1] = Q;;[t] + Ai;[t] — Si;[t] + Uyj[t], Vi € E. (1)
system, where all packets are transmitted at the beginning{N o . .

of each time slot. During each time slot, at most one packet e say that Queugi, ;) is f-stableif there exists a

can be transferred from each input and at most one pac[ggp-n_eggnve.valued, norl-de%rff\smg and divergent fomcti
can be transferred to each output. For ease of exposition, Wsatistying limsupr_ o 73— E[f(Qylt])] < co. We
assume that a successful transmission over any link achie)§t€ that this is an extended form of the more tradi-
a unit rate measured in packets per slot. tional strong stability cc_)n(_jmon (see [6]) that commd@gm
We usecomplete bipartite graphso capture the switch f (x)_ - Moreov_e_r, It is casy to show tha;t-stablll_ty
constraint in anV x N switch. In acomplete bipartite graph implies strong stability whery is also a convex function.

BG = (N, ), the nodes can be divided into two sets: one sifc SaY that thaetwork is f-stableif all its queues aref-
including all input ports and the other containing all outplPtaP!e- Accordingly, we say that a scheduley ithroughput-

ports, where there is no edge between nodes in the sa?ﬁ’é'mal if it achieves f-stability of the n(_etwork.for any
ival rate vectorA = (\ij)a, ee that lies strictly in-

set and each node in one set connects with any nodeaf{j h : omh. Aaamin th ial f
another set. For convenience, we {sgj) (i,7 = 1,...,N) side the capacity region. Again, in the special case o

to denote the link irf€. In each time slot, we can successfull (z) = =, the notion of f-throughput-optimality reduces to

transmit over links in a subset éfthat form amatching(i.e., traditional throughput-optimality, and whefnis also convex,

no two edges share the same input or output port. We chifhroughput-optimality implies throughput-optimalityhe

each such matching asfeasible schedujeand denote it as capacity region for anV x N switch is

S = (Sij)i.5yee € {0,1}¢], whereS;; = 1 if link (i,5) is N N

active andS;; = 0 if link (4, 7) is inactive in the schedule. A=dA>0: Z/\ij < 1and Z)\ij <1 2

We further call a feasible schedule asmximalif no more i=1 j=1

links in BG can be added without violating the interference Starting with the seminal work [19], there is a vast

_constralnt. As max'!"”a' schedules represent extreme pOIPlttsrature on the design of throughput-optimal schedulers

In the space of feasﬂ_)Ie schedulgs, we collect them in the Mat utilize qgueue-length information in the selection of

o e naule Sehedues (see €. (], 16). OI special merest
' 9 P is class of throughput-optimal schedulers are those that

link rates in packets per slot that can be supported by the B .
network under stability for the given interference model. employ probabilistic assignments (e.g. [18], [10], [114],

In its simplest form, a&cheduledetermines a maximal fea-[14]' [4). This is not only because they model possible

. . . . errors in the scheduling process, but also because thay allo
sible schedul&[¢] € S at each time slot. This selection may gp oy

. ) . .. significant flexibilities in the development of low-com
be influenced by the earlier experiences of each transmitt; P pityx

) . &hd distributed implementations. Yet, randomization eaus
and may b? performe_d through a variety of.strategles. He[ accurate operation and may be hurtful if not performed
we are not interested in the means of selecting schedules, Hhin limitations.
in the eventual selection modeled as a probabilistic foncti The aim of this work is to identify the limitations of
of the state of the network. Before we define the randomiz? domization for a wide class of randomized dynamic
schedul_er we consider more explicitly, we need to establig hedulers that utilize functions of queue-lengths to datee
the traffic model. L L transmissions. To that end, we study a functional class of
. We assume eaqh linke, j) € & malntf_;uns a_queut_a_for eaf:hrandomized schedulers that tends to select schedules with
input and output (i.e. the buffer at an input is partitionetbi higher buffer occupancy levels. Before we describe them, le
N Virtual Output Queues (VOQs), each of infinite capacit){JS define a basic set of functions we consider:

The virtual .o.utput queugi/OQi? (G,j = 1’“"N) holds F := the set of nondecreasing and differentiable functions
packets arriving at input destined for outputj). A;;[t] () : R* — R* with lim f(z) = 0o

arrivals occur to link(z, j) in slot ¢ that are independently Definition 1 (RSOF Scheduler): For a given f € F

distributed over links and identically distributed ovemé queue-length vecta®, the Ratio-of-Sum-of-Functions

i 1
with mean;, and 4,[t] < K for some K_ S We (RSOF) Scheduler picks a scheddle= S in that slot such
let Q;;[t] denote the queue length of queligj) at timet.

Recall from above tha$;[t] denotes the number of potential

departures at time. Further, we leU;;[t] denote the unused Z f(Qi)
service for Queuéi, j) in slott. If the queug(i, 7) is empty Ps(Q) = i€s A3)
> 1@
We note that the boundedness assumption on the arrival gy im- S".S'eS jes/

plifies the technical arguments, but can be relaxed (seet¢6ijhe more ] ) )
common assumption aB[A? ()] < co. Note that the RSOF Scheduler is more likely to pick a



schedule with the larger queue length, but with different B (f(Q12) n f(@21)
distributions based on the form gfe F. In particular, the A2 A21
steepness of the functiofi determines the weight given to

the heavily loadedink in the RSOF Scheduler. and

)(f(Q12) + f(Q21)) (6)

It is important to understand the variety of functional ferm f( Qu f(Q22)
that may achieve throughput-optimality since they arelyike ( A1 A22 (F(Qu) + (@22))
to possess differences in their implementation complexity (Q12) = f(Q21)
distributiveness characteristics. In particular, we tifgrthe + ( e T ur ) (f(le) + f(Q21))
following class of functions. 1

Definition 2: We consider a subset of the space of func>/\— (f(Qu) + f(Q2))" + " (f(Q12) + f(Q))”
tions F:

A= (7 e 7 i 82D por anya e ), e | Q) + £(@w))?
Example of functiong € A s the functionsf (z) = (log(z+ P '

e’ ey — 1z A A
;))>,O)f(:v) * (@ > 0) and f(r) = —e” (0 < a <1, " 1;-2 2 (F(Qr2) + F(Qa1)?

Remarks 1:In A, if lim, . fata) exists for anya €

R, then this limit should be gqual td. Indeed, let _—

: (f(Qu1) + f(Q22))” + (f(Q12) + f(Q21))?

limy o0 f(f:”(:)“) = b for anya € R, whereb > 0. Then A1+ A2

b=1lim, oo L&D = Tim, oo L2 . LOHD — 32 Thus, L A

b=1. = USREEIC = (f(Qu) + F(Q22)) + ; (f(Q12) + f(Qa1))”
Ill. f-THROUGHPUFOPTIMALITY INA 2 X 2 SWITCH 1

(f(Qu1) + f(Q22))" + (f(Q12) + f(Q21))?

In this section, we establish thgthroughput-optimality 2/\1 W
of RSOF Scheduler in @ x 2 switch for any f € A.

Thus, this result yields a sufficient condition for the Az At 2
throughput-optimality of RSOF Scheduler in switches. We 2 A A (f(Q“) + f(QQQ)) (F(Q2) + f(Q21))
will complement this result by a necessary result that shows )
its tightness in Section IV. N w (f(Q11) + f(Q22) + f(Q12) + f(Q21))
Lemma 1:In an N x N switch, if for any\ € Q C A,
there exist & > 0 anda;; > 0 such that, for allQ, > (£(Qu) + £(Q22) + (Qu2) + f(Q1))* (1 +0) @)
N N N N Where Al = max{/\u,)\gg}, AQ 2: max{)\lg,)\gl} and
SO f(Qi) Ay — Py) < =555 f(Qiy). () there exists & > 0 such thaty— > 1+ 4. Hence,
Pt =1 =1 by combining the inequalities (6) and (7), we can see that
inequality (5) is true for any\ € A. ]

where P;; is the probability serving the linki(j) under the

Sezi?; Scheduler Witlf € A, then RSOF isf-stable in the necessarily norn~throughput-optimal ir2 x 2 switches. In

Proof: See Appendix A for the proof. - fact, we conjecture that RSOF Scheduler with the funcfion

Theorem 1:The RSOF Scheduler wittf € A is f- steI%petzr E[E?n any futncti(:ﬂ IA ishf-_throlu?hput_-optimtgl. Vi//ei
throughput-optimal in 2 x 2 switch. validate this conjecture through simulations in section

Proof: By Lemmal, if for any A € A, there exists a
0 > 0 such that

Note that RSOF Scheduler witf € F — A is not

IV. ANECESSARYCONDITION FOR
THROUGHPUTFOPTIMALITY INAN N x N SWITCH

2 2
Qi) P < -6 Qi) (5) We have shown that RSOF Scheduler with the function
;; Aij ! s) ;; (@) f € Ais f-throughput-optimal in th& x 2 switch. However,
then, the RSOF Scheduler wifhe A is f-stable for any & the next result establishes that the RSOF Scheduler with any

. function f € F cannot be throughput-optimal in ai x N
A and thus is throughput optimal. Indeed, ir2 & 2 switch, . . . .
switch whenN > 3, which provides the necessary condition
Piy = Py = Pg, = (Q11)+f(Q22) and Py = Py = Pg, = = P y

for throughput optimality of RSOF Scheduler in ahx N

(Q12)+f(Q21) . whereA = Zz ) Z] L F(Qij). Since switch,
2 1 Theorem 2:In an N x N switch, whereN > 3, the RSOF
Z Z = F(Qij)(\ij — Pij) Scheduler is not throughput-optimal for ariyc F.
i=1 j=1 "% Proof: We prove this claim by considering an arrival
Lo f(Qun) | f(Q) process that is inside the capacity region, but that is not
=X A% —( o + Yo )(f(Q11) + f(Q22)) supportable by the RSOF Scheduler. To that end, let's con-

sider a maximal schedul8, = {(1,1),(2,2),...,(N,N)}.



We assume that arrivals only happen to thdgelinks at Since fixingj, > g, ”)ES(Zl 1 2_(i,es 1) means the num-
rates A1y, ..., \xn With the constraint thad;; € [0,1) for ber of links ¢, 1) (z = 1,...,N) appearing in the sched-
all =1, ..., N, which clearly can be supported by a simplellers having the link j,j) We know that link (j,7)
policy that always serves the sched®e Thus, setting\;; appears in the(N — 1)! schedules and all other links
arbitrarily close to one for each this simple policy can (k,k) (k # j) appears in thg N — 2)! schedules. Thus,
achieve a sum rate (Ef.vzl Aii < N. ZS:(j,j)eS(Zi]\il Pines ) =N =D+ (N -1)- (N -
Given this construction, we next prove the following claim2)! = 2(N — 1)I. Hence,Y = 2(N — !N, f(Qj;) +

Claim 1: If Zf;l Xii > 2, the RSOF Scheduler with any(N —2)N!f(0) and thus
function f € F is unstable for anNV x N switch, where N . 2(N — 1)!2;_\;1 £(@Qj;) + (N = 2)N!f(0)

N > 3. i = 5

— N —1)! y —1)N!£(0
Proof of Claim: Based on the above model, the RSOF =l ( L' ZJ 1 /(Qa) + (N INLF(0)
Scheduler becomes L AN- DI F(Q)5) +2(N — 1)NIf(0)

(
(N = D' £(Q)5) + (N = 1)NI£(0)

N N -
DD HQu)F(IN= > 1)f(0) _9 9)

P — i=1 (i,i)eS i=1 (i,i)eS
S = N N Consider the Lyapunov functioh(Q) := Zfil Qii, then
2|2 2 f@uT(N=3 3 IO AL :=E[L(Qlt +1]) - LIQ)IQl] = Q]
57 \i=1(.jes’ =1 (Gj)es’ N
Then, > E[Ault] - Sult]|Q[t] = Q]
N 1=1
Y Pi=), Ps = S =
i=1 i=1 {S:(4,i)€S} = Z Z Z -2 (10)
=Y =1 =1 =1
N N If Zf;l Aii > 2, then AL > 0. Hence, by the Theorem 20
> { > } (Z > @)+ (N - Z > 1)f(0)> of [9], the RSOF Scheduler is unstableXtY |, \; > 2. =
i=1{8:(i,i)€S =1(j,5)€S j=1(j,5)€S

N N
> (Z SR @QN+WN =Y > 1)f(0)> V. THE THROUGHPUTPERFORMANCE OFRSOF
87 A=t Gages’ I=lGaes SCHEDULER FOR ANN x N SWITCH

=X

We can expand¥ andY as follows Even though the RSOF Scheduler with any functfoa 7

cannot be throughput-optimal in @i x N switch (V > 3), it
can still achieve stability within some region. In this seuot
X = Z Z Z f(Qj5) — f(0)) + N f(0) Z 1 we specify the region of supportable arrival rates under the
§ j=1(.5)e8 5 RSOF Scheduler witlf € A for an N x N switch and prove
N its stabilizing properties. Theorehimplies that the stable
=Y (@) = f(0)) D> 1+N-NIf(0) region that RSOF Scheduler withe A can achieve is:
j=1 {S:(j.j)eS}

Jj=1

N I =TT, (11)
— (N =S £(Q5) + (N = 1)NIF(0) ®
; » WhereT; := {/\>0 ZZ 1ZJ LAY %} and Ty :=
{A>0:X; <% Vi,j=1,..,N}. Note thatl'y doesn't
N N coincide withI's. Consider & x 2 switch. Assumingho = 0,
y=> >3 (£(@Qyy) — £(0)) Figure 1 illustrates the relationship amoFg, I'> and A in
i=1 {8S:(4,1)€8} j=1 (j,5)€8 a three dimensional space. We observe fhatand I’y are
N captured by ball and cube forms, respectively. Also, we can
+ N f(0) Z Z 1 observe thal’; andT'; partially overlap.
=1 {S:(i,9)eS} Lemma 2:In an N x N switch, for any non-negative
N N valued vectorQ, we have
=200 > DO D (@) - £(0) M. 2
S =1 (i,i)€S Jj=1(j,5)€S 2
1) + 3(Qij) < [(Qij) P
N WWLEE P

I
M=
—
L
T
M=

ng

an

N
Y. DHN-NFO) (2 —ZZwi sz

Jj=1 S:(j,j)€S =1 (i,i)eS i=1 j=1



Fig. 1. The relationship among;,I'2 and A

whereP;; =3 s j)es)
(3)
Proof: See Appendix B for the proof.

Theorem 3:The RSOF Scheduler witlf € A stabilizes

the N x N switch for any arrival rate\ € I'.

Proof: By Lemmal, if inequality (4) holds for any\ €
T, then the RSOF Scheduler withe A is f-stable for any

Ael.

(1) If A e Ty, thatis, >0, 327 A2
ad > 0, likely a function of N, such that

HPTE

=1 j=1

—2N*§
Thus, by Cauchy-Schwarz inequality, we have

N N
D> Xif(@y))

=1 j=1 i=1 j=1 i=1 j=1

1 N N
< (N - 2N45)ZZ]F2(Q@')

i=1 j=1

By Lemma 2, we have

N N
O o> N f(@iy)

- N N N N
§_2N4622f2(621])+(zz ng
i=1 j=1 i=1 j=1
Thus,
N N N N
(Z Z )\Uf Q’L] + Z PZ]f QZ]
i=1 j=1 i=1 j=1
N N N N
Zz/\ljf Qlj ZZPZ]f QZ]
=1 j=1 =1 j=1
N N N N
=003 M F @) = D P F(Qi)?
=1 j=1 =1 j=1

<- 2N45ZZfQ(Qij)

i=1 j=1

Ps(Q), wherePs(Q) is given by

< 4+, then there exists

PSS @)

Hence, we have

N N
ZZM Qi) — >3 Pyf(Qy)

i=1 j=1 i=1 j=1

3 —2N15 Y S FH(Qi)

_valzjvl ijf(Qz‘j)“‘ZfVley:lPijf(Qij)
zl DI LI()

< - (14)
Zl L F(Qi)
In addition,
Z Z f( sz <( maX{f(Qlj)})
=1 5=1
. = Nt max{f*(Qiy)} < N* Z Z Qi) (15)
=1 5=1

Hence, by combining inequalities (14) and (15), we can see
that inequality (4) is true for any € I';.

(2) If X € Iy, that is, \;; < & for Vi,j = 1,...,
there exist & > 0 such that\; ; < 4 — §. Thus,

N, then

)‘w - Pij)

(12)

By Lemma?2, we can see that inequality (4) holds for any
A€ Do ||

VI. SIMULATION RESULTS

In this section, we perform numerical studies to evaluate
the delay performance of RSOF Schedulers with different
functions in a2 x 2 switch and throughput performance of
RSOF Scheduler in & x 3 switch.

A. The impact of steepness of function on delay performance

In a 2 x 2 switch, there ar& maximal schedules, each
containing? links. We consider arrival rata = pH, where
H = [H;;] is a doubly-stochastic matrix withi{;; denoting
the fraction of the total rate from input parthat is destined
to output portj. Here,p € (0,1) represents the average
arrival intensity, where the larger the the more heavily
loaded the switch is. Due to limited space, we present two
cases: symmetric arrival proced¥( = [0.5 0.5; 0.5 0.5]) and
asymmetric arrival proces#, = [0.1 0.9;0.9 0.1]) under
the high arrival intensity = 0.99. We run the simulation 100
times and get the average queue length per link for RSOF

(13)



Schedulers with different functions, which are shown inléab

average queue length vs. time steps
T T

I. 7‘q11
—ql2
TABLE | e o
AVERAGE QUEUE LENGTH PER LINK 1 s
£ af! q23
& q31
| RSOF E | ]
ES 3r q33 4
. 105 05 101 09 S |
Functions | H, = [ 05 05 } H: = [ 09 0.1 } 2# AN ,
2 N ]
e 21.36 7.85 )
e* 21.40 8.07
evVE 20.75 11.06 — e~
(I + 1)2 20.02 10.06 0 2000 4000time Steps6000 8000 10000
x+1 20.71 17.62
log(z +e) | 19.48 1126 Fig. 2. The average queue length vs. time steps

From Table 1, we can observe that under symmetrie gyrengths and weaknesses of randomization in dynamic

arrival traffic, the delay performance is highly insensitio scheduling but also helped us establish important insights

the choice of the functional form being used in the RSOf, e study of a wider class of schedulers in more general

Scheduler. So, there is a wide class of choices under Wh-ﬁ@twork topologies, which has formed the basis of our

the RSOF Scheduler can yield good performance. On tBﬁgoing work.

other hand, under asymmetric arrival traffic, it appears tha

the steepness of needs to be high enough for RSOF VIII. A PPENDIXA
Scheduler to yield good delay performance. In addition, we PROOF OFLEMMA 1

can see that RSOF Schedulers with eitaéror ¢* are Consider the Lyapunov function
also f-stable in symmetric and asymmetric arrival processes. NN
Thus, we conjecture that RSOF Scheduler with the function
) V(Q) = Z Z aijh(Qij)

steeper than the function in Clagsis f-throughput-optimal. (16)

i=1 j=1

B. The throughput performance in aW x N switch wherel/(z) = f(z). Then

In an N x N switch (Vv > 3), the RSOF Scheduler L _ -~
with any function f € F is non-throughput-optimal. In A]\‘]/ ';E[V(Q[t+1]) vialiQll = ql
section V, we show that the RSOF Scheduler with the
function f € A is f-stable in the regiorl. However, _Zzai-jE[h(Qi-j[tJrl]) - h@i;[)IQl = Q]
the RSOF Scheduler can achieve a larger rate region than ==t
I. To see this, for example, consider a RSOF ScheBY the mean-value theorem, we havé(Q[t +
uler with the linear function under the arrival rate = 1)) — h(Qy;ft]) = [(R;[ED(Qyt + 1] — Qult]) =
[0.0368 0.2201 0.0686; 0.4308 0.2656 0.0498: 0.1266 0.0464  f(Ri;[t])(Ai; [t] — Si;[t] + Us;[t]), whereR;;[t] lies between
0.6309] in a3 x 3 switch. Whilex € A — T, the simulation Q:;[t] and Q;;[t + 1]. Due to the space limitation, we will
result shown in Figure 2 indicates that the given rate #op the time indext] from the quantitiesd;; [t],5;;[t].U;; [t]
actually supportable. Thus, the largest possible achievaBnd R;;[t] in the following proof. Hence, we get

rate region of RSOF schedulers for genekak N switches N N
is an open proble_m. From Figure _2, we can observe thaay :ZzaijE[f(Rij)(Aij - Si; +Ui)IQ[t] = Q]
RSOF Scheduler is stilf-stable outside the regioln. =1 j=1
N N
VII. CONCLUSIO.NS. . - :ZzaijE[f(Rij)Uij|Q[t] —Q
We proposed and explored the limitations of a functional i=1 j=1

class of queue-length-based randomized schedule¥sxdnv
switch networks. Our study revealed the sensitivity of the N N
randomized schedulers to the number of ports of the switch B B . _
by establishing thatV = 2 is necessary and sufficient for 22 aiBIf(Bi)(Ay ~ 5)|Ql = Q
the throughput-optimality a large class of functional ferm
considered. We also characterized an achievable ratenregio
for N > 3 and studied the delay performance under theor AVy, if Qs;[t] = Qi; > 0, thenU;;[t] = 0. If Q;;[t] =
throughput-optimal scenario. These results not only ledea );; = 0, thenU,;[t] may be equal td. But in this case,

=:AV;

i=1 j=1

=:AV,



Qilt +1] < K (since A;;[t] < K). Hence, f(
f(K) < co. Thus,

Ri;[t]) <

A‘/1 Z Z a”Lj z] UZJ|Q[ ] Q] l{Q” >0}+
=1 j=1
N N
> aiEf(Ri)U;1Q[H = Qg -0
i=1 j=1
N N
=D ayEf(Ri)Uy[Ql1 = Qg0
i=1 j=1
N N
<DY N f(K) (17)
i=1 j=1
Where D := max{a;;} and 1;, denotes the indicator

function.
Next, let's focus onAV,. We know that f(

Ri;t])

£(Qij[t] + bi;) (|bij| < K). According to the definition of

function f € A, givene > 0, there existsM/ > 0, such that
for any Q;;[t] = Qi; > M, we have IBy) 1| < ¢, that

F(@Qij)
is, (1—¢€)f(Qsj) < f(Rij) < (L +¢€)f(Qi;). Thus, we have

f(Rij)(Aij — Sij)
=f(Rij) [(Aij — Sij)+ — (Aij — Sij)-]
<(1+€)f(Qij)(Aij — Sij)+ (1 =€) [(Qij)(Aij — Sij) -
=f(Qi;) [(Aij — Sij)+ — (Aij — Siz)-]

+€ef(Qij) [(Aij — Sij)+ + (Aij — Sij)-]
=f(Qij)(Aij — Siz) + f(Qij) |Aij — Sij
<f(Qij)(Aij — Sij) + Kef(Qi5) (18)

Where(z)+ = max{z,0}, (z)- = —min{z,0} and|A4;; —
Sij| < 1Ai;] < K. Thus, we divideAV; into two parts:

N N
AV, = Z ZaijE [f(Rij)(Aij — Sij)IQ[t]l = Q] 1(q,; >
i=1 j=1
=:AV3
N N
+ZZQWEV(R”)( - 55)|Qlt] = Ql Lyq,,<my
i=1 j=1
=:AV,
For AV, by using (18), we have
AV; < Z Z aiE[f(Qij)(Aij — Si5)|Qlt] = QI 1q,, >y
=1 1
N
+ Z Z ainEf(Qij)l{Qij>M}
=1 j=1
N J=
Szzawf ng Bj)l{Qij>M}
+ DKeZZf(Qij)l{Qu>M} (19)

i=1 j=1

Since inequality (4) holds, we have

Z Z az]f sz

=1 j=1

N N
B M@~ 53D (@

=1 j=1 =1 j=1
N N

Pij)1iq,;>my

az;.f ng Bj)l{QijSM}

s
Il
—

<.

.%2 Il
= -

s
Il
-

<.
Il
-

A

f(Qij)Liq,>my + Zzauf Qij)Pijliq,, <my

11]1

f(QZJ)]‘{QU >M} +D ZZ f

=1 j=1

<=0

Mz
M=

(20)

T
Il
-

15
Thus, we have

N N
AV <=6 Y f(Qi)lig,>m)

i—1 j]:vl N .
+ DKe Z Z f(Qij)l{Qij>M} +D Z Z f(M
P i=1 j—1

We can choose small enough such that=§ — DKe > 0
and thus we have

N N N N
AVs < =Y > FQi)lqusmy + DY D (M
i=1j=1 i=1j=1
For AV,, we have

AV4 <ZZGU

=1 j=1

N N
<DK > > f(M+K)

i=1 j=1

- S 1Q[t] = Q] 14q,,<nm)

Thus, we get

N N
ZZ Qz; 1{Q1J>]W}+DZZJC
i1 j=1

N

N NZ]\lfj '
ZZ (M +K)+ DY f(M) (21)
=1 j= =1 j=1

By the Foster-Lyapunov theorem [1], we know that RSOF
scheduler withf € A is f-stable under the condition (4).

IX. APPENDIXB
PROOF OFLEMMA 2

N N
SO £(@Qij)Py

i=1 j=1
Y S FQi) Y siipes) Sknes F( Q)
> Z(k,l)eS’ (@)




2
s (Z(i,j)es f(Qij))
B ZS Z(i,j)es f(QZ])
(1) We only need to showt S-7, 7 f2(Qy) <

ZS(Z (i.j)€S f(Qij))2
Y s 2 ,es F(Qij)

(22)

ity, we have
2 2
S Q)| <D 1D | DD F@iy)
S (i.5)€s S S \(i.j)es
2
=N DD F@iy)
S \(@,j)es
(23)
In addition, we have
2
DU DD @y | =0 D @y
S \(i,j)es S (4,5)€S
N N
=3 @) Y 1
i=1 j=1 {S:(4,5)€S}
N N
= (N=D!> > 2(Qy)
i=1 j=1
Then we have
N N 2
P ECHIEDID NI
i=1 j=1 S (i,5)€S
2 2
N[ Y r@y) (24)
S \(,j)es

Thus, we have

2\ 2
1 L, s (Zipes £Qui)
~ ij) <
N i:lj;f (@) >os 2ijes f(Qij)
(2) Since
N N
DY Q) =)D F@y) > 1
S (i,j)€es i=1 j=1 S:(i,5)€S
N
=(N=11) N f(Qy) (25
i=1 j=1
thus we only need to show
2 2
% S @] <D DD f@iy)
’ S (i,5)€S S (i,5)€S

This is true due to inequality2g).

2
> . By Cauchy-Schwarz inequal-
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(8]
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